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Most EEG-based BCI systems make use of well-studied patterns of brain activity. However, those systems involve tasks that indi-
rectly map to simple binary commands such as “yes” or “no” or require many weeks of biofeedback training. We hypothesized
that signal processing and machine learning methods can be used to discriminate EEG in a direct “yes”/“no” BCI from a single
session. Blind source separation (BSS) and spectral transformations of the EEG produced a 180-dimensional feature space. We
used a modified genetic algorithm (GA) wrapped around a support vector machine (SVM) classifier to search the space of feature
subsets. The GA-based search found feature subsets that outperform full feature sets and random feature subsets. Also, BSS trans-
formations of the EEG outperformed the original time series, particularly in conjunction with a subset search of both spaces. The
results suggest that BSS and feature selection can be used to improve the performance of even a “direct,” single-session BCI.

Keywords and phrases: electroencephalogram, brain-computer interface, feature selection, independent components analysis,
support vector machine, genetic algorithm.

1. INTRODUCTION

1.1. EEG-based brain-computer interfaces

There is a fast-growing research and development effort un-
derway to implement brain-computer interfaces (BCI) using

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

the electroencephalogram (EEG) [52]. The overall goal is to
provide people with a new channel for communication with
the external environment. This is particularly important for
patients who are in a “locked-in” state in which conventional
motor output channels are compromised.

One simple, desirable BCI function would allow individ-
uals without motor function to respond to questions with
simple “yes” or “no” responses [35]. Yet most BCI research
has used experiments that require an indirect mapping be-
tween what the subject does and the effect on an external
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system. For example, subjects may be required to imagine
left- or right-hand movement in order to use the BCI [3, 37,
39]. If they want to use the BCI to respond yes/no to ques-
tions, they have to remember that left-hand imagined move-
ment corresponds to “yes,” and right-hand imagined move-
ment corresponds to “no.” Other BCI research requires ex-
tensive subject biofeedback training in order for the subject
to gain some degree of voluntary influence over EEG features
such as slow cortical potentials [5] or 8–12Hz rhythms [53].
For both the imaginedmovement and biofeedback scenarios,
the mapping between what the subject does and the effect on
the BCI is indirect. In the latter case, a single session is insuf-
ficient and the subject must undergo many weeks or months
of training sessions.

A more direct approach would simply have the sub-
ject imagine “yes” or “no” and would not require extensive
biofeedback training. While imagined movement and bidi-
rectional influence over time- and frequency-domain ampli-
tude can be readily detected and used as control signals in
a BCI, the EEG activity associated with complex cognitive
tasks such as imagining different words is much more poorly
understood. Can advances in signal processing and pat-
tern recognition methods enable us to distinguish whether
a subject is imagining “yes” or “no” by the simultaneously
recorded EEG? Furthermore, can that distinction be learned
in a single recording session?

1.2. The EEG feature space

The EEG measures the scalp-projected electrical activity of
the brain with millisecond resolution at up to over 200 elec-
trode locations. Althoughmost EEG-based BCI research uses
far fewer electrodes, research into the role of the specific to-
pographic distribution of the electrodes [54] suggests that
dense electrode arrays may standardize and enhance the sys-
tem’s performance. Furthermore, advances in electrode and
cap technology have made the time required to apply over
200 electrodes reasonable even for BCI patients. EEG anal-
yses, including much of the EEG-based BCI research, make
extensive use of the signals’ corresponding frequency spec-
trum. The spectrum is usually divided into five canonical fre-
quency bands. Thus, if one considers the power in each of
these bands for each of 200 electrodes, each trial is described
by 1000 “features.” If interelectrode features such as cross-
correlation or coherence are considered, this number grows
combinatorially. As in many such problems, a subset of fea-
tures will often lead to better dissociation between trial types
than the full set of features. However, the number of unique
feature subsets forN features is 2N , a space that cannot be ex-
haustively explored for N greater than about 25. This is but
one reason why most EEG research uses only a very small
number of features. A significant number of features are dis-
carded, including features that might significantly improve
the accuracy with which the signals can be classified.

1.3. Blind source separation of EEG

Given a set of observations, in our case a set of time series,
blind source separation (BSS) methods such as independent

component analysis (ICA) [22] attempt to find a (usually
linear) transformation of the observations that results in a
set of independent observations. Infomax [4] is an imple-
mentation of ICA that searches for a transformation that
maximizes the information between the observations and the
transformed signals. Bell and Sejnowski showed that a trans-
formation maximizing the information is, in many cases, a
good approximation to the transformation resulting in in-
dependent signals. ICA has been used extensively in analyses
of brain imaging data, including EEG [26, 34], magnetoen-
cephalogram (MEG) [47, 49], and functional magnetic res-
onance imaging (FMRI) [26]. Assumptions about how inde-
pendent brain sources are mixed and map to the recorded
scalp electrodes, and the corresponding relevance for BSS
methods, are discussed extensively in [27].

Maximum noise fraction (MNF) is an alternative BSS ap-
proach for transforming the raw EEG data. It was initially
introduced in the context of denoising multispectral satellite
data [14]. Subsequently it has been extended to the denois-
ing of time-series [1] and it has been compared to principal
components analysis and canonical correlation analysis in a
BCI [2]. The basis of the MNF subspace approach is to con-
struct a set of basis vectors that optimize the amount of noise
(or, equivalently, signal) captured. Specifically, themaximum
noise fraction basis maximizes the noise-to-signal (as well as
the signal-to-noise) ratio of the transformed signal. Thus, the
optimization criterion is based on the ratio of second-order
statistical quantities. Furthermore, unlike ICA, the basis vec-
tors have a natural ordering based on the signal-to-noise ra-
tio. MNF is similar to the second-order blind identification
(SOBI) algorithm and requires that the signals have different
autocovariance structures. The requirement exists because of
the second-order nature of the algorithm.

The relationship of MNF to ICA is a consequence of the
fact that they both providemethods for solving the BSS prob-
lem [1, 21]. Initial results for the application of MNF to the
analysis of EEG time-series demonstrated MNF was simulta-
neously effective at eliminating noise and extracting what ap-
peared to be observable phenomenon such as eye blinks and
line noise [28, 29]. It is interesting that ICA and MNF per-
form similarly given their disparate formulations. This sug-
gests that under appropriate assumptions (see [1, 21, 28]) the
mutual information criterion and the signal-to-noise ratio
can be related quantities. However, in the instance that sig-
nals of interest are mixed such that they share the same sub-
space, the MNF approach provides a representation for the
mixed and unmixed subspaces.

1.4. Classification and the feature selection problem

The support vector machine (SVM) classifier [45, 48] learns
a hyperplane that provides a maximal soft margin between
the data classes in a higher-dimensional transform space de-
termined by a choice of kernel function. Although SVMs can
fail in problems with many nuisance features [19], they have
demonstrated competitive classification performance in dif-
ficult domains as diverse as DNA microarray data [8], text
categorization [25], and image classification [40]. They have
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also been successfully employed in EEG-based BCI research
[6, 12, 32, 56]. In contrast to competing nonlinear classifiers
such as multilayer perceptrons, SVMs often exhibit higher
classification accuracy, are not susceptible to local optima,
and can be trained much faster. Because we seek feature sub-
sets that maximize classification accuracy, the feature subset
search needs to be driven by how well the data can be clas-
sified using the corresponding feature subsets, the so-called
“wrapper” approach to feature selection [30]. Thus the speed
characteristic of SVMs is particularly important because we
will train and test the classifiers for every feature subset we
evaluate.

Our prior research with EEG datasets from a cognitive
BCI [2] and movement prediction BCI [12] demonstrated
the benefit of feature selection for small and large feature
spaces, respectively. There are many ways to implement the
feature selection search [7, 16, 42]. One logical choice is a
genetic algorithm (GA) [13, 20]. GAs provide a stochastic
global search of the feature subset space, evaluating many
points in the space in parallel. A population of feature subsets
is evolved using crossover and mutation operations akin to
natural selection. The evolution is guided by howwell feature
subsets can classify the trials. GAs have been successfully em-
ployed for feature selection in a wide variety of applications
[15, 51, 55] including EEG-based BCI research [12, 56]. GAs
often exhibit superior performance in domains with many
features [46], do not get trapped in local optima as with gra-
dient techniques, andmake no assumptions about feature in-
teractions or the lack thereof.

In summary, this paper evaluates a feature selection sys-
tem for classifying trials in a novel, challenging BCI using
spectral features from the original, and two BSS transforma-
tions of, scalp recorded EEG. We hypothesized (1) that clas-
sification accuracy would be higher for the feature subsets
found by the GA than for full feature sets and random feature
subsets and (2) that the power spectra of the BSS transforma-
tions would provide feature subsets with higher classification
accuracy than the power spectra of the original signals.

2. METHODS

2.1. Subjects

The subjects were 34 healthy, right-handed fully informed
consenting volunteers with no history of neurological or psy-
chiatric conditions. The present paper is based on data from
eight of the subjects who met certain criteria for behavioral
measures and details of the EEG recording procedure. Specif-
ically, we selected eight subjects that wore caps with physi-
cally linked mastoids for the reference. Other subjects wore a
cap with mastoids digitally linked for the reference. Although
the difference between physically and digitally linked mas-
toid reference is minor, it can be nontrivial depending on
the relative impedances at the two mastoid electrodes [36].
Thus, to eliminate the possibility that the slight difference
in caps could influence the questions at hand, we elected
to consider only those subjects wearing the cap with physi-
cally linked mastoids. We also considered only those subjects
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Figure 1: BCI task timeline. Subjects were asked to visualize the
most recently presented word until the next word is displayed. The
period of simultaneously recorded EEG used for subsequent anal-
ysis was 1000 milliseconds long beginning 750 milliseconds after
display offset and 500 milliseconds before the next display onset.

that exhibited reasonable inter-response intervals and a rea-
sonably even distribution of “yes”/“no” responses in a sep-
arate, voluntarily decided premotor visualization version of
the task (described in a separate forthcoming manuscript).
The subjects were selected on these criteria only, before their
EEG data was reviewed. The eight subjects were 19 + / − 1
years of age and included five females.

2.2. BCI experiment procedure

On each of 100 trials subjects were shown one of the words
“yes” or “no” on a computer display for 750 milliseconds and
were instructed to visualize the word until the next word is
displayed (see Figure 1). There were 50 “yes” trials and 50
“no” trials presented in random order with a maximum of
three of the same stimulus in a row. Because in subsequent
analyses we planned to ignore the first two trials due to ex-
periment start-up transients, the first two trials were required
to include exactly one of each type.

2.3. EEG recording and feature composition

The EEG was continuously recorded with a 32-electrode cap
(QuikCap, Neuroscan, Inc.), pass band of 1–100Hz, and
sampled at 1 kHz. Although much higher than the 200Hz
required by Nyquist, we typically sample at 1 kHz for the
mere convenience that in subsequent time-domain analyses
and plots, samples are equivalent to milliseconds. Electrodes
FC4 and FCZ were excluded because of sporadic techni-
cal problems with the corresponding channels in the ampli-
fier. The remaining 30 electrodes used in subsequent analy-
sis included bipolar VEOG and HEOG electrodes commonly
used to monitor blinks and eye movement artifacts. All other
electrodes were referenced to physically linked mastoids. We
did not employ any artifact removal or mitigation in the
present study, as we sought to measure performance with-
out the added help or complexity of artifact mitigation tech-
niques.

The BSS methods were applied to the continuously
recorded EEG data from the beginning of the first epoch to
the end of the last. The majority of the continuous record
represented task-related activity because the intertrial period
was only approximately 30 milliseconds. We used the Matlab
implementation of Infomax available as part of the EEGLAB
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software1 [10]. The EEGLAB software first spheres the data,
which decorrelates the channels. This simplifies the ICA pro-
cedure to finding a rotation matrix which has fewer degrees
of freedom [23]. Except for the convergence criteria, all of the
default parameter values for EEGLAB’s Infomax algorithm
were used. Initially, extended Infomax, which allows for sub-
Gaussian as well as super-Gaussian source distributions, was
used. No sub-Gaussian sources were extracted on the first
two subjects so the standard Infomax approach was used on
all of the subject data. An initial transformation matrix was
found with a tolerance of 0.1. The algorithm was then rerun
with this transformation matrix and a tolerance of 0.001.

To investigate whether comparing Infomax ICA and the
MNF method would be of empirical value, a simple test was
performed on the data set for several subjects. Both trans-
forms were applied to each subject’s data and the resulting
components were compared. The cross-correlation for all
Infomax-MNF component pairs was computed, and the op-
timal matching was found. This matching paired the com-
ponents so that the maximal cross-correlation was achieved.
Had the components produced been the same, the cross-
correlation measure would have been 100%. Cross correla-
tions of 60–70% were found in the tests performed, and so
we decided the two transforms were sufficiently dissimilar to
warrant the evaluation of both in the study.

Each of the original, Infomax, and MNF-transformed
data were “epoched” such that the one-second period begin-
ning 750 milliseconds after stimulus offset was used for sub-
sequent analysis. Because iconicmemory is generally thought
to last about 500 milliseconds, this choice of temporal win-
dow should minimize the influence of iconic memory and
place relatively more weight on active visualization processes.
We then computed spectral power for each channel (com-
ponent) and each trial (epoch) using Welch’s periodogram
method that uses the average spectra from overlapping win-
dows of the epoch. We computed averaged spectral power in
the delta (2–4), theta (4–8), lower alpha (8–10), upper alpha
(10–12), beta (12–35), and gamma (35–50Hz) frequency
bands. Thus, the full feature set contains 30 electrodes × 6
spectral bands each for a total of 180 features. The first and
second trials were excluded to reduce the transient effects of
the start of the task. Thus, all subsequent analyses use 49 tri-
als of each type (“yes,” “no”) for each subject. All reported
results are for individual subjects.

2.4. Classification

In the present report, we sought subsets from a very large fea-
ture set that would maximize our ability to distinguish “yes”
from “no” trials. The distinction was tested with a support
vector machine (SVM) classifier and an oversampled variant
of 10-fold cross-validation.

As discussed in the introduction, we chose a support vec-
tor machine (SVM) classifier because of its record of very

1Available from the Swartz Center for Computational Neuro-
science, University of California, San Diego, http://www.sccn.ucsd.edu/
eeglab/index.html.

good classification performance in challenging problem do-
mains and its speed of training. We used a soft margin SVM2

with a radial basis function (RBF) kernel with γ = 0.1. The
SVM was trained with regularization parameter υ = 0.8,
which places an upper bound on the fraction of error exam-
ples and lower bound on the fraction of support vectors [44].
Given m training examples X{x1, . . . , xm} ⊆ RN and their
corresponding class labels Y = {y1, . . . , ym} ⊆ {−1, 1}, the
SVM training produces nonnegative Lagrange multipliers αi
that form a linear decision boundary:

f (x) =
m∑

i=1
yiαik

(
x, xi

)
(1)

in the feature space3 defined by the Gaussian kernel (of width
inversely proportional to γ):

k
(
x, xi

) = exp
(
− γ
∥∥x − xi

∥∥2). (2)

On each feature subset evaluation, we trained and tested the
SVM on one full run of stratified 10-fold cross-validation,
randomly selecting with replacement 10% of the trials on
each fold for testing.

2.5. Feature selection

We used a genetic algorithm (GA) to search the space of fea-
ture subsets in a “wrapper” fashion (see Figure 2). Individu-
als in the GA were simply bit strings of length 180, with a 1
indicating the feature was included in the subset and 0 indi-
cating it was not. Our Matlab GA implementation was based
on Goldberg’s original simple GA [13], using roulette-wheel
selection and 1-point crossover. We used conventional values
for the probability of crossover (0.6) and that of mutation
(1/(4 ∗ D), where D = number of features, or 0.0014). We
evolved a population of 200 individuals over 50 generations.
Each individual’s “fitness” measure was determined by the
corresponding subset’s mean classification accuracy.

We instrumented the GA with a mechanism for main-
taining information about the cumulative population, that
is, all individuals evaluated thus far. Thus, individuals that
were evaluated more than once develop a list of evaluation
measures (classification accuracies). This took advantage of
the inherent “resampling” that occurs in the GA because rela-
tively “fit” individuals aremore likely to live on and be reeval-
uated in later generations than “unfit” individuals. Such re-
sampling, with different partitions of the trials into train-
ing/test sets on each new evaluation, reduces the risk of over-
fitting due to selection bias. The empirical effect of this over-
sampled variant of cross-validation and its role in feature se-
lection search is illustrated in the first part of Section 3. All

2The SVM was implemented with version 3.00 of the OSU SVM Tool-
box for Matlab [33], which is based on version 2.33 of Dr. Chih-Jen Lin’s
LIBSVM.

3Here “feature space” refers to the space induced by the RBF kernel, not
to be confused with the feature space, and implicit space of feature subsets,
referred to elsewhere in the manuscript.

http://www.sccn.ucsd.edu/eeglab/index.html
http://www.sccn.ucsd.edu/eeglab/index.html
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Figure 2: Feature selection system architecture. Three feature “families” were composed with parallel and/or series execution of signal trans-
formations. Feature subsets are then evaluated with a support vector machine (SVM) classifier and the space of possible feature subsets
searched by a genetic algorithm (GA) guided by the classification accuracy of the feature subsets. (a) Feature composition. (b) Feature
selection. (Adapted from [12, Figure 1].)

subsequent reports of classification accuracy use the mean of
the 10 best feature subsets that were subjected to at least five
“sample evaluations” each.

3. RESULTS

3.1. Fitness evolution and overfitting
at the feature selection level

Figure 3 shows how the fitness of feature subsets evolves over
generations of the GA. In these and subsequent figures, the
“chance” level of classification accuracy (50%) is shown with
a dotted line. Note that even at the first generation of ran-
domly selected feature subsets, the average performance of
the population is slightly above chance at 54%. This sug-
gests that, on average, randomly chosen feature subsets pro-
vide some small discriminatory information to the classifier.
The approximately 70% accuracy maximum mean fitness in
the first generation of the GA represents a single “sampling”
of the 10-fold cross-validation. Thus, there exists a set of
10 randomly chosen training/test trial partitions for which
one of the 200 initial, randomly chosen feature subsets gave
70% classification accuracy. However, such results need to
be assessed with caution, as illustrated in the right panel of
Figure 3. Further “sampling” for a given feature subset (i.e.,
repetitions of a full 10-fold cross-validation) gives a more ac-
curate picture of that feature subset’s ability to dissociate the
“yes” and “no” trials.

3.2. The benefit of feature selection

Figure 4 shows how classification accuracy is improved when
comparing feature subsets selected by the GA with full fea-
ture sets. For every BSS transformation (original, Infomax,
and MNF) every subject’s “yes”/“no” visualizations are bet-
ter distinguished with feature subsets than with the whole
feature set.

3.3. The benefit of BSS transformations

Figure 5 shows for each subject how the classification ac-
curacies compare for the original signals and the two BSS

transformations. For every subject, at least one of the BSS
transformations leads to better classification accuracy than
the original signals. Spectra of Infomax and MNF transfor-
mations performed statistically significantly better than the
spectra of the original signals for every subject except sub-
ject 1 and MNF for subject 5 (Wilcoxon rank-sum test, alpha
= 0.05). The relative performance of the three transforma-
tions does not appear to be an artifact of random processes
in the GA because it holds across two entirely separate runs
of the GA.

3.4. Intersubject variability in good feature subsets

Figure 6 shows the features selected for the feature subsets
that provided the highest classification accuracy. For both
subjects, the features include a diverse mix of electrodes and
frequency bands. Although spatial trends emerge (e.g., the
full power spectrum was included for electrodes FC3 and
CZ), no single frequency band was included across all elec-
trodes. Also, there appears to be some consistency between
subjects in terms of the selected features. Subject 1’s best fea-
ture subset included 106 features and subject 6’s best feature
subset included 91 features. The two subjects’ best subsets
had 57 features in common, including broadband features
from central and left frontocentral scalp regions.

3.5. Feature values corresponding
to the “yes” and “no” trials

Figure 7 shows the median values of the features across the
49 trials of each type for subject 6. Although a spatiospec-
tral pattern of differences is shown in the lower part of the
figure, none of the individual features exhibited significant
differences between the two conditions. A few were signif-
icant at the p < 0.05 level (0.02-0.03), but certainly not
after adjusting for multiple comparisons. Some of the fea-
tures with notable differences between “yes” and “no” were
included in subject 6’s best feature subset (e.g., multiple
bands from CZ, FZ, and FC3). However, a number of such
features were not included in subject 6’s best feature subset
(e.g., delta band power in P3, F7, FP2, and F8—see Figure 6a
and Figure 7c).
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Figure 3: Feature subset evolution and overfitting. (a) Mean fitness of all individuals in the cumulative population as of that generation; “avg”
is the average and “max” the maximum mean fitness. Data shown is for subject 6, Infomax transformation. Note that the maximum mean
fitness in the cumulative population does not monotonically increase because repeated sampling of a particularly fit individual may reduce
that individual’s mean fitness value (see (b)). (b) Mean fitness of the best individual in the population for each of several different “sampling”
values. Each “sample” is the mean classification accuracy from a full 10-fold cross-validation run, which uses 10 randomly selected train/test
partitions of the trials for that subject. The generally decreasing function reflects overfitting at the feature selection level, whereby so many
feature subset evaluations occur that the system finds train/test partitions of the trials that lead to higher-than-average fitness for a specific
feature subset. Additional sampling of how well that feature subset classifies the data increases confidence that the oversampled result is not
simply due to 10 fortuitous partitions of the trials.

4. DISCUSSION

4.1. Feature selection in the EEG-based BCI

We implemented a feature selection system for optimizing
classification in a novel, “direct” EEG-based BCI. For all three
representations of the signals (original, Infomax, and MNF)
and for all subjects, the GA-based search of the feature sub-
set space leads to higher classification rates than both the
full feature sets and randomly selected subsets. This indi-
cates that choosing feature subsets can improve correspond-
ing classification in an EEG-based BCI. This also indicates
that it is not simply smaller feature sets that lead to improved
classification, but the selection of specific “good” feature sub-
sets. Also, classification accuracy improves over generations
of the GA’s feature subset search, indicating that the GA’s it-
erative search process leads to improved solutions. We ran
the GA for over 700 generations for one subject’s Infomax

data, and the resultant feature subsets demonstrated more
than a 14% increase in classification accuracy over that ob-
tained after just 50 generations. Although this suggests an
extensive search of the feature subset space may be benefi-
cial, the roughly one week of additional computational time
may be inappropriate for some BCI research settings.

Note that, as mentioned in the introduction, there are
many ways to conduct the feature subset search and the GA
is only one family of such search methods. Sequential for-
ward (or backward) search (SFS) methods add features one
at a time but can suffer from nesting wherein optimal subsets
are missed because previously “good” features are no longer
jointly “good” with other newer features and cannot be re-
moved. The same limitation applies to backward versions
of SFS that subtract single features from a full feature set.
Floating versions of these methods, sequential forward float-
ing search (SFFS), and sequential backward floating search
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Figure 4: Feature subsets outperform the whole feature set across feature classes and subjects. “All” refers to the full set of all features, and
“subset” refers to the feature subsets found by the GA. Each line connects the mean classification accuracies for both cases for a single subject
for each of the (a) “original,” (b) “Infomax,” and (c) “MNF” transformations.

(SBFS) [41], mitigate the nesting problem by variably adding
and taking away previously added features. In principle, both
GAs and the floating methods allow for complex feature-
feature interactions. However, their migration thru the sub-
set space can differ substantially. Depending on how they are
implemented, sequential methods can implicitly assume a
certain ordering to the features, whereas GAs do not make
that assumption. Similarly, SFFS/SBFS are not as “global” in
their search as a GA. The floating search methods cannot
“jump” from one subset to a very different subset in a single
step as is inherent in typical GA implementations. Whether
or to what extent these differences affect the efficacy of the
search methods depends on the problem domain and needs
to be evaluated empirically. A few investigators have com-
pared the floating search methods SFFS/SBFS to GAs for fea-
ture selection [11, 24, 31]. Kudo and Sklansky have demon-
strated that GAs outperform SFFS and SBFS when the num-
ber of features is greater than about 50 [31]. Another class of
feature selection methods is known as “embedded” methods.
In the embedded approach, the process of selecting features is
embedded in the use of the classifier. One example is recur-
sive feature elimination (RFE) [17, 50], which has recently
been used in an EEG-based BCI [32]. RFE takes advantage
of the feature ranking inherent in using a linear SVM. How-
ever, as with other embedded approaches to feature selection,
it lacks the flexibility of wrapper methods because, by def-
inition, the feature subset search cannot be separated from

the choice of classifier. Feature selection research has only re-
cently begun with EEG and a comparison of feature selection
methods with EEG needs to be conducted.

We also demonstrated and addressed the issue of over-
fitting at the level of feature selection. The sensitivity of any
single feature subset’s performance to the specific set of 10
train/test trial partitions is a testament to the well-known but
often overlooked trial-to-trial variability of the EEG. It is also
an empirical illustration of overfitting resulting from exten-
sive search of the feature subset space, also known as “selec-
tion bias” [43]. Our feature subset search conducts many fea-
ture subset evaluations (e.g., 200 individuals over 50 genera-
tions= 10, 000 evaluations) and there are many ways to ran-
domly choose a partition of training/test trials. Thus, there
exist 10 random training/test partitions of the trials for which
specific feature subsets will do much better than average if
evaluated over other sets of 10 random train/test partitions.
Fundamentally, as more points in the feature subset space are
tested, the risk of finding fortuitous sets of train/test parti-
tions increases, so greater partition sampling is required. In
the case of a GA-based feature selection algorithm, we could
make the partition sampling dynamic by, for example, in-
creasing the amount of resampling as the GA progresses thru
generations of evolution. However, increasing the data par-
tition sampling over the course of the feature subset search
would of course slow down the system as the search pro-
gresses. Nevertheless, the GA’s inherent resampling and the
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Figure 5: The benefit of the BSS transformations and the replicability of their relative value between GA runs. (a) Mean classification accuracy
of the 10 best feature subsets with at least 5 “sample evaluations.” (b) The performance results for the three transformations for subject 5
over two separate runs of the GA.
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Figure 6: Features selected in a “good” subset of the original spectral features and their overlap between two subjects. (a) Subject 6, (b) subject 1.
White indicates the feature was not selected, grey indicates that the feature was selected for that subject only, and black indicates the feature
was selected for both subjects.

ease with which such resampling could be implemented in a
GA provide yet another reason to use a GA for the feature
subset search in extremely noisy domains such as EEG.

How best to address the overfitting issue remains an ac-
tive line of research. There are numerous data partitioning
and resampling methods such as leave-one-out or the boot-
strap. Although we partially mitigated the issue by using an
oversampled variant of cross-validation, a more principled
approach needs to be developed for highly noisy, underde-
termined problem domains. Although one should use as test
data trials unseen during the feature subset search [43], this
further exacerbates the problem of having so few trials as
is typically the case with single-session EEG experiments.
The current experiment had roughly 50 trials per condition

per subject. Although experimental sessions with manymore
trials per condition raise concerns about habituation and
arousal, the benefits for evaluating classifiers and associated
feature selection may outweigh the disadvantages. In cases
such as the present study with a limited number of trials,
oversampling methods such as the bootstrap or the resam-
pling GA variant we used may provide a reasonable alterna-
tive to the full, nested cross-validation implied by separate
classifier model selection and feature subset search.

4.2. The classifier and subset search parameter space

We used only nonlinear SVMs in this study. A theoretical ad-
vantage over linear SVMs is that they can capture nonlin-
ear relationships between features and the classes. However,
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Figure 7:Median feature values for the two kinds of trials. (a) “Yes”, (b) “no”, and (c) difference values for subject 6, original spectra features.
Bars on right show normalized spectral power (or power difference, for “yes”−“no”).

nonlinear classifiers have the disadvantage that the classifier’s
weights do not provide a simple proxy measure of the in-
put feature’s importance, as is the case with the linear SVM
formulation. We also used only one setting of SVM param-
eters in this study. The optimal width of the Gaussian SVM
kernel, γ, in particular is known to be sensitive to the clas-
sifier’s input dimensionality (number of features). Although
we could have varied γ as a function of the subset size, we
explicitly chose not to. If we had varied γ in a principled way
(e.g., larger for fewer features), the exact formulation would
be arbitrary. If we would have conducted SVM model selec-
tion and optimized γ empirically, it would have introduced
another loop of cross-validation in addition to that used
to train and test the SVM for every subset evaluation. This
would not only be substantially more computationally de-
manding, but also exacerbate the risk of overfitting or reduce
the amount of trials available for training/testing. In either
case, allowing γ to vary would introduce another variable
and we would not know whether differences in performance
between feature subsets should be attributed to the subsets
themselves or their correspondingly tuned classifier parame-
ters. Although the relative performance of the full versus par-
tial feature subsets is sensitive to γ, we expect that the rela-
tionship found in the present study would remain because
feature selection usually improves classification accuracy in
EEG-based BCIs. Note also that the relative performance of
feature selection using the original versus BSS-based features
was based on a consistent application of γ and the subsets
contained roughly equivalent numbers of features.

We also used only one setting of GA parameters in this
study. In general, one would expect that classification ac-
curacy and the feature selection process are sensitive to the
parameters used in the SVM and GA. In fact, especially in
wrapper approaches to feature selection, the classifier’s op-
timal parameters and optimal feature selection search algo-
rithm parameters will not be independent. In other words,

the optimal SVM model parameters will be sensitive to the
specific feature subset, and vice versa. Thus, it may be sub-
optimal to conduct the model selection separately from the
feature selection. Instead, the SVM model selection process
and the feature subset search should be conducted simulta-
neously rather than sequentially. We have recently demon-
strated this empirically with DNA microarray data [38], a
domain with noise characteristics and input dimensionality
not unlike that of EEG features. Although the SVM parame-
ters could be encoded into a bit string and optimized with a
GA in conjunction with the feature subset, the two optimiza-
tion problems are qualitatively different and should proba-
bly be conducted with separate mechanisms. This remains a
question for further research.

4.3. BSS in EEG-based BCI

Our results showed that the power spectra of the BSS trans-
formations provided feature subsets with higher classifica-
tion accuracy than the power spectra of the original EEG sig-
nals. This improvement held for seven out of eight subjects
and was consistent across independent runs of the GA. The
results suggest that BSS transformations of EEG signals pro-
vide features with stronger dissociating power than features
based on spectral power of the original EEG signals. Infomax
and MNF differed only slightly, but both provided a marked
improvement in classification accuracy over spectral trans-
formations of the original signals. This suggests that use of
a BSS method may be more important than the choice of
specific BSS method, although further tests with other BSS
methods and other datasets would be required to substanti-
ate that interpretation.

In some EEG research using ICA, the investigator eval-
uates independent components manually. This can be con-
sidered a manual form of feature selection. However as with
the “filter” approach to feature selection, the features are



Feature Selection and BSS in EEG-Based BCI 3137

not selected based on their impact on the accuracy of the
final classifier in which they are used. Rather, they are se-
lected based on characteristics such as their scalp topogra-
phy, the morphology of their time course, or the variance of
the original signal for which they account. In some cases, the
decision about which features to keep is subjective. In the
present study we explicitly chose not to take this approach.
Instead, we used the wrapper approach to search the full fea-
ture set based exclusively upon the components’ contribu-
tion to classification. Of course, this does not preclude the
possibility that preceding automated feature selection with
a manual filter approach to feature selection would improve
overall performance. Many domains benefit from the joint
application of manual and automated approaches, including
methods that do and do not leverage domain-specific knowl-
edge.

4.3.1. “Good” feature subsets

Subjects’ best feature subsets included many features from
the full feature set. We believe that this may be at least par-
tially the result of crossover in the GA, whereby new individ-
uals will tend toward having approximately half of the fea-
tures selected. The fitness function used by the GA to search
the space of feature subsets used only those subsets’ classi-
fication accuracy. We did not use selective pressure to re-
duce the number of features in selected subsets. However,
this could be easily implemented by simply biasing the fit-
ness function with a term that weights the cardinality of the
subsets under consideration. If there exist many feature sub-
sets of low cardinality that perform roughly as well as subsets
with higher cardinality, then one would generally prefer the
low-cardinality solutions because subsets with fewer features
would, in general, be easier to analyze and interpret.

Good feature subsets included a disproportionately high
representation of left frontocentral electrodes. This topogra-
phy is consistent with a role for language production, includ-
ing subvocal verbal rehearsal. It suggests that the cortical net-
works involved in rehearsing words may exhibit dissociable
patterns of activity for different words. The spatial informa-
tion in the EEG scalp topography is insufficient to determine
whether the networks used for rehearsing the two words had
differentiable anatomical substrates. However, such differ-
ences may be detectable with dipole analysis of high-density
EEG and/or functional neuroimaging.

We compared subjects’ good subsets of spectral power
based on original EEG signals. Of the two subjects whose best
feature subsets we analyzed, approximately 60% of the in-
cluded features were common to both subjects. The common
features included several spectral bands in left frontocentral
electrodes. We did not compare subjects’ good subsets using
BSS-transformed EEG. One disadvantage of the BSS meth-
ods is that, because they are usually used to transform full
continuous EEG recordings on a per-subject basis, there is
no immediately apparent way to match one subject’s com-
ponents with another subject’s components. Although this
can be attempted manually, the process can be subjective and
problematic. Often only some of the components have sim-
ilar topographies and/or time courses between subjects, and

the degree of similarity can be quite variable. Thus it may be
difficult to compare selected features among different sub-
jects when the features are based on BSS transformations of
the original EEG signals.

The pattern of actual feature values was very similar for
the “yes” and “no” trials. Because both conditions involved
the same type of task, it is reasonable to assume that the as-
sociated brain activity would be similar at the level of scalp-
recorded EEG. None of the individual features differed sig-
nificantly between the two conditions. Although some of the
features with highest amplitude differences between “yes”
and “no” were included in the best (most dissociating) fea-
ture subsets, other such features were not. At the current
point in this research, we cannot conclude whether this is be-
cause certain features were not considered in the GA-based
search, or because the interactions of certain features do bet-
ter than those single features. Evidence for or against the
former interpretation could be excluded by adding a sim-
ple per-feature test to the GA’s search of the feature subset
space. Note that single features can have identical means (in-
deed, even identical distributions) for “yes” and “no” trials,
yet contribute to a feature subset’s ability to dissociate the two
trial types because of class-conditional interdependencies be-
tween the features. Per-feature statistical tests, and some fea-
ture selection methods, for that matter, assume the features
are independent, ignoring any interactions among the fea-
tures. Such assumptions are generally too limiting for com-
plex, high-dimensional domains such as EEG. Besides, even
when the features are independent, there are cases when the
d best features are not the same as the best d features [9, 18].

4.4. BCI application relevance

Our BCI task design provides a native interface for a patient
without any motor control to directly respond “yes” or “no”
to questions [35]. The paradigm provides a good model for
a BCI setting in which the caregiver initiates dialog with the
patient. Furthermore, it avoids the indirect mappings and ex-
tensive biofeedback training required in other BCI designs.
However, this “direct” task design has some clear limitations.
First, we do not have any control over what the subject is
doing when they are supposed to be visualizing the word.
The subjects could have been daydreaming on some trials
or, perhaps even worse, still visualizing the word from an
earlier trial. Of course this would degrade classification ac-
curacy and may be a more severe problem for neurologi-
cally impaired patients compared to the healthy, albeit per-
haps less motivated, volunteers we used. Second, even if sub-
jects are performing the task as instructed, different subjects
may use different cognitive processes with correspondingly
different neural substrates. For example, subjects that main-
tain visualizations close to the original percept will recruit
relatively more early visual system activity (e.g., in occipi-
tal/temporal areas), whereas subjects that maintain the word
in a form of working memory will probably recruit the front-
temporal components of the phonological loop. These two
systems involve cortico-cortical and thalamocortical loops
producing different changes in oscillatory electrophysiology
usually manifest as changes in gamma and theta/alpha bands,
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respectively. Thus, the spectral and topographic features that
best distinguish the yes/no responses will most likely vary per
subject. Indeed, this is one of the biggest motivations for tak-
ing a feature selection approach to EEG-based BCIs and con-
ducting the feature selection search on a strictly per-subject
basis as we did in the present study. Third, and perhaps most
notably, the classification accuracy is far below that obtained
in studies using “indirect” approaches. Nothing about our
approach precludes having more than one session and there-
fore many more trials with which to learn good feature sub-
sets and improve classification accuracy. Also, although indi-
rect approaches will probably continue to provide high clas-
sification accuracy (and therefore a generally higher bit rate)
for the near future, advances in basic cognitive psychology
and cognitive neuroscience may provide more clues about
what might be good EEG features to use to distinguish di-
rect commands such as visualizing or imagining yes/no or
on/off responses. In the meantime, BSS transformations and
feature selection may provide moderate classification perfor-
mance in “direct” BCIs and even help inform basic scientists
about the EEG features on which to focus their research.

Our approach to feature selection is amenable to the de-
velopment of on-line BCI applications. One could use the full
system, including the GA, to learn off-line the best feature
subset for a given subject and task, then use the trained SVM
with that feature subset and without the GA in an on-line set-
ting. Dynamic adjustments to the optimal feature subset can
be continuously identified off-line and reincorporated into
the on-line system. Also, as suggested in the results, the best
feature subset may include features from only a small sub-
set of electrodes. The potentially much smaller number of
electrodes could be applied to the subject, reducing appli-
cation time and the risk of problematic electrodes for easier
on-line use of the BCI. Although we intentionally used a de-
sign without biofeedback, one could supplement this design
with feedback. Other groups have found that incorporation
of feedback can be used to increase classification accuracy.
Feature selection could provide guidance on which features
are most significant for dissociating classes of EEG trials, and
therefore one source of guidance for choice of information to
use in the feedback signals provided to the subject.

5. CONCLUSION

Signal processing and machine learning can be used to en-
hance classification accuracy in BCIs where a priori infor-
mation about dissociable brain activity patterns does not ex-
ist. In particular, blind source separation of the EEG sig-
nals prior to their spectral power transformation leads to in-
creased classification accuracy. Also, even sophisticated clas-
sifiers like a support vector machine can benefit from the use
of specific feature subsets rather than the full set of possi-
ble features. Although the search for feature subsets exac-
erbates the risk that the classifier will overfit the trials used
to train the BCI, a variety of methods exist for mitigating
that risk and can be assessed over the course of feature sub-
set search. Feature selection is a particularly promising line

of investigation for signal processing in BCIs because it can
be used off-line to find the subject-specific features that can
be used for optimal on-line performance.
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