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Clustering of Dependent Components:
A New Paradigm for fMRI Signal Detection
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Exploratory data-driven methods such as unsupervised clustering and independent component analysis (ICA) are considered to
be hypothesis-generating procedures and are complementary to the hypothesis-led statistical inferential methods in functional
magnetic resonance imaging (fMRI). Recently, a new paradigm in ICA emerged, that of finding “clusters” of dependent com-
ponents. This intriguing idea found its implementation into two new ICA algorithms: tree-dependent and topographic ICA. For
fMRI, this represents the unifying paradigm of combining two powerful exploratory data analysis methods, ICA and unsupervised
clustering techniques. For the fMRI data, a comparative quantitative evaluation between the two methods, tree-dependent and
topographic ICA, was performed. The comparative results were evaluated by (1) task-related activation maps, (2) associated time
courses, and (3) ROC study. The most important findings in this paper are that (1) both tree-dependent and topographic ICA
are able to identify signal components with high correlation to the fMRI stimulus, and that (2) topographic ICA outperforms all
other ICA methods including tree-dependent ICA for 8 and 9 ICs. However for 16 ICs, topographic ICA is outperformed by tree-
dependent ICA (KGV) using as an approximation of the mutual information the kernel generalized variance. The applicability of
the new algorithm is demonstrated on experimental data.
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1. INTRODUCTION

Functional magnetic resonance imaging with high tempo-
ral and spatial resolution represents a powerful technique
for visualizing rapid and fine activation patterns of the hu-
man brain [1, 2, 3, 4, 5]. As is known from both theoret-
ical estimations and experimental results [4, 6, 7], an acti-
vated signal variation appears very low on a clinical scan-
ner. This motivates the application of analysis methods to
determine the response waveforms and associated activated
regions. Generally, these techniques can be divided into two
groups: model-based techniques require prior knowledge
about activation patterns, whereas model-free techniques do

not. However, model-based analysis methods impose some
limitations on data analysis under complicated experimen-
tal conditions. Therefore, analysis methods that do not rely
on any assumed model of functional response are considered
more powerful and relevant. We distinguish two groups of
model-free methods: transformation-based and clustering-
based methods. There are two kinds of model-free methods.
The first kind, principal component analysis (PCA) [8, 9]
or independent component analysis (ICA) [10, 11, 12, 13],
transforms original data into high-dimensional vector space
to separate functional response and various noise sources
from each other. The second kind, fuzzy clustering anal-
ysis [14, 15, 16, 17] or self-organizing maps [17, 18, 19],
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attempts to classify time signals of the brain into several
patterns according to temporal similarity among these sig-
nals.

Among the data-driven techniques, ICA has been shown
to provide a powerful method for the exploratory analysis
of fMRI data [11, 13]. ICA is an information-theoretic ap-
proach which enables to recover underlying signals, or inde-
pendent components (ICs) from linear data mixtures. There-
fore, it is an excellent method to be applied for the spatial lo-
calization and temporal characterization of sources of BOLD
activation. ICA can be applied to fMRI both temporally and
spatially. Spatial ICA has dominated so far in fMRI applica-
tions because the spatial dimension is much larger than the
temporal dimension in fMRI. However, recent literature re-
sults have suggested that temporal and spatial ICA yield simi-
lar results for experiments where two predictable task-related
components are present.

A new methodology has attracted a lot of attention in
the ICA community during the last two years: the idea of
finding “clusters” of independent components. Two leading
papers implemented this new paradigm in a striking way.
Clusters are defined as connected components of a graphi-
cal model (lattice in [20] and tree structured in [21]). Both
models attempt a decomposition of the source variables such
that they are dependent within a cluster and independent
between the clusters. This idea emerged from multidimen-
sional ICA, where the sources are not assumed to be all mu-
tually independent [22]. Instead, it is assumed that they can
be grouped in n-tuples, such that within these tuples they are
dependent on each other, but are independent outside.

The two paradigms differ in terms of topology and the
knowledge of number and sizes of components.

In [20], the components are arranged on a two-dimen-
sional grid or lattice as is typical in topographic models. The
goal is to define a statistical model where the topographic
proximity reflects the statistical dependencies between com-
ponents. The components (simple cells) are placed on the
grid such that any two cells that are close to each other model
dependent components whereas cells that are far from each
other model independent components. The measure of de-
pendency is based on the correlation of energies. Energy in
this context means the squaring operation. Nonlinear cor-
relations are of importance since they cannot be easily set
to zero by standard whitening procedures. Translated to our
model, this means that energies are strongly positively cor-
related for neighboring components. The topology of the
model is fixed. This model also requires that the number and
sizes of the components have to be fixed in advance. Learning
is based on the maximization of the likelihood.

A totally different concept is employed in [21]. Here, the
topology of the dependency structure is not fixed in advance.
However, it is assumed that it has the structure of a tree. The
goal of the learning is to identify a minimal spanning tree
connecting the given sources in such a manner that no other
tree expresses the dependency structure of the given distri-
bution better. It is interesting to point out that in traditional
ICA the graphical model has no edges meaning that the ran-
dom variables are mutually independent.

We have seen that both clustering methods as well as ICA
techniques have their particular strengths in fMRI signal de-
tection. Therefore, it is natural to look for a unifying tech-
nique that combines those two processing mechanisms and
applies this combination to fMRI. The topographic and the
tree-dependent ICA, as previously described, have the com-
putational advantages associated with both techniques.

In this paper, we perform a detailed comparative study
for fMRI among the tree-dependent and topographic ICA
with standard ICA techniques. In a systematic manner, we
will compare and evaluate the results obtained based on
each technique and present the benefits associated with each
paradigm.

2. EXPLORATORY DATA ANALYSIS METHODS

Functional organization of the brain is based on two comple-
mentary principles, localization and connectionism. Local-
ization means that each visual function is performed mainly
by a small set of cortical neurons. Connectionism, on the
other hand, expresses that the brain regions involved in a cer-
tain visual cortical function are widely distributed, and thus
the brain activity necessary to perform a given task may be
the functional integration of activity in distinct brain sys-
tems. It is important to stress that in neurobiology the term
“connectionism” is used in a different sense than that used in
the neural network terminology.

The following sections are dedicated to presenting the al-
gorithms and evaluate the discriminatory power of the two
main groups of exploratory data analysis methods.

2.1. The basic ICA algorithms

According to the principle of functional organization of the
brain, it was suggested for the first time in [11] that the mul-
tifocal brain areas activated by the performance of a visual
task should be unrelated to the brain areas whose signals
are affected by artifacts of physiological nature, head move-
ments, or scanner noise related to fMRI experiments. Ev-
ery single above-mentioned signal can be described by one
or more spatially independent components, each associated
with a single time course of a voxel and a component map.
It is assumed that the component maps, each described by a
spatial distribution of fixed values, are representing overlap-
ping, multifocal brain areas of statistically dependent fMRI
signals. This aspect is visualized in Figure 1. In addition, it is
considered that the distributions of the component maps are
spatially independent and, in this sense, uniquely specified.
Mathematically, this means that if pk(Ck) specifies the prob-
ability distribution of the voxel values Ck in the kth com-
ponent map, then the joint probability distribution of all n
components yields

p
(
C1, . . . ,Cm

) = n∏
k=1

pk
(
Ck
)
, (1)

where each of the component maps Ck is a vector (Cki, i =
1, 2, . . . ,M), where M gives the number of voxels. Indepen-
dency is a stronger condition than uncorrelatedness. It was
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Figure 1: Visualization of ICA applied to fMRI data. (a) Scheme of fMRI data decomposed into independent components, and (b) fMRI
data as a mixture of independent components where the mixing matrix A specifies the relative contribution of each component at each time
point [11].

shown in [11] that these maps are independent if the active
voxels in the maps are sparse and mostly nonoverlapping.
Additionally it is assumed that the observed fMRI signals are
the superposition of the individual component processes at
each voxel. Based on these assumptions, ICA can be applied
to fMRI time series to spatially localize and temporally char-
acterize the sources of BOLD activation.

Different methods for performing ICA decompositions
have been proposed which employ different objective func-
tions together with different criteria of optimization of these
functions, and it is assumed that they can produce different
results.

2.2. Models of spatial ICA in fMRI

In the following we will assume that X is a T ×M matrix of
observed voxel time courses (fMRI signal data matrix), C is
the N × M random matrix of component map values, and
A is a T × N mixing matrix containing in its columns the
associated time courses of the N components. Furthermore,
T corresponds to the number of scans, andM is the number
of voxels included in the analysis.

The spatial ICA (sICA) problem is given by the following
linear combination model for the data:

X = AC, (2)

where no assumptions are made about the mixing matrix A
and the rows Ci being mutually statistically independent.

Then the ICA decomposition of X can be defined as an
invertible transformation:

C =WX, (3)

whereW is an unmixing matrix providing a linear decompo-
sition of data. A is the pseudoinverse ofW.

The employed ICA algorithms are the TDSEP, JADE, and
the FastICA approach based on the minimization of mutual
information but using the negentropy as a measure of non-
Gaussianity [23], and topographic ICA which combines to-
pographic mapping with ICA [20].

2.3. Tree-dependent component analysis model

The paradigm of TCA is derived from the theory of tree-
structured graphical models. In [24] a strategy was shown to
approximate optimally an n-dimensional discrete probabil-
ity distribution by a product of second-order distributions,
or the distribution of the first-order tree dependence. A tree
is an undirected graph with at most a single edge between
two nodes. This tree concept can be easily interpreted with
respect to ICA. A graph with no edges means that the ran-
dom variables are mutually independent and this pertains to
ICA. On the other hand, if no assumptions are made about
independence, then the corresponding family of probability
distributions represents the set of all distributions.

A probability distribution can be approximated in several
ways. Here, we look into approximations based on a prod-
uct of n − 1 second-order component distributions. In [24]
a strategy of the best approximation of an nth-order distri-
bution was developed by a product of n − 1 second-order
component distributions:

Pi(x) =
n∏
i=1

P
(
xmi | xmj (i)

)
, 0 ≤ j(i) < i, (4)

where P(x) is a joint probability distribution of n discrete
variables with x = x1, . . . , xn being a vector, (m1, . . . ,mn) is an
unknown permutation of integers 1, 2, . . . ,n, and P(xi | x0) is
by definition equal to P(xi). The above introduced probabil-
ity distribution is named a probability distribution of first-
order tree dependence.
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To determine the goodness of an approximation, it is nec-
essary to define a closeness as

I
(
P,Pa

) =∑
x
P(x) log

P(x)
Pa(x)

, (5)

where P(x) and Pa(x) are two probability distributions of the
n random variables x. The quantity I(P,Pa) has the property
I(P,Pa) ≥ 0.

Translated to random variables, the above definition is
named mutual information and is always nonnegative:

I
(
xi, xj

) = ∑
xi,xj

P
(
xi, xj

)
log

(
P
(
xi, xj

)
P
(
xi
)
P
(
xj
)
)
. (6)

In the following, we will state the solution to the approxi-
mation of the probability distribution. We are searching for
a distribution of tree dependence Pτ(x1, . . . , xn) such that
I(P,Pτ) ≤ I(P,Pt) for all t ∈ Tn where Tn represents the
set of all possible first-order dependence trees. Thus, the so-
lution τ is defined as the optimal first-order dependence tree.

In parlance of graph theory, every branch of the depen-
dence tree is assigned a branch weight I(xi, xj(i)). Thus being
given a dependence tree t, the sum of all branch weights be-
comes a useful quantity.

In [24] it was shown that a maximum-weight depen-
dence tree is a dependence tree t such that, for all t′ in Tn,

n∑
i=1

I
(
xi, xj(i)

) ≥ n∑
i=1

I
(
xi, xj′(i)

)
. (7)

In other words, a probability distribution of tree dependence
Pt(x) is an optimum approximation to P(x) if and only if its
dependence tree t has maximum weight or minimizing the
closeness measure I(P,Pt) is equivalent to maximizing the
total branch weight.

The idea of approximating discrete probability distribu-
tions with dependence trees described before and adapted
from [24] can be easily translated to ICA [21].

In classic ICA, we want to minimize the mutual informa-
tion of the estimated components s = Wx. Thus, the result
derived in [24] can be easily extended and becomes the tree-
dependent ICA.

The objective function for TCA is given by J(x,W, t) and
includes the demixing matrixW. Thus, the mutual informa-
tion for TCA becomes

J(x,W, t) = It(s) = I
(
s1, . . . , sm

)− ∑
(u,v)∈t

I
(
su, sv

)
, (8)

where s factorizes in a tree t.
In TCA as in ICA, the density p(x) is not known and

the estimation criteria have to be substituted by empiri-
cal contrast functions. As described in [21], we will em-
ploy three types of contrast functions: (i) approximation of
the entropiesbeing part of (8) via kernel density estimation

(KDE), (ii) approximation of the mutual information based
on kernel generalized variance (KGV), and (iii) approxima-
tion based on cumulants using Gram-Charlier expansions
(CUM).

2.4. Topographical independent component analysis

The topographic independent component analysis [20] rep-
resents a unifying model which combines topographic map-
ping with ICA.

Achieved by a slight modification of the ICA model, it
can at the same time be used to define a topographic order
between the components and thus has the usual computa-
tional advantages associated with topographic maps.

The paradigm of topographic ICA has its roots in [25]
where a combination of invariant feature subspaces [26] and
independent subspaces [22] is proposed. In the following, we
will describe these two parts, which substantially reflect the
concept of topographic ICA [27].

2.4.1. Invariant feature subspaces

The principle of invariant feature subspaces was developed
by Kohonen [26] with the intention of representing features
with some invariances. This principle states that an invariant
feature is given by a linear subspace in a feature space. The
value of the invariant feature is given by the squared norm of
the projection of the given data point on that subspace.

A feature subspace can be described by a set of orthogo-
nal basis vectorsw j , j = 1, . . . ,n, where n is the dimension of
the subspace. Then the value G(x) of the feature G with the
input vector x is given by

G(x) =
n∑
j=1

〈
w j , x

〉2
. (9)

In other words, this describes the distance between the input
vector x and a general linear combination of the basis vectors
w j of the feature subspace [26].

2.4.2. Independent subspaces

Traditional ICA works under the assumption that the ob-
served signals xi(t) (i = 1, . . . ,n) are generated by a lin-
ear weighting of a set of n statistically independent random
sources s j(t) with time-independent coefficients ai j . In a ma-
trix form, this can be expressed as

x(t) = As(t), (10)

where x(t) = [x1(t), . . . , xn(t)]T , s(t) = [s1(t), . . . , sn(t)], and
A = [ai j].

In multidimensional ICA [22], the sources si are not as-
sumed to be all mutually independent. Instead, it is assumed
that they can be grouped in n-tuples, such that within these
tuples they are dependent on each other, but are indepen-
dent outside. This newly introduced assumption was ob-
served in several image processing applications. Each n-tuple
of sources si corresponds to n basis vectors given by the rows
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of matrix A. A subspace spanned by a set of n such basis
vectors is defined as an independent subspace. In [22] two
simplifying assumptions are made: (1) although si are not at
all independent, they are chosen to be uncorrelated and of
unit variance, and (2) the data are preprocessed by whiten-
ing (sphering) them. This means the w j are orthonormal.

Let J be the number of independent feature subspaces
and Sj , j = 1, . . . , J , the set of indices that belong to the sub-
space of index j. Assume that we have T given observations
x(t), t = 1, . . . ,T . Then the likelihood L of the data based on
the model is given by

L
(
wi, i = 1, . . . ,n

)

=
T∏
t=1

[
|detW|

J∏
j=1

pj
(〈
wi, x(t)

〉
, i ∈ Sj

)] (11)

with pj(·) being the probability density inside the jth n-tuple
of si. The expression |detW| is due to the linear transforma-
tion of the pdf. As always with ICA, pj(·) need not be known
in advance.

2.4.3. Fusion of invariant feature and
independent subspaces

In [25] it is shown that a fusion between the concepts of in-
variant and independent subspaces can be achieved by con-
sidering probability distributions for the n-tuples of si be-
ing spherically symmetric, that is, depending on the norm.
In other words, the pdf pj(·) has to be expressed as a func-
tion of the sum of the squares of the si, i ∈ Sj , only. Ad-
ditionally, it is assumed that the pdfs are equal for all sub-
spaces.

The log likelihood of this new data model is given by

logL
(
wi, i = 1, . . . ,n

)

=
T∑
t=1

J∑
j=1

log p

( ∑
i∈Sj

〈
wi, x(t)

〉2)
+ T log |detW|.

(12)

p(
∑

i∈Sj s
2
i ) = pj (si, i ∈ Sj) gives the pdf inside the jth n-

tuple of si. Based on the prewhitening, we have log |detW| =
0.

For computational simplification, set

G

( ∑
i∈Sj

s2i

)
= log p

( ∑
i∈Sj

〈
wi, x(t)

〉2)
. (13)

Since it is known that the projection of visual data on any
subspace has a super-Gaussian distribution, the pdf has to be
chosen to be sparse. Thus, we will choose G(u) = α

√
u + β

yielding a multidimensional version of an exponential distri-
bution. α and β are constants and enforce that si is of unit
variance.
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Figure 2: Topographic ICA model [20]. The variance-generating
variables ui are randomly generated and mixed linearly within their
topographic neighborhoods. This forms the input to nonlinearity φ,
thus giving the local variance σi. Components si are generated with
variances σi. The observed variables xi are obtained as with standard
ICA from the linear mixture of the components si.

2.4.4. The topographic ICA architecture

Based on the concepts introduced in the preliminary subsec-
tions, this section describes the topographic ICA.

To introduce a topographic representation in the ICA
model, it is necessary to relax the assumption of indepen-
dence among neighboring components si. This makes it nec-
essary to adopt an idea from self-organized neural networks,
that of a lattice. It was shown in [20] that a representa-
tion which models topographic correlation of energies is an
adequate approach for introducing dependencies between
neighboring components.

In other words, the variances corresponding to neigh-
boring components are positively correlated while the other
variances are, in a broad sense, independent. The architec-
ture of this new approach is shown in Figure 2.

This idea leads to the following representation of the
source signals:

si = σizi, (14)

where zi is a random variable having the same distribution as
si, and the variance σi is fixed to unity.

The variance σi is further modeled by a nonlinearity:

σi = φ

( n∑
k=1

h(i, k)uk

)
, (15)

where ui are the higher-order independent components used
to generate the variances, while φ describes some nonlinear-
ity. The neighborhood function h(i, k) can either be a two-
dimensional grid or have a ring-like structure. Further ui and
zi are all mutually independent.

The learning rule is based on the maximization of the
likelihood. First, it is assumed that the data are preprocessed
by whitening and that the estimates of the components are
uncorrelated. The log likelihood is given by

logL
(
wi, i = 1, . . . ,n

)

=
T∑
t=1

n∑
j=1

G

( n∑
i=1

(
wT
i x(t)

2)) + T log |detW|. (16)
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Figure 3: Results of the comparison between tree-dependent ICA, topographic ICA, Jade, FastICA, TDSEP, and PCA on fMRI data. Spatial
accuracy of ICA maps is assessed by ROC analysis using correlation map with a chosen threshold of 0.4. The number of chosen independent
components (ICs) for all techniques is N = 8 in (a), N = 9 in (b), and N = 16 in (c).

The update rule for the weight vector wi is derived from
a gradient algorithm based on the log likelihood assuming
log |detW| = 0:

∆wi ∝ E
{
x
(
wT
i x
)
ri
}
, (17)

where

ri =
n∑

k=1
h(i, k)g

( n∑
j=1

h(k, j)
(
wT

j x
)2)

. (18)

The function g is the derivative of G = −α1√u + β1. Af-
ter every iteration, the vectors wi in (17) are normalized to
unit variance and orthogonalized. This equation represents a
modulated learning rule, where the learning term is modu-
lated by the term ri.

The classic ICA results from the topographic ICA by set-
ting h(i, j) = δi j .

3. RESULTS ANDDISCUSSION

fMRI data were recorded from six subjects (3 female, 3
male, age 20–37) performing a visual task. In five subjects,
five slices with 100 images (TR/TE = 3000/60msec) were

acquired with five periods of rest and five photic simula-
tion periods with rest. Simulation and rest periods com-
prised 10 repetitions each, that is, 30 seconds. Resolution
was 3× 3× 4mm. The slices were oriented parallel to the
calcarine fissure. Photic stimulation was performed using
an 8Hz alternating checkerboard stimulus with a central
fixation point and a dark background with a central fixa-
tion point during the control periods [17]. The first scans
were discarded for remaining saturation effects. Motion arti-
facts were compensated by automatic image alignment (AIR,
[28]).

The clustering results were evaluated by (1) task-related
activation maps, (2) associated time courses, and (3) ROC
curves.

3.1. Estimation of the ICAmodel

To decide to what extent spatial ICA of fMRI time series de-
pends on the employed algorithm, we have first to look at the
optimal number of principal components selected by PCA
and used in the ICA decomposition. ICA is a generalization
of PCA. In case no ICA is performed, then the number of in-
dependent components equals zero, and this means there is
no PCA decomposition performed.

In the following we will give the set parameters. For
PCA, no parameters had to be set. For FastICA we choose
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Figure 4: Cluster assignment maps for cluster analysis based on the tree-dependent ICA (CUM) of a visual stimulation fMRI experiment
obtained for 16 ICs.

(1) ε = 10−6, (2) 105 as the maximal number of iterations,
and (3) the nonlinearity g(u) = tanhu. And last, for topo-
graphic ICA we set the following: (1) stop criterium is full-
filled if the synaptic weights difference between two consecu-
tive iterations is less than 10−5×number of ICs, (2) the func-
tion g(u) = u, and (3) 104 is the maximal number of itera-
tions.

It is significant to find a fixed number of ICs that can
theoretically predict new observations in same conditions,
assuming the basic ICA model actually holds. To do so, we

compared the six proposed algorithms for 8, 9, and 16 com-
ponents in terms of ROC analysis using a correlation map
with a chosen threshold of 0.4. The obtained results are plot-
ted in Figure 3. It can be seen that topographic ICA outper-
forms all other ICA methods for 8 and 9 ICs. However, for
16 ICs topographic ICA is outperformed by tree-dependent
ICA (KGV) using as an approximation of the mutual infor-
mation the kernel generalized variance.

The clustering results for the two methods, the tree-
dependent (CUM and KGV) and topographic ICA are shown
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Figure 5: Associated codebook vectors for the tree-dependent ICA (CUM) as shown in Figure 4. Assignment of the codebook vectors
corresponds to the order of the assignment maps shown in Figure 4.

in Figures 4–9. Figures 4, 6, and 8 illustrate the so-called as-
signment maps where all the pixels belonging to a specific
cluster are highlighted. The assignment between a pixel and
a specific cluster is given by the minimum distance between
the pixel and an IC from the established codebook. On the
other hand, each IC shown in Figures 5, 7, and 9 can be
viewed as the cluster-specific weighted average of all pixel
time courses.

We immediately can see a topographical representation
in Figure 9 by looking at the last row (ICs 15 and 16): the

two time courses s with the highest absolute-valued cor-
relation are grouped together. Thus, the advantage of the
tree-dependent ICA (KGV) becomes immediately evident: it
groups together signals according to their dependence con-
tent. This effect cannot be observed neither with topographic
nor with tree-dependent ICA (CUM).

3.2. Characterization of task-related effects

For all subjects, and runs, unique task-related activation
maps and associated time courses were obtained by the
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Figure 6: Cluster assignment maps for cluster analysis based on the topographic ICA of a visual stimulation fMRI experiment obtained for
16 ICs.

tree-dependent and topographic ICA techniques. The
correlation of the component time course most closely
associated with the visual task for these two techniques is
shown in Table 1 for IC = 8, 9, and 16. This time course can
serve as an estimate of the stimulus reference function used
in the fMRI experiment, as identified by the specific depen-
dent component technique. FromTable 1, we see for the tree-
dependent ICA (CUM) a continuous increase for the corre-
lation coefficient while for the topographic ICA this correla-
tion coefficient decreases for IC = 16 and for tree-dependent
ICA (KGV) it decreases even for IC = 9.

3.3. Exploratory analysis of ancillary findings

From Figures 4–9, we can also obtain some insight in the
type of artifactual components. For the cluster assignment
maps in Figure 4, cluster 12 and cluster 16 in Figure 6 may
be assigned to a coactivation of the frontal eye fields induced
by stimulus onset. No such findings can be reported from
Figure 8. There may be some type of physiological related-
ness between cluster 12 on one hand, and between cluster 16
showing high correlation with the stimulus function, on the
other hand in Figure 4. The same is valid for cluster 16 and
cluster 8 in Figure 6. Interestingly, Figure 8 determines two
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Figure 7: Associated codebook vectors for the topographic ICA as shown in Figure 6. Assignment of the codebook vectors corresponds to
the order of the assignment maps shown in Figure 6.

ICs showing a high correlation with the stimulus function.
However, this connection is not revealed by the feature space
metric and thus is not supported by clustering approaches
based on this metric.

An additional benefit from unsupervised clustering tech-
niques represents the ability to identify data highly indicative
of artifacts, for example, ventricular pulsation or through
plane motion. Cluster 6 in Figure 4 and cluster 3 in Figure 6,
for example, show the region of the inner ventricles. It is im-
portant to mention that these effects could not have been de-
tected by model-based approaches.

4. CONCLUSION

In the present paper, we have experimentally compared four
standard ICA algorithms already adopted in the fMRI liter-
ature with two new algorithms, the tree-dependent and to-
pographic ICA. The goal of the paper was to determine the
robustness and reliability of extracting task-related activation
maps and time courses from fMRI data sets. The success of
ICA methods is based on the condition that the spatial dis-
tribution of brain areas activated by task performance must
be spatially independent of the distributions of areas affected
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Figure 8: Cluster assignment maps for cluster analysis based on the tree-dependent ICA (KGV) of a visual stimulation fMRI experiment
obtained for 16 ICs.

by artifacts. The obtained results proved to reveal extremely
well the structure of the data set.

It can be seen that topographic ICA outperforms all
other ICA methods for 8 and 9 ICs. However, for 16 ICs
topographic ICA is outperformed by tree-dependent ICA
(KGV) using as an approximation of the mutual informa-
tion the kernel generalized variance. All dependent compo-
nent techniques can be employed to identify interesting an-
cillary findings that cannot be detected by model-based ap-
proaches. The applicability of the new algorithms is demon-
strated on experimental data. We conjecture that the method
can serve as amultipurpose exploratory data analysis strategy

to image time-series analysis and provide good visualiza-
tion for many fields ranging from biomedical basic research
to clinical assessment of patient data. In particular, beyond
the application to fMRI data analysis discussed in this pa-
per, the method exhibits a specific potential to serve in ap-
plications refering to dynamic contrast-enhanced perfusion
MRI for the diagnosis of cerebrovascular disease or mag-
netic resonance mammography for the analysis of suspi-
cious lesions in patients with breast cancer. In addition,
it could yield a visualization of large trees using a hyper-
bolic space by employing a hyperbolic self-organized map
[29].
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Figure 9: Associated codebook vectors for the tree-dependent ICA (KGV) as shown in Figure 8. Assignment of the codebook vectors corre-
sponds to the order of the assignment maps shown in Figure 8.

Table 1: Comparison of the correlations of the component time course most closely associated with the visual task for tree-dependent (tree
ICA) and topographic ICA (topo ICA) for IC = 8, 9, and 16.

No. of ICs Tree ICA (KDE) Tree ICA (KGV) Tree ICA (CUM) Topo ICA

IC = 8 0.78 0.74 0.78 0.85

IC = 9 0.79 0.66 0.91 0.87

IC = 16 — 0.82 0.92 0.86
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