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Determining Patterns in Neural Activity for Reaching
Movements Using Nonnegative Matrix Factorization
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We propose the use of nonnegative matrix factorization (NMF) as a model-independent methodology to analyze neural activity.
We demonstrate that, using this technique, it is possible to identify local spatiotemporal patterns of neural activity in the form
of sparse basis vectors. In addition, the sparseness of these bases can help infer correlations between cortical firing patterns and
behavior.We demonstrate the utility of this approach using neural recordings collected in a brain-machine interface (BMI) setting.
The results indicate that, using the NMF analysis, it is possible to improve the performance of BMI models through appropriate
pruning of inputs.
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1. INTRODUCTION

Brain-machine interfaces (BMIs) are an emerging field that
aims at directly transferring the subject’s intent of move-
ment to an external machine. Our goal is to engineer de-
vices that are able to interpret neural activity originating in
the motor cortex and generate accurate predictions of hand
position. In the BMI experimental paradigm, hundreds of
microelectrodes are implanted in the premotor, motor, and

posterior parietal areas and the corresponding neural activ-
ity is recorded synchronously with behavior (hand reach-
ing and grasping movements). Spike detection and sorting
algorithms are used to determine the firing times of sin-
gle neurons. Typically, the spike-time information is sum-
marized into bin counts using short windows (100 millisec-
onds in this paper). A number of laboratories including our
own have demonstrated that linear and nonlinear adaptive
system identification approaches using the bin count input
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can lead to BMIs that effectively predict the hand position
and grasping force of primates for different movement tasks
[1, 2, 3, 4, 5, 6, 7, 8]. The adaptive methods studied thus far
include moving average models, time-delay neural networks
(TDNNs), Kalman filter and extensions, recursive multilayer
perceptrons (RMLPs), and mixture of linear experts gated by
hidden Markov models (HMMs).

BMIs open up an important avenue to study the spatio-
temporal organization of spike trains and their relationships
with behavior. Recently, our laboratory has investigated the
sensitivity of neurons and cortical areas based on their role
in the mapping learned by the RMLP and the Wiener fil-
ter [7]. We examined how each neuron contributes to the
output of the models, and found consistent relationships be-
tween cortical regions and segments of the hand trajectory
in a reaching movement. This analysis indicated that, dur-
ing each reaching action, specific neurons from the posterior
parietal, the premotor dorsal, and the primary motor regions
sequentially became dominant in controlling the output of
the models. However, this approach relies on determining a
suitable model, because it explicitly uses the learned model
to infer the dependencies.

In this paper, we propose a model-independent method-
ology to study spatiotemporal patterns between neuronal
spikes and behavior utilizing nonnegative matrix factoriza-
tion (NMF) [9, 10]. In its original applications, NMF was
mainly used to provide an alternative method for determin-
ing sparse representations of images to improve recognition
performance [10, 11]. d’ Avella and Tresch have also pro-
posed an extension of NMF to extract time-varying muscle
synergies for the analysis of behavior patterns of a frog [12].
The nonnegativity constraints in NMF result in the unsuper-
vised selection of sparse bases that can be linearly combined
(encoded) to reconstruct the original data. Our hypothesis is
that NMF can similarly yield sparse bases for analyzing neu-
ral firing activity, because of the intrinsic nonnegativity of
the bin counts and the sparseness of spike trains.

The application of NMF to extract local features of neu-
ral spike counts follows the method of obtaining sparse bases
to describe the local features of face images. The basis vec-
tors provided by NMF and their temporal encoding patterns
are examined to determine how the activities of specific neu-
rons localize to each segment of the reaching trajectory. We
will show that the results from this model-independent anal-
ysis of the neuronal activity are consistent with the previous
observations from the model-based analysis.

2. NONNEGATIVEMATRIX FACTORIZATION

NMF is a procedure to decompose a nonnegative data matrix
into the product of two nonnegative matrices: bases and en-
coding coefficients. The nonnegativity constraint leads to a
parts-based representation, since only additive, not subtrac-
tive, combinations of the bases are allowed. An n × m non-
negative data matrix X, where each column is a sample vec-
tor, can be approximated by NMF as

X =WH + E, (1)

where E is the error and W and H have dimensions n × r
and r ×m, respectively.W consists of a set of r basis vectors,
while each column of H contains the encoding coefficients
for every basis for the corresponding sample. The number of
bases is selected to satisfy r(n +m) < nm so that the number
of equations exceed that of the unknowns.

This factorization can be described in terms of columns
as

x j ≈Wh j , for j = 1, . . . ,m, (2)

where x j is the jth column of X and h j is the jth column of
H. Thus, each sample vector is a linear combination of ba-
sis vectors inW weighted by h j . The nonnegative constraints
onW andH allow only additive combination of basis vectors
to approximate x j . This constraint allows the visualization of
the basis vectors as “part” of the original sample [10]. This is
contrary to factorization by PCA, where negative basis vec-
tors are allowed.

The decomposition of X into W and H can be deter-
mined by optimizing an error function between the original
data matrix and the decomposition. Two possible cost func-
tions used in the literature are the Frobenius norm of the er-
ror matrix ‖X −WH‖2F and the Kullback-Leibler divergence
DKL(X‖WH). The nonnegativity constraint can be satisfied
by usingmultiplicative update rules discussed in [10] tomin-
imize these cost functions. In this paper, we will employ the
Frobenius norm measure, for which the multiplicative up-
date rules that converge to a local minimum are given below:

Hµ j(k + 1) = Hµj (k)

(
WTX

)
µj(

WTWH
)
µj

,

Wiµ(k + 1) =Wiµ(k)

(
XHT)

iµ(
WHHT)

iµ

.

(3)

Aab denotes the element of a matrix A at ath row and bth
column. It has been proven in [9] that the Frobenius norm
cost function is nonincreasing under this update rule.

3. FACTORIZATION OF THE NEURONAL
ACTIVITYMATRIX

Wewill now apply the multiplicative update rule in (2) to the
neuronal bin-count matrix (created by real neural recordings
of a behaving primate). The goal is to determine nonnegative
sparse bases for the neural activity, fromwhich we wish to de-
duce the local spatial structure of the neural population fir-
ing activity. These bases also point out common population
firing patterns corresponding to the specific behavior. In ad-
dition, the resulting factorization yields a temporal encoding
matrix that indicates how the instantaneous neural activity is
optimally constructed from these localized representations.
Since we are interested in the relationship between the neu-
ral activity and behavior, we would like to study the coupling
between this temporal encoding pattern with the movement
of the primate, as well as the contribution of the specific bases
vectors, which represent neural populations.
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Table 1: Distribution of neurons and cortical regions.

Monkey-1 Monkey-2

Regions PP M1(area 1) PMd M1(area 2) M1 PMd

Neurons 1 ∼ 33 34 ∼ 54 55 ∼ 81 82 ∼ 104 1 ∼ 37 38 ∼ 54

3.1. Data preparation

Synchronous, multichannel neuronal spike trains were col-
lected at Duke University using two female owl monkeys
(Aotus trivirgatus): Belle (monkey-1) and Carmen (monkey-
2).1 Microwire electrodes were implanted in cortical regions
where motor associations are known [1, 13]. During the
neural recording process, up to sixty-four electrodes were
implanted in posterior parietal (PP)-area 1, primary motor
(M1)-area 2, area 4, and premotor dorsal (PMd)-area 3, each
receiving sixteen electrodes. From each electrode, one to four
neurons can be discriminated. The firing times of individual
neurons were determined using spike detection and sorting
algorithms [14] and were recorded while the primate per-
formed a 3D reaching task that consists of a reach to food
followed by eating. The primate’s hand position was also
recorded using multiple fiber optic sensors (with a shared
time clock) and digitized with a 200Hz sampling rate [1].
These sensors were contained in the plastic strip of which
bending and twisting modified the transmission of the light
through the sensors in order to record positions in 3D space
more accurately. The neuronal firing times were binned in
nonoverlapping windows of 100 milliseconds, representing
the local firing rate for each neuron. In this recording session
of approximately 20 minutes (12 000 bins), 104 neurons for
monkey-1 and 54 neurons for monkey-2 could be discrimi-
nated (whose distribution to cortical regions is provided in
Table 1 from [13]), and there were 71 reaching actions for
monkey-1 and 65 for monkey-2, respectively. These reach-
ing movements consist of three natural segments shown in
Figure 1.

Based on the analysis of Wessberg et al. [1], the instanta-
neous movement is correlated with the current and the past
neural data up to 1 second (10 bins). Therefore, for each
time instant, we form a bin-count vector by concatenating
10 bins of firing counts (which correspond to 10-tap delay
line in a linear filter) from every neuron. Hence, if xj(i) rep-
resents the ith bin of neuron j, where i ∈ {1, . . . , 12 000}, a
bin-count vector at time instance i is represented by x(i) =
[x1(i), x1(i−1), . . . , x1(i−9), x2(i), . . . , xn(i−9)]T , where n is
the number of neurons. Since we are interested in determin-
ing repeated spatiotemporal firing patterns during the reach-
ing movements, only the bin counts from time instances
where the primate’s arm is moving are considered. There is
a possibility that in the selected training set some neurons
never fire. The rows corresponding to these neurons must be
removed from the bin-count matrix, since they tend to cause

1All experimental procedures conformed to the National Academy Press
Guide for the Care and Use of Laboratory Animals and were approved by the
Duke University Animal Care and Use Committee.
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Figure 1: Segmentation of the reaching trajectories: reach from rest
to food, reach from food to mouth, and reach from mouth to rest
positions (taken from [7]).

instability in the NMF algorithm. In addition, to prevent the
error criterion from focusing too much on neurons that sim-
ply fire frequently (although the temporal structure of their
activity might not be significant for the task), the bin counts
in each row (i.e., for each neuron) of the data matrix are nor-
malized to have the unit length in its two norms. In general,
if n neurons are considered for a total of m time instances,
the data matrix X has dimension (10n)×m. Since the entries
of the data matrix are bin counts, they are guaranteed to be
nonnegative. Accounting for 71 or 65 movements, there are
m = 2143 time instances for monkey-1 and m = 2521 for
monkey-2.

3.2. Analysis of factorization process

In the application of NMF to a given neural firing matrix,
there are several important issues that must be addressed: the
selection of the number of bases, the uniqueness of the NMF
solution, and understanding how NMF can find local struc-
tures of neural firing activity.

The problem of the choice of the number of bases can
be addressed in the framework of model selection. A num-
ber of model selection techniques (e.g., the cross-validation)
can be utilized for finding the optimal number of bases.
In this paper, we choose to adopt a selection criterion that
has been recently developed for clustering. The criterion is
called the index I , which has been used to indicate the cluster
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validity [15]. This index has shown consistent performance
of selecting the true number of clusters for various experi-
mental settings. The index I is composed of three factors as

I(r) =
(
1
r
· E1
Er
·Dr

)p

, (4)

where Er is the approximation error (Frobenius norm) for r
bases, and Dr is the maximum Euclidean distance between
bases such that

Dr = r
max
i, j=1

∥∥wi −w j

∥∥. (5)

The optimal r is the one that maximizes I(r). We will utilize
this index to determine the optimal r for NMF with p = 1.

Donoho and Stodden have shown that a unique solu-
tion of NMF is possible under certain conditions [16]. They
have shown through a geometrical interpretation of NMF
that if the data are not strictly positive, there can be only
one set of nonnegative bases which spans the data in the
positive orthant. With an articulated set of images obeying
three rules (a generative model, linear independence of gen-
erators, and factorial sampling), they showed NMF identi-
fies the generators or “parts” of images. If we consider our
neuronal bin-count matrix, each row contains many zero en-
tries (zero bin counts) even after removing nonfiring neu-
rons since most neurons do not fire continuously once in ev-
ery 100-millisecond window during the entire training set.
Therefore, our neuronal data are not strictly positive. This
implies that the existence of a unique set of nonnegative bases
for the neuronal bin-count matrix is warranted. The ques-
tion still remains if the NMF basis vectors can find the gen-
erative firing patterns for the neural population by meeting
the three conditions mentioned above. Here, we discuss the
neuronal bin-count data with respect to these conditions.

As stated previously, we have demonstrated through sen-
sitivity analysis that the specific neuronal subsets from the
PP, PMd, and M1 regions were sequentially involved in de-
riving the output of the predictive models during reaching
movements [7]. Hence, the bin-count data for the reaching
movement will contain increasing firing activity of the spe-
cific neuronal subset on local partitions of the trajectory. Due
to binning, it is possible that more than one firing pattern is
associated with a single data sample. This analysis leads to
a generative model for the binned data in which data sam-
ples are generated by linear combination of the specific firing
patterns with nonnegative coefficients. Also, these firing pat-
terns will be linearly independent since the neuronal subset
in each firing patterns tends to modulate firing rates only for
the local part of trajectory. The third condition of factorial
sampling can be approximately satisfied by the repetition of
movements in which the variability of a particular firing pat-
tern is observed during the entire data set. However, a more
rigorous analysis is necessary to support the argument that
the set of firing patterns is complete in factorial terms. There-
fore, we expect that the NMF solutions may be slightly vari-
able reflecting the ambiguity in the completeness of factorial

sampling. This might be overcome by collecting more data
for reaching movements, and will be pursued in future stud-
ies.

3.3. Case studies
TheNMF algorithm is applied to the described neuronal data
matrix prepared using ten taps, n = 91 neurons for monkey-
1 (after eliminating the neurons that do not fire through
the entire training set) and n = 52 neurons for monkey-
2. The NMF algorithm with 100 independent runs results
in r=5 bases for both monkey-1 and monkey-2 datasets for
which the index I is maximized. The means and the stan-
dard deviations of the normalized cost (Frobenius norm of
error between approximation and the given data matrix di-
vided by the Frobenius norm of the data only) for 100 runs
are 0.8399 ± 0.001 for monkey-1 data and 0.7348 ± 0.002
for monkey-2 data. This implies that the algorithm approx-
imately converges to the same solution with different initial
conditions (although not sufficient).

In Figure 2, we show the resulting basis vectors (columns
of W) for the bin counts (presented in matrix form where
columns are different neurons and rows are different delays),
as well as their corresponding time-varying encoding coeffi-
cients (rows of H) superimposed on the reaching trajectory
coordinates of three consecutive movements. Based on the
assumption that the neuronal bin-count data approximately
satisfy the three conditions for the identification of the gener-
ators, the NMF basis vectors determine the sequence of spa-
tiotemporal firing patterns representing the firing modula-
tion of the specific neuronal subsets during the course of the
reaching movement. Alternatively, we can say that NMF dis-
covers these latent firing patterns of neural population by op-
timal linear approximation of the data with few bases [9]. For
example, from the two basis vectors each corresponding to
two primates in the left panel of Figure 2, we observe that fir-
ings of the neurons in group-b are followed by firings of the
neurons in group-a (the bright activity denoted by b occurs
earlier in time than the activity denoted by a, since increas-
ing values in the vertical axis of each basis indicates going
further back in time). Thus, NMF effectively determines and
summarizes this sparse firing pattern that involves a group
of neurons firing sequentially. Their relative average activity
is also indicated by the relative magnitudes of the entries of
this particular basis.

Using these time-synchronized neural activity and hand
trajectory recordings, it is also possible to discover rela-
tionships between firing patterns and certain aspects of the
movement. We can assess the repeatability of a certain fir-
ing pattern summarized by a basis vector by observing the
time-varying activity of the corresponding encoding signal
(the corresponding row of H) in time. An increase in this
coefficient corresponds to a larger emphasis to that basis in
reconstructing the original neural activity data. In the right
panel of Figure 2, we observe that all bases are activated reg-
ularly in time by their corresponding encoding signals (at
different time instances and at different amplitudes). For ex-
ample, the first basis for monkey-1 is periodically activated
to the same amplitude, whereas the activation amplitude of
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Figure 2: (a) The five bases for monkey-1 (top) andmonkey-2 (bottom). (b) Their corresponding encoding signals (thick solid line) overlaid
on the 3-dimensional coordinates of the reaching trajectory (dotted lines) for three consecutive representative reaching tasks (separated by
the dashed lines). Note that the encoding signals are scaled to be in the same order of the magnitude of the reaching trajectory for the visual
purpose.

the third basis varies in every movement, which might in-
dicate a change in the role of the corresponding neuronal
firing pattern in executing that particular movement. The
periodic activation of encodings also indicates the bursting
nature of the spatiotemporal repetitive patterns. Hence, the
NMF bases tend to encode synchronous and bursting spa-
tiotemporal patterns of neural firing activity.

From the NMF decomposition, we observe certain asso-
ciations between the activities of neurons from different cor-
tical regions and different segments of the reaching trajec-
tory. In particular, an analysis of the monkey-1 data based on
Figure 2 indicates that neurons in PP andM1 (array 1) repeat
similar firing patterns during the reach from rest to food.
This assessment is based on the observation that bases three,
four, and five, which involve firing activities from neurons

in these regions, are repeatedly activated by the increased
amplitude of their respective encoding coefficients. Similarly,
neurons in M1 (array 2) are repeatedly activated during the
reach to and from the mouth (bases one and two). These
observations are consistent with our previous analyses that
were conducted through trained input-output models (such
as the Wiener filter and RMLP) [7]. Table 2 compares the
neurons, which were observed to have the highest sensitivity
from trained models, and the neurons that have the largest
magnitudes in each NMF basis. This comparison is based
on monkey-1 dataset. We can see that neurons from NMF
are a subset of neurons obtained from the sensitivity anal-
ysis. It is also worth stating that NMF basis provides more
information than the model-based sensitivity analysis since
it determines the synchronous spatiotemporal patterns while
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Table 2: Comparison of important neurons (examined in the monkey-1 dataset).

Regions PP M1(area 1) PMd M1(area 2)

The high sensitive neurons through RMLP 4, 5, 7, 22, 26, 29 38, 45 None 93, 94

The largest-magnitude neurons in NMF bases 7, 29 45 None 93, 94

Table 3: Performance evaluation of the Wiener filter and the mixture of multiple models based on NMF.

CC (x) CC (y) CC (z) MSE (x) MSE (y) MSE (z)

Monkey-1

Wiener filter 0.5772 0.6712 0.7574 0.4855 0.3468 0.2460

NMF mixture 0.7147 0.7078 0.8076 0.2711 0.2786 0.1627

Monkey-2

Wiener filter 0.3737 0.4304 0.6192 0.3050 0.7405 0.2882

NMF mixture 0.4974 0.5041 0.6916 0.2354 0.5400 0.2112

the sensitivity analysis only determines individual important
neurons. Finally, we would like to reiterate that the analysis
presented here is solely based on the data, which means that
this analysis does not need to train a specific model to inves-
tigate the neural population organization.

3.4. Modeling improvement for BMI using NMF
Wewill demonstrate a simple example showing the improved
BMIs performance in predicting hand positions by utilizing
NMF. We will compare the performance of two systems; the
Wiener filter directly applied to the original spike count data
and the mixture of multiple linear filters based on the NMF
bases and encodings.

The straight Wiener filter is directly applied to the neural
firing data to estimate the three coordinates of the primate’s
hand position. The Wiener filter has been a standard model
for BMIs, and many other approaches have been compared
with it [19].With nine delays, the input dimensionality of the
filter is 910 for monkey-1 or 510 for monkey-2 (discarding
inactive (no firing) neural channels). Then we add a bias to
each input vector to estimate the y-intercept. The weights of
the filter are estimated by the Wiener-Hopf equation as

W = R−1P, (6)

where R is a 911 × 911 (or 511 × 511 for monkey-2) input
correlation matrix, and P is a 911×3 (or 511×3 for monkey-
2) input-output cross-correlation matrix.

The mixture of multiple models employs the NMF en-
codings as mixing coefficients. An NMF basis is used as a
window function for the corresponding local model. There-
fore, each model sees a given input vector through a different
window and uses the windowed input vector to produce the
output. Then the NMF encodings are used to combine each
model’s output to produce the final estimate of the desired
hand position vector. This can be described in the following
equation:

d̂c(n) =
K∑
k=1

hk(n)
(
zk(n)Tgk,c + bk,c

)
, (7)

where hk(n) is an NMF encoding coefficient for the kth basis
at nth column (i.e., time index), gk,c is the weight vector of
the kth model for the cth coordinate (c ∈ [x, y, z]), and bk,c is
the y-intercept of the kth model for the cth coordinate. zk(n)
is the input vector windowed by the kth NMF basis. Its ith
element is given by

zk,i(n) = xi(n) ·wk,i. (8)

Here, xi(n) is the normalized firing count of the neuron i at
time instance n, and wk,i is the ith element of the kth NMF
basis. gk,c and bk,c can be estimated based on the MSE crite-
rion by using of the stochastic gradient algorithm such as the
normalized least mean square (NLMS). The weight update
rule of the NLMS for each model is then given by

gk,c(n + 1) = gk,c(n) +
η

β +
∥∥zk(n)∥∥2 hk(n)ec(n)zk(n),

bk,c(n + 1) = bk,c(n) +
η

β +
∥∥zk(n)∥∥2 hk(n)ec(n),

(9)

where η is the learning rate and β is the normalization factor.
ec(n) is the error between the cth coordinate of the desired
response and the model output.

In the experiment, we divided the data samples into 1771
training samples and 372 test samples for monkey-1 dataset
and 1739 and 782, respectively, for monkey-2 dataset. The
parameters are set as {η,β,K} = {0.01, 1, 5}. The entire
training data set is presented 60 times sufficient enough for
the weights to converge. The performance of the model is
evaluated on the test set by two measures; the correlation
coefficient (CC) between desired hand trajectory and the
model output trajectory, and the mean squared error (MSE)
normalized by the variance of the desired response. Table 3
presents the evaluation of the performance of two systems
for both monkey-1 and monkey-2 datasets. It shows a signif-
icant improvement in generalization performance with the
mixture of models based on NMF factorization.

Note that the general performance of models for the
monkey-2 dataset is worse than that for the monkey-1
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dataset. The reasons may come from many experimental
variables. One of them may be the number of electrodes and
the corresponding cortical areas, as we can see in Table 1 that
only 32 electrodes were implanted in two areas formonkey-2,
while 64 electrodes in four areas for monkey-1.

To quantify the performance difference between the
Wiener filter and the mixture of multiple models, we can ap-
ply a statistical test based on the mean squared error (MSE)
performance metric [17]. By modeling the performance dif-
ference in terms of the MSE using short-time windows as a
normal random variable, one can apply the t-test to quan-
tify significance. This t-test was applied to both modeling
outputs for monkey-1 and monkey-2 with α = 0.01 or
α = 0.05. For both datasets, the null hypothesis was re-
jected with both significance levels, resulting in the p-values
of 0.0023 for monkey-1 and 0.0007 for monkey-2, respec-
tively. Therefore, the statistical test of the performance differ-
ence demonstrates that the mixture of multiple models based
on NMF improves the performance significantly compared
to the standard Wiener filter.

3.5. Discussions
The results presented in the previous case study are a repre-
sentative example of a broader set of NMF experiments per-
formed on this recording. Selection of the number of taps
and the number of bases (r) is dependent on the particu-
lar stimulus or behavior associated with the neural data. Al-
though we have used amodel selectionmethod originally de-
veloped for clustering, and did not provide full justification
that this index is suitable to NMF, the main motivation is
to demonstrate that the problem of selecting the number of
bases can be addressed in the context of model selection. This
will be pursued in future research.

The number of patterns that can be distinctly represented
by NMF is limited by the number of bases. A very small num-
ber of bases will lead to the combination of multiple patterns
into a single nonsparse basis vector. At the other extreme, a
very large number of bases will result in the splitting of a pat-
tern into two or more bases, which have similar encoding co-
efficient signals in time. In these situations, the bases under
consideration can be combined into one basis.

It is intriguing that the mixture of models based on NMF
generalizes better than the Wiener filter despite the fact that
the mixture contains much more model parameters. How-
ever, each model in the mixture receives the inputs processed
by the sparse basis vector. Therefore, each model learns the
mapping between only a particular subset of neurons and
hand trajectories, and the effective number of parameters for
each model is much less than the total number of input vari-
ables. Moreover, further overfitting is avoided by combining
the outputs of local models by the sparse encodings of NMF.

4. CONCLUSIONS

Nonnegative matrix factorization is a novel and relatively
new tool for analyzing the data structure when nonnegativ-
ity constraints are imposed. In BMIs the neural inputs are
processed by grouping the firings into bin counts. Since the
bin counts are always positive, we hypothesized that NMF

would be appropriate for analyzing the neural activity. The
experimental results and the analysis presented in this paper
showed that we could find repeated patterns in neuronal ac-
tivity that occurred in synchrony with the reaching behavior
and was automatically and efficiently represented in a set of
sparse bases. The sparseness of the bases indicates that only
a small number of neurons exhibit repeated firing patterns
that are influential in reconstructing the original neural ac-
tivity matrix.

As presented in [10], NMF provides local bases of the
objects, while principal component analysis (PCA) provides
global bases. In our preliminary experiments of PCA for the
same data, we have observed that PCA only found the most
frequently firing neurons, whichmay not be related to the be-
havior. Therefore, NMF can find local representation of the
neural firing data, and this property of NMF can be more ef-
fective than PCA for BMIs where firing activities of different
cortical areas are collected.

Lee and Seung have claimed in their paper that the sta-
tistical independence among the encodings of independent
component analysis (ICA) forces the basis to be holistic [10].
And, if local parts of the neural activity occur together at the
same time, the complicated dependencies between the en-
codings would not be captured by the ICA algorithm. How-
ever, we have observed that the NMF encodings seem to be
uncorrelated over the entire movement. Hence, ICA with
some nonnegative constraints (e. g., nonnegative ICA [18],
the ICAmodel with nonnegative basis [19], and nonnegative
sparse coding [20]) may yield interesting encodings of the
neural firing activities. Further studies will present the com-
parison between NMF and these constrained ICA algorithms
applied for BMIs.

While NMF is found to be a useful tool for analyzing
neural data to find repeatable activity patterns, there are
still several issues when using NMF for neural data analysis.
Firstly, the method only detects patterns of activity, but it is
known that the inactivity of a neuron could often indicate re-
sponse to a stimulus or cause a behavior. An analysis based on
NMF will fail to identify such neurons. Next, the nontation-
ary characteristics of neural activities would make it difficult
for NMF to find fixed spatiotemporal firing patterns. Since
the neural ensemble function tends to change over neuronal
space and time such that different spatio-temporal firing pat-
terns may be involved for the same behavioral output, we
may have to continuously adapt NMF factors to track those
changes. This motivates us to consider a recursive algorithm
of NMF, which will enable us to adapt NMF factors online. It
will be covered in the future study.

In our application of NMF, we demonstrated that the
NMF learning algorithm resulted in similar Frobenious
norm of the error matrix for 100 runs obtained with dif-
ferent initial conditions. However, this does not necessarily
mean that the resulted factors are similar with small variance.
Therefore, we need to quantify the similarity of the NMF re-
sults with different initializations. An alternative is to employ
other methods to obtain the global solution such as genetic
or simulated annealing algorithms. This will be presented in
a follow-up report.
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