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One of the important issues in designing an EEG-based brain-computer interface is an exact delineation of the rhythms, related
to the intended or performed action. Traditionally, related bands were found by trial and error procedures seeking maximum
reactivity. Even then, large values of ERD/ERS did not imply the statistical significance of the results. This paper presents complete
methodology, allowing for a high-resolution presentation of the whole time-frequency picture of event-related changes in the
energy density of signals, revealing the microstructure of rhythms, and determination of the time-frequency regions of energy
changes, which are related to the intentions in a statistically significant way.
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1. INTRODUCTION

Thinking of a “brain-computer interface” (BCI), one can
imagine a device which would directly process all the brains
output—Iike in a perfect virtual reality machine [1]. Today’s
attempts are much more humble: we are basically at the level
of controlling simple left/right motions. On the other hand,
these approaches are more ambitious than direct connec-
tions to the peripheral nerves: we are trying to guess the in-
tention of an action directly from the activity of the brains
cortex, recorded from the scalp (EEG).

Contemporary EEG-based BCI systems are based upon
various phenomena like, for example, visual or P300 evoked
potentials, slow cortical potentials, or sensorimotor cortex
rhythms [2]. The most attractive path leads towards the de-
tection of the “natural” EEG features, for example a normal
intention of moving the right hand (or rather its reflection
in EEG) would move the cursor to the right. Determination
of such features in EEG is more difficult than using evoked
or especially trained responses. Desynchronization of the y
rhythm is an example of a feature correlated not only with
the actual movement, but also with its mere imagination.

All these approaches encounter obstacles, common in the
neurosciences: great intersubject variability and poor under-
standing of the underlying processes. Significant improve-
ment can be brought by coherent basic research on the EEG
representation of conscious actions. This paper presents two
methodological aspects of such research.

(i) High-resolution parameterization and feature extrac-
tion from the EEG time series. Scalp electrodes gather

signal from many neural populations, so the rhythms
of interest are buried in a strong background. Owing
to the high temporal resolution of EEG and the oscil-
latory character of most of its features, we can look for
the relevant activities in the time-frequency plane.

(ii) Determination of significant correlates of conscious
activities requires a dedicated statistical framework.
Until recently, reporting significance of changes in the
time-frequency plane presented a serious problem.

2. TIME-FREQUENCY ENERGY DENSITY OF SIGNALS

Among the parameters used in nowadays BCI systems
(like those designed in the Graz University of Technology
[3]), event-related desynchronization and synchronization
(ERD/ERS) phenomena play an important role. ERD and
ERS are defined as the percentage of change of the average
(across repetitions) power of a given rhythm—usually u/«,
B, and y [4]. Estimation of the time course of the rhythm en-
ergy is crucial for the sensitivity of these parameters. But due
to the intersubject variability, we cannot expect the rhythms
to appear at the same frequencies for all subjects.

Therefore, a classical procedure was developed to find the
reactive rhythms [4]. For each subject, the frequency range of
interest was divided into 1 Hz intervals, in each of them the
single trials (repetitions) were bandpass filtered, squared, and
averaged, to obtain the estimate of the average band energy.
Among these fixed bands, those revealing the largest changes
related to the event were chosen. This naturally limits the
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Figure 1: Top: Wigner distribution ((A.5); vertical—frequency,
horizontal—time) of the signal simulated as two short sines (bot-
tom). We observe the autoterms a*> and b corresponding to the
time and frequency spans of the sines, and cross-term 2ab at time
coordinates where no activity occurs in the signal.

frequency resolution to 1 Hz—not taking into account the
accuracy of bandpass filtering of finite sequences.

The whole problem is naturally embedded in the time-
frequency space. Time-frequency density of signal energy, av-
eraged across trials, provides all the information about the
rhythms and the time course of their energy in one clear pic-
ture (Figure 2).

2.1. Time-frequency distributions of energy density

Because of the uncertainty principle, there are many alterna-
tive estimates of the time-frequency density of signal’s en-
ergy. Actually, the same problem (nonunique estimates) is
present also in calculating the spectral power or bandpass fil-
tering finite sequences, but in the quadratic time-frequency
distributions we may say that the relevancy of the prob-
lem is “squared.” Fluctuations of power spectra, appearing
at high resolutions, in the time-frequency distributions take
the form of cross-terms. These false peaks occur in between
the autoterms (which correspond to the actual signal’s struc-
tures), and significantly blur the energy estimates (Figure 1).
Their presence stems from the equation (a + b)? = a*> + b*> +
2ab. Quadratic representation of an unknown signal s, com-
posed of two structures a and b, contains autoterms corre-
sponding to these structures (a> and b?) as well as the cross-
term 2ab. For a signal more complex than a sum of two
clear and separate structures (like the simplistic simulation
in Figure 1), cross-terms are indistinguishable from the au-
toterms. Advanced mathematical methods are being devel-
oped for the reduction of this drawback [5]. While some of
them give impressive results for particular signals, in general
we are confronted with the tradeoff: higher resolution versus.
more reliable (suppressed cross-terms) estimate.

2.2. Adaptive approximations

If we knew exactly the structures (a and b) of which the sig-
nal is composed, we might explicitly omit the cross-term 2ab,

thus obtaining a clear time-frequency picture. In practice,
this would require a reasonably sparse approximation of the
signal in a form

M
SR D Wigh (1)
n=1

where g; are known functions fitting well the actual signal’s
structures. This may be achieved only by choosing the func-
tions g; for each analyzed signal separately.! Criterion of their
choice is usually aimed at explaining the maximum part of
signal energy in a given number of iterations (M). However,
the problem of choosing the optimal set of functions g; is in-
tractable.? A suboptimal solution can be found by means of
the matching pursuit (MP) algorithm [7]. But even this sub-
optimal solution is still quite computer-intensive,’ so the first
practical applications were not possible before mid-nineties
[8]. The MP algorithm and construction of an estimate of
the signal’s time-frequency energy density, which is free of
cross-terms, are described in the appendix. Functions g; are
chosen from large and redundant collections of Gabor func-
tions (sine-modulated Gauss).

Advantages of this estimator in the context of event-
related desynchronization and synchronization were dis-
cussed in [9, 10].

3. MICROSTRUCTURE OF THE EEG RHYTHMS

3.1. Experimental data

To present advantages of the presented methodology, the
classical ERD/ERS experimental setup was modified to ob-
tain relatively long epochs of EEG between the events.

Thirty-one-year-old right-handed subject was half lying
in a dim room with open eyes. Movement of the thumb, de-
tected by a microswitch, was performed approximately 5 sec-
onds (at a subject’s choice) after a quiet sound generated ap-
proximately every 20 seconds. Experiment was divided into
15-minute sessions, and recorded EEG into 20-second long.
After artifacts rejection, 124 epochs were left for the analysis.
EEG was registered from electrodes at positions selected from
the 10-20 system. Figures 2—4 present results for the C4 elec-
trode (contralateral to the hand performing movements) in
the local average reference. Signal was down-sampled offline
from 250 Hz to 125 Hz.

Figure 5 presents data from another subject, collected in
a standard ERD/ERS experiment.

IContrary to most of the approaches, where all the signals are repre-
sented via products with the same set of functions (e.g., basis).

2Finding the subset of M functions, which explains the largest ratio of
the signal energy among all the other M-subsets of the highly redundant set,
requires checking all the possible M-subsets, which leads to the combina-
torial explosion even for moderate sets of candidate functions. Problems of
such computational complexity are termed NP-hard [6].

3Recent results indicate possibilities of a significant decrease of compu-
tation times of bias-free MP decompositions.
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FIGURE 2: Average time-frequency energy density of 124 trials (Section 3.1, energy cut above 2%, sqrt scale); darker area marks higher values
of the energy density. Horizontal scale in seconds, vertical in Hz. Finger movement in the 12th second.
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Ficure 3: ERD/ERS map corresponding to the time between 3 and 19 seconds (vertical lines in Figure 2). Shades of gray are proportional to
the percentage of change relative to the reference epoch (between 1 and 3 seconds in Figure 2).

3.2. High-resolution picture of energy density

Time-frequency estimates of the signal energy density, in-
cluding the MP estimate given by (A.5), contain no phase in-
formation, so they can be summed across the trials to give the
average time-frequency density of energy.* Figure 2 presents
such an average for 124 repetitions of EEG synchronized to
the finger movement, occurring in the 12th second. We eas-
ily observe that the & rhythm concentrates around 12 Hz. We
may also notice its decrease (desynchronization) around the
time when finger movement occurred, as well as some in-
creased activity in 15-30 Hz near 12—13 seconds (8 synchro-
nization).

In another experiment (Figure 5), high-resolution esti-
mate revealed clearly two very close but separate components
of the g rhythm with different time courses—an effect elusive
to the previously applied methods.

3.3. High-resolution ERD and ERS

Speaking of the decrease in the a rhythm in the previ-
ous section, we compared the activity near the 12th sec-
ond (Figure 2) to the average level of the o rhythm energy,
or, more correctly, to a period before the movement, which
should not be related to the event. To quantify this proce-
dure, we must define the reference period, to which the en-
ergy changes will be related. It should be distant enough from
the onset of the event, to avoid incorporating premovement
correlates into the reference. To avoid border problems of es-
timates, it should be also removed from the very start of the

4Note that the average of the energy densities is in general different from
the energy density of the averaged signal. The latter (averaged signal) reveals
phase-locked phenomena like for example the classical evoked potential.

analyzed epoch. In Figure 2 it was chosen between the 1stand
the 3rd second.

Classically, for each selected band, ERD/ERS were cal-
culated as the percentage of power relative to the reference
epoch (ERD corresponding to a decrease and ERS to an in-
crease). Owing to the high-resolution estimate of the whole
picture of energy density, we may calculate it for the whole
relevant time-frequency region with maximum resolution.
ERD/ERS map in Figure 3 was obtained as a ratio of each
point’s energy to the average energy of the reference epoch in
the same frequency. In this plot we observe, like in Figure 2,
darker area (increase) corresponding to the f postmove-
ment synchronization, and white spot around the time of
the movement, corresponding to the a desynchronization.
However, in the long premovement period there are still a
lot of fluctuations, which naturally implies a question about
the statistical significance of the observed changes.

4. STATISTICAL SIGNIFICANCE

The following steps constitute a fully automatic (hence ob-
jective and repeatable) and statistically correct procedure,
which delineates and presents with high resolution the time-
frequency regions of significant changes in the average energy
density.

(1) Divide the time-frequency plane into resels (from
resolution elements), for which the statistics are calculated
(Section 4.1).

(2) Calculate pseudo-t statistics and p-values for the null
hypothesis of no change in the given resel compared to the
reference epoch in the same frequency (Section 4).

(3) Select a threshold for the null hypothesis corrected by
multiple comparisons (Section 4.3).

(4) Display the energy changes calculated for maximum
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Figure 4: ERD/ERS from Figure 3 displayed in regions revealing statistically significant changes in resampling pseudo-¢ tests (Section 4.2),

corrected by 5% false detection rate (Section 4.3).

Movement

FIGURE 5: Average time-frequency energy density (2) of 57 trials
from the C1 electrode (average reference), constructed for g, longer
than 250 milliseconds. Presented from 5 to 15 Hz is the finger move-
ment in the 5th second. We observe two very close, but separate, y
rhythms with different time courses. Faster rhythm desynchronizes
about 1.5 seconds before the movement, while the slower lasts until
its very onset and desynchronizes in the 5th second.

resolution (Section 3.2) in windows corresponding to resels
which indicated statistically significant changes.

These steps will be described in the following sections.
Further details can be found in [10].

4.1. Integration of MP maps in resels

In choosing the dimensions of a resel, suitable for the sta-
tistical analyses, we turn to the theory of the periodogram
sampling [11]. For a statistically optimal sampling of the pe-
riodogram the product of the frequency interval and signal
length gives 1/2. This value was taken as the product of the
resel’s widths in time and frequency, their ratio being a free
parameter.

Calculating the amount of energy in such relatively large
resels simply as the value of the distribution (A.5) in its cen-
ter, that is,

Epoint (1 @;) = > [ (R f,g,) " Wg,, (tr @), (2)

may not be representative for the amount of energy con-
tained in a given resel. In such case’® we use the exact solution:

Eine (ti, w;)

_Z|ngyn J

tLi+At2 rwi+Aw/2
J We,, (1, 0)dt dw.

(3)

—At/2 —Aw/2

4.2. Resampling the pseudo-t statistics

The values of energy of all the N repetitions (trials) in each
questioned resel will be compared to the energies of resels
within the corresponding frequency of the reference epoch.
We denote the time indices ¢; of resels belonging to the ref-
erence epoch as {f;, i €ref} and their number contained in
each frequency slice as N For each resel at coordinates
{ti, wi} we will compare its energy averaged over N repeti-
tions with the energy averaged over repetitions in resels from
the reference epoch in the same frequency. Their difference
can be written as

2

AE(ti, w, =

Z 1nt(tl’ wz

(4)
S S
N Zmek 1 jeref "
— E(trer, wi),

= E(tia wi)

where the superscript “k” denotes the kth repetition (out of
N).

However, we want to account also for the different vari-
ances of EF, revealing the variability of the N repetitions.
Therefore we replace the simple difference of means (4) by
the pseudo-t statistics:

SA

where AE is defined as in (4), and s, is the pooled variance of
the reference epoch and the investigated resel. In spite of the

5The difference between (2) and (3) is most significant for structures
narrow in time or frequency relative to the dimensions of resels.
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central limit theorem, this magnitude tends to have nonnor-
mal distribution [10]. Therefore, we use resampling meth-
ods.

We estimate the distribution of ¢ from (5)—under the
null hypothesis of no significant change—from the data in
the reference epoch (for each frequency N - Ny values) by
drawing with replacement two samples of sizes N and N -
Nier and calculating, for each such replication, statistics (5).
This distribution is approximated once for each frequency.
Then for each resel the actual value of (5) is compared to
this distribution yielding p for the null hypothesis.

The number of permutations giving values of (5) exceed-
ing the observed value has a binomial distribution for Ny,
repetitions with probability a. Its variance equals Nyepa(1 —
«). The relative error of « will be then (cf. [12])

%_ |19 ©)

o ONrep

To keep this relative error at 10% for a significance level
a = 5%, Np = 2000 is enough. Unfortunately, due to the
problem of multiple comparisons discussed in Section 4.3,
we need to work with much smaller values of . In this study
Nrep was set to 2 - 10°, which resulted in relatively large com-
putation times.

4.3. Adjustment for multiplicity

In the preceding section, we estimated the achieved signif-
icance levels p for null hypotheses of no change of the av-
erage energy in each resel, compared to the reference region
in the same frequency. Adjusting results for multiplicity is a
very important issue in case of such a large amount of po-
tentially correlated tests. As proposed in [10], it can be effec-
tively achieved using the false discovery rate (FDR, [13]). It
controls the ratio q of the number of the true null hypothe-
ses rejected to all the rejected hypotheses. In our case this is
the ratio of the number of resels, to which significant changes
may be wrongly attributed, to the total number of resels re-
vealing changes.

Let us denote the total number of performed tests, equal
to the number of questioned resels, as m. If for mg of them
the null hypothesis of no change is true, then [13] proves
that the following procedure controls the FDR at the level
q(my/m) < q.

(1) Order the achieved significance levels p;, approxi-
mated in the previous section for all the resels sepa-
rately, in an ascending series: p1 < py < - -+ < pp.

(2) Find

k —max{z.p, < sz_l(I/j)q}. (7)

(3) Reject all hypotheses for which p < py.

SFor brevity we omit the distinction between the exact value a, which
would be estimated from all the possible repetitions, and the actually calcu-
lated.

4.4. Display of the statistically significant ERD/ERS

Figure 4 gives the final picture of statistically significant
changes in the time-frequency plane. It is constructed by dis-
playing the high-resolution ERD/ERS map (Figure 3) only in
the areas corresponding to the resels which revealed statisti-
cal significance in the procedure from Section 4. Desynchro-
nization of 12-Hz a occurs around the time of the movement
(12th second). Synchronization of 18-30 Hz f3, occurring just
after the movement, is divided in half by the harmonic of
a (24Hz). In the long premovement epoch no significant
changes are detected, which suggests the robustness and reli-
ability of the whole procedure.

5. CONCLUSIONS

Presented procedure gives high-resolution and free-of-cross-
terms estimates of the average time-frequency energy den-
sity of event-related EEG, revealing the microstructure of
rhythms. Time-frequency area of significant changes are as-
sessed via objective statistical procedures. This allows for ex-
ample to investigate the minimum number of repetitions re-
quired to delineate the reactive rhythms. Application of this
methodology may bring a significant improvement in basic
research on the event-related changes of EEG rhythms, as
well as “per subject” customization of the ERD/ERS-based
BCI.

6. REPRODUCIBLE RESEARCH

Software for calculating the MP decomposition (ap-
pendix), with complete source code in C and executa-
bles for GNU/Linux and MS Windows, plus an inter-
active display and averaging of the time-frequency maps
of energy (in Java), are available at http://brain.fuw.edu.
pl/~durka/software/mp. Datasets used in Figures 5-4 and
Matlab code for calculating maps and statistics like Figures
2—4: are available at http://brain.fuw.edu.pl/~durka/tfstat/.

APPENDIX
MATCHING PURSUIT ALGORITHM

In each of the steps, a waveform g, from the redundant dic-
tionary D is matched to the signal R” f, which is the residual
left after subtracting results of previous iterations:

Rf=f,
R'f = (Rnf’gyn>gyn + Rnﬂf’

_ n
gy, = argmax | (R"f.g.) |,

(A1)

where arg max,, cp means the gy, giving the largest value of
the product [(R" f, gy} .
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Dictionaries (D) for time-frequency analysis of real sig-
nals are constructed from real Gabor functions:

g(t) = K(y)e ™=/ gin (271%0 —u)+ ¢>. (A.2)

N is the size of the signal, K(y) is such that ||g,[l = 1,
y = {u,w,s,¢} denotes parameters of the dictionary’s func-
tions. For these parameters no particular sampling is a pri-
ori defined. In practical implementations we use subsets of
the infinite space of possible dictionary’s functions. However,
any fixed scheme of subsampling this space introduces a sta-
tistical bias in the resulting parameterization. A bias-free so-
lution using stochastic dictionaries, where parameters of the
dictionary’s functions are randomized before each decompo-
sition, was proposed in [14].

For a complete dictionary the procedure converges to
f—in theory in an infinite number of steps [7], but in prac-
tice we use finite sums:

Mk

f= (R”f,gyn >gyn- (A.3)

I
(=}

n

From this decomposition we can derive an estimate E f (¢, )
of the time-frequency energy density of signal f, by choosing
only autoterms from the Wigner distribution

W F (b @) = Jf(t+ %)f(t - %)e"“‘” dr,  (A4)
calculated for the expansion (A.3). This representation will
be a priori free of cross-terms:

M
Ef(tw) = > |(R'f,g,) " Wg, (£, w). (A.5)

n=0
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