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The paper presents an investigation into a time-frequency (TF) method for extracting features from the electroencephalogram
(EEG) recorded from subjects performing imagination of left- and right-hand movements. The feature extraction procedure
(FEP) extracts frequency domain information to form features whilst time-frequency resolution is attained by localising the fast
Fourier transformations (FFTs) of the signals to specific windows localised in time. All features are extracted at the rate of the
signal sampling interval from a main feature extraction (FE) window through which all data passes. Subject-specific frequency
bands are selected for optimal feature extraction and intraclass variations are reduced by smoothing the spectra for each signal by
an interpolation (IP) process. The TF features are classified using linear discriminant analysis (LDA). The FE window has potential
advantages for the FEP to be applied in an online brain-computer interface (BCI). The approach achieves good performance when
quantified by classification accuracy (CA) rate, information transfer (IT) rate, and mutual information (MI). The information
that these performance measures provide about a BCI system is analysed and the importance of this is demonstrated through the
results.
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1. INTRODUCTION

Nearly two million people in the United States [1] are af-
fected by neuromuscular disorders. A conservative estimate
of the overall prevalence is that 1 in 3500 of the world’s pop-
ulation may be expected to have a disabling inherited neu-
romuscular disorder presenting in childhood or in later life
[2]. In many cases those affected may have no control over
muscles that would normally be used for communication.
BCI technology is a developing technology but has the po-
tential to contribute to the improvement of living standards
for these people by offering an alternative communication
channel which does not depend on the peripheral nerves or
muscles [3]. A BCI replaces the use of nerves and muscles

and the movements they produce with electrophysiological
signals in conjunction with the hardware and software that
translate those signals into actions [1].

A BCI involves extracting information from the highly
complex EEG. This is usually achieved by extracting features
from EEG signals recorded from subjects performing specific
mental tasks. A class of features for each mental task is usually
obtained from signals, prerecorded whilst a subject performs
a number of repetitions of each mental task. Subsequently a
classifier is trained to learn which features belong to which
class. This ultimately leads to the development of a BCI sys-
tem that can determine which mental tasks are related to spe-
cific EEG signals [4] and associate those EEG signals with the
user’s intended communication.
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This work demonstrates the use of the short time Fourier
transform (STFT) to extract reliable features from EEG sig-
nals altered by imagined right/left-hand movements. EEG
data was recorded from two recording sites on the scalp
positioned at C3 and C4 [5] over the motor cortex. The
STFT is used to calculate frequency spectra from a win-
dow (i.e., STFT-window) which slides along the data con-
tained within another window (i.e., the feature extraction
(FE) window). All EEG data recorded from each record-
ing site is passed through the FE window. The spectra are
smoothed using an interpolation (IP) process. Features are
obtained from each interpolated spectrum by calculating the
norm of the power in predetermined subject-specific fre-
quency bands. Linear discriminant analysis (LDA) is used for
classification and system performance is quantified based on
three performance measures. The measurement of BCI per-
formance is very important for comparing different systems
and measuring improvements in systems. There are a num-
ber of techniques used to quantify the effectiveness and per-
formance of a BCI system. These include measuring the clas-
sification accuracy (CA) and/or measuring the information
transfer (IT) rate. The latter performance quantifier takes
into consideration the CA and the time (CT) required to
perform classification of each mental task. A third and rel-
atively new quantifier of performance for a BCI system is
to quantify the mutual information (MI) which is a mea-
sure of the average amount of information a classifier out-
put contains about the input signal [6, 7]. A critical analy-
sis of the performance measures, illustrating the advantages
of utilising each one for evaluating a BCI system, is pro-
vided.

The performance of the system is dependent upon
choices of parameter combinations. It is shown that the
width of the main FE window, the number of STFT win-
dows, the width and length of the STFT windows, and the
amount of overlap between consecutive STFT-windows all
have significant affects on the performance of the system. An
interpolation process for smoothing the frequency spectra
improves the features and helps increase CA rates. The im-
portance of each parameter is analysed. The results demon-
strate that, to obtain the best performance, the parameter
combinations have to be optimised individually for each sub-
ject. However, a number of parameters converge to similar
values, therefore there may exist a particular parameter com-
bination that would generalise well to all subjects and thus
potentially simplify the application of the system to each in-
dividual subject. Details on these aspects of the system, along
with a comparison to other BCI systems, are discussed.

The paper is organised in 11 sections. Section 2 describes
the data acquisition procedure. Section 3 introduces the
STFT and the FEP and Section 4 provides an analysis of the
EEG used in this work. Sections 5 and 6 describe the FEP and
the classification procedures, respectively. Section 7 describes
briefly three methods for quantifying the performance of a
BCI system. Section 8 outlines the system optimisation pro-
cedure. Sections 9 and 10 document and discuss the results.
Section 11 concludes the paper.

2. DATA ACQUISITION

The EEG data used to demonstrate this approach was
recorded by the Graz BCI research group (see acknowl-
edgement) [8, 9, 10, 11]. The Graz group has developed a
BCI which uses y (8-12 Hz) and central 3 (18-25Hz) EEG
rhythms recorded over the motor cortex. Several factors have
suggested that y and/or 8 rhythms may be good signal fea-
tures for EEG-based communication. These signals are as-
sociated with those cortical areas most directly connected
to the brain’s normal motor output channels [1]. The data
was recorded from 3 subjects (S1, S2, and S3) over two ses-
sions, in a timed experimental recording procedure. Each
trial was 8s length. The first 2s was quiet, at t = 2s an
acoustic stimulus signifies the beginning of a trial, and a
cross “+” was displayed for 1s, then at ¢t = 3s, an arrow
(left or right) was displayed as cue. At the same time the
subject was asked to move a bar in the direction of the cue
by imagining moving the left or right hand. The feedback
(bar movement) can help the user learn to control their EEG
better for specific tasks. For subject S1 a total of 280 trials
were recorded (140 trials of each type of movement imagery).
For the subject S2 there were 320 trials (160 trials of each
type of movement imagery). The recording was made using a
g.tec amplifier (http://www.gtec.at/) and Ag/AgCl electrodes.
All signals were sampled at 128 Hz and filtered between 0.5
and 30 Hz. Two bipolar EEG channels were measured using
two electrodes positioned 2.5 cm posterior (“—”) and ante-
rior (“+7) to position C3 and C4 according to the interna-
tional standard (10/20 system) electrode positioning nomen-
clature. In bipolar recording the recorded voltage is the volt-
age difference between the anterior and posterior electrode
at each recording site. A detailed description of similar ex-
perimental setups for recording these EEG signals is available
6,8,9, 10, 11, 12].

3. THE FE WINDOW AND THE STFT WINDOW

In this investigation there are two windows utilised—the FE
window and the STFT window. EEG signals (or data) are
fed through the FE window and within the FE window the
frequency components of the EEG signal are obtained us-
ing a fast Fourier transform (FFT). Within the FE window
a temporal resolution is attained by sliding the STFT win-
dow along the data sequence with a certain overlap. This
windowed signal processing technique is often referred to as
the Gabor transform after Gabor (1946). STFT analysis of a
nonstationary signal assumes stationarity over the selected
signal segment (the STFT window). The inherent assump-
tion of stationarity over the STFT window can lead to smear-
ing in the frequency domain and decreased frequency reso-
lution when analysing EEG signals with fast changing spec-
tral content [13]. The temporal resolution can be made as
high as possible by sliding the STFT window along the FE
window with a large overlap. This maximises the potential
for identifying short events that occur within the FE window
[14].
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FiGure 1: [llustration of FE window and STFT window in the FEP.

To localise the Fourier transform of the signal at time in-
stant 7 which falls within the main FE window, the STFT-
window function is peaked around 7 and falls off, thus em-
phasising the signal in the vicinity of time 7 and suppress-
ing it for distant times [15]. There are a number of windows
which can be used for achieving these characteristics. Gabor
proposed the use of a Gaussian window formulated as fol-
lows:

w(t) = 67(1/2)(tx(t7N/2)/(N/2))2)

(1)

where 0 < t < N and «a is the reciprocal of the standard de-
viation. The width of the window is inversely related to the
value of o; a larger a produces a narrower window. The win-
dow has the length N. These constant parameters denote the
length of the window and the degree of localisation in the
time domain, respectively [15]. The tuning of these param-
eters is very important for the extraction of features used in
this approach and this is made apparent in the results section.

The ordinary Fourier transform (FT) is based on com-
paring the signal with complex sinusoids that extend through
the whole time domain; its main disadvantage is the lack of
information about the time evolution of the frequencies. In
this case, if an alteration occurs at some time boundary, the
whole Fourier spectrum will be affected [15]. The FT requires
stationarity of the signal which is a disadvantage in EEG anal-
ysis, the EEG signal being highly nonstationary. The STFT
helps to overcome many of these disadvantages and is for-
mulated as follows:

T+N/2

B = X whe-ope(-ig 1), @)

i=7-N/2

where f = 0,1,...,N; — 1. Ny is the number of frequency
points or Fourier transforms. Y ( f, 7) contains the frequency
spectrum for each STFT window centred at 7. yy is the input
EEG signal (i.e., either C3 (k = 1) or C4 (k = 2)) contained
within the main FE window. The number of STFT windows

used to analyse the data contained in the FE window depends
on the length of the FE window M, the STFT window length
N, and the amount of overlap, ovl, between adjacent STFT
windows. M must always be larger than N. Yj is a matrix
with Ny rows and E = (M — ovl)/(N — ovl) columns (i.e., the
rows contain the power of the signal for each harmonic and
E is the number of STFT windows that are produced within
the FE window).

This analysis was carried out offline although, to approx-
imate the online capabilities, all features are extracted within
the FE window so that features can be extracted at the rate of
the sampling interval as data passes through the window. As
each new signal sample enters the FE window, the oldest sam-
ple is removed and the STFT window slides along the signal
within the FE window (this process is repeated as each new
sample enters the FE window). A frequency spectrum is cal-
culated for each STFT window centred at 7. An illustration
of the FE window and STFT window is shown in Figure 1.
This illustration shows two STFT-windows contained within
the FE window for each signal (C3 or C4).

4. SPECTRAL ANALYSIS AND ERD/ERS

The spectra of signals recorded from recording sites C3 and
C4 when subjects perform imagination of hand movements
usually show an increase and decrease in the intensity of fre-
quencies in the y (8-12) and central 8 (18-25) ranges, de-
pending on the recording location and the imagined hand
movement (left or right). When certain cortical areas, such as
the sensorimotor area, become activated during the course of
information processing, amplitude attenuation occurs in the
oscillations of the y and central § rhythms. This is known
as an event-related desynchronisation (ERD). An amplitude
enhancement or event-related synchronisation (ERS) can be
observed in cortical areas that are not specifically engaged in
a given mode of activity at a certain moment of time [9, 11].
The location and frequency ranges of ERS/ERD are subject-
specific.
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F1GURE 2: C3 Left (windows 1 & 2).
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FI1GURE 3: C4 Left (windows 1 & 2).

Figures 2, 3, 4, and 5 show a typical set of frequency
spectra. Figures 2 and 3 are obtained from calculating the
STFT from EEG signals recorded during imagination of left-
hand movement. Figures 4 and 5 were obtained from signals
recorded during imagination of right-hand movement. For
this analysis only two windows were used for each signal.
The top graph in each figure is the spectrum of the first win-
dow and the bottom is the spectrum calculated for the sec-
ond window. The dominant frequency components can be
observed from each graph.
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FIGURE 4: C3 Right (windows 1 & 2).
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FIGURE 5: C4 Right (windows 1 & 2).

Both spectra in Figure 5 (C4 recording right signal) show
strong evidence of y (8—12 Hz) rhythm. This is not observ-
able from Figure 4 (C3 recording right signal) which suggests
that there is an ERD of the y rhythm on the contra lateral side
(opposite side to imagined hand movement). ERD can be
interpreted as an electrophysiological correlate of activated
cortical areas involved in processing of sensory or cognitive
information or production of motor behaviour (see [16]). A
small peak can be observed within the central 8 (between 18
and 20 Hz) rhythm on the C4 spectral plots which suggests
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that there is an ERS in the central § rhythm on ipsilateral
hemisphere. The large peak on the g rhythm on the C4 elec-
trode is an electrophysiological correlate of cortical areas at
rest or the cooperative or synchronised behaviour of a large
number of neurons. Similar contralateral-ipsilateral differ-
ences occur during the imagination of left-hand movement,
except the differences are symmetrically reversed. To deter-
mine that events are truly event related, an experiment de-
scribed in [16], which involves averaging spectra, is the stan-
dard approach for distinguishing ERS/ERD in EEG signals.

The y rhythm and the central  rhythm were selected as
the most reactive frequency bands from which to extract fea-
tures, for all subjects analysed. There are subtle differences in
the main peaks of the upper and lower graphs in each figure
indicating that throughout the imagination there is a change
in the amplitude and degree of ERS/ERD in the signals. The
evolution of the frequency over time within the FE window
can be observed more closely by using an increased num-
ber of STFT windows with smaller length. Also, motor im-
agery data becomes most separable at specific segments (sub-
ject specific) [10], therefore if the FE window length M is se-
lected properly the segments of data that produce maximum
feature separability are captured as they pass through the
window. The best FE window width M is subject specific. M
must be selected empirically for each subject. If the STFT-
window parameters are selected properly, then feature sepa-
rability can be maximised within the FE window.

5. INTERPOLATION-BASED FEATURE
EXTRACTION PROCEDURE

The extracted spectra contain quite a lot of detail on the fre-
quencies that are not as prominent as those in and around the
uand central  ranges. Smoothing the spectra can reduce fea-
ture quality degradation caused by irregular frequency com-
ponents introduced by noise and help compensate for miss-
ing information. The spectrum shape can be smoothed by
decreasing the width of the STFT-window (i.e., increasing «
of (1)). If the window is too narrow, the frequency resolution
will be poor, and if the window is too wide, the time localiza-
tion will not be so precise. This means that sharp localiza-
tions in time and frequency are mutually exclusive because
a frequency cannot be calculated instantaneously [15]. De-
pending on the application and the quantity of information
required about the frequency components the choice of win-
dow and window parameters must be adjusted to obtain the
desired resolution. For this approach a good frequency reso-
lution is important especially in the p and 8 ranges but the
objective is to obtain features which can provide maximum
separability between both classes (left and right). In this re-
spect the appearance of each spectrum was not of major im-
portance. The reactive bands in the spectra are similar among
most of the signals within each class but there are usually dis-
crepancies in the upper and lower frequencies of each band
as well as in the peak amplitude of each band. To reduce the
possibility of these frequency components having a negative
effect on the identification of features within each class an

interpolation process is performed to extract the gross shape
of the spectrum.

The interpolation process can smooth the spectra and
thus the differences between spectra within each class can be
minimised. In this way some of the larger peaks may be lost
but the interpolation plays a role in compensating missing
information which ought to contribute to the discrimination
[17] and can help reduce the intra class variance—a funda-
mental goal of most FEPs. The formula for the interpolation
process is shown as follows:

Yipk _ 3 (ND I=1,..,E
=2 (pp_mpss1) =bB O
i=IPS

0 ifu—ip<o0,
IPS = . . (4)
u—ip otherwise,
Nf—1 ifu+ip>Np+1,
IPE={ /1 NUTIPZRY (5)
u+ip otherwise.

Equation (2) is used to calculate Yy, E is the number of
spectra, and u is the value of the interpolated spectra at each
frequency point (harmonic), therefore u = 0,1,...,Ny — 1.
Ny is the number of frequency points or Fourier transforms
in the spectra. The value of ip determines the number of in-
terpolation points which in turn determines the degree of
smoothing. A feature, fF, is obtained by taking the L,-norm
(i.e., the square root of the sum of the components squared)
of the interpolated spectra between the preselected reactive
frequency bands. If E is the number of spectra (i.e., the num-
ber of windows for one spectrogram) and L is the number of
signals, then

m = LE, (6)

fl = HYipzk

', I=1,..,F, 7)

where fF is a feature obtained from the reactive frequency
bands of Ith interpolated spectrum of the signal recorded at
the kth recording site. According to (6), if there are 3 spec-
tra (i.e., 3 STFT windows) within the FE-window for each
signal, then E = 3, L = 2 (2 signals), and m = 6 thus,
each feature vector would contain six features. To recapit-
ulate, the number of features depends on the number of
STFT-windows which depends on the FE-window length, the
STFT-window length, and the amount of overlap between
each STFT-window. If a large number of spectra are pro-
duced, choosing a number of specific interpolated spectra for
feature extraction will reduce the feature vector dimension-
ality and thus maintain/improve computational efficiency;
however this may cause performance degradation. The fea-
ture vector is

fv= (LB fis fi £ ) (8)
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6. CLASSIFICATION

After feature extraction classification is performed using lin-
ear discriminant analysis (LDA), a classifier that works on
the assumption that different classes of features can be sep-
arated linearly. Linear classifiers are generally more robust
than their nonlinear counterparts, since they have only lim-
ited flexibility (less free parameters to tune) and are less
prone to overfitting [18]. Experimentation involved extrac-
tion and classification of features at every time point in a
trial. The classes were labelled —1 for left and +1 for right.
This resulted in a classifier which provides a time-varying
signed distance (TSD) as described in [6, 11]. The sign of the
classification indicates the class and the magnitude (or TSD)
indicates the confidence in the classification. The time evo-
lution of the CA rates and the TSD can be used to determine
when the signals are most separable. The TSD is described in
the following section.

7. PERFORMANCE QUANTIFICATION

The performance of the proposed BCI system is quantified
by CA, IT rate, and the MI. The CA is the percentage of tri-
als that are classified correctly. The capacity of a communi-
cation system is given by its IT rate, normally measured in
bits/min (bpm). Capacity is often measured by the accuracy
and the speed of the system in a specified application [19].
For systems that rely on accuracy and speed, the main ob-
jective is to maximise the number of bits that can be com-
municated with high accuracy in a specific time window. In
present BCI systems, increasing the speed and accuracy is
one of the main objectives. For example, the BCI systems in
(4, 8, 19, 20, 21, 22] must be able to accurately decipher the
EEG signals and respond correctly to its interpretation of the
user’s command as quickly as possible. IT rate was first used
to quantify the performance of a BCI system by Wolpaw et
al. [19] and the calculation was derived in [23, 24]. A rela-
tively new quantifier of performance for a BCI system is to
quantify the MI which is a measure of the average amount
of information a classifier output contains about the signal.
This performance measure was first used by Schlogl et al.
(6, 7]. To estimate the MI the classifier should produce a dis-
tance value, D, where the sign of D indicates the class (in
a two-class system) and the value expresses the distance to
the separating hyperplane. A greater distance from the hy-
perplane indicates a higher signal-to-noise ratio (SNR). D is
referred to as the time-varying signed distance (TSD) when
estimated at the rate of the sampling interval. The D value
at a specific time point ¢ (i.e., D(¢)) for all trials is used to
estimate the MI. The MI between the TSD and the class rela-
tionship is the entropy difference of the TSD with and with-
out the class information. The system described in this work
facilitates features to be extracted with a time resolution as
high as the sampling rate very easily, therefore the TSD is
estimated at every time instant ¢ although there must be M
samples within the FE window before feature extraction be-
gins.

8. SYSTEM OPTIMISATION

Due to the nature of this FEP, there are a number of param-
eters that must be tuned and the values of these parameters
can have a significant effect on the performance of the sys-
tem. These parameters are listed as follows:
(i) width of subject-specific frequency band(s),
(ii) FE window length, M,
(iii) STFT window length, N,
(iv) window width, «,
(v) overlap between STFT windows, ovl,
(vi) interpolation interval, ip.

Firstly, the most reactive frequency bands are selected.
It is known from Pfurtscheller’s work [16] and the Graz re-
search group’s [10] theoretical and meticulous work on EEG
signals recorded during the imagination of left- and right-
hand movement, as well as analysis done on the spectral
graphs showing the ERD/ERS phenomenon for subject S1
(c.f. Section 4), that the most reactive bands usually occur in
the y (8-12 Hz) and central § (18-25 Hz) range. Further ad-
justments of the selected bands were carried out during the
performance evaluation and it was observed that CA could
be increased by adjusting the range of the selected bands. In
this investigation an empirical selection of the most reactive
frequency bands was performed by increasing or decreasing
the p and central beta bands in steps of 0.25 Hz. The data set
for each subject was partitioned into three subsets—a train-
ing set (Tr), a validation set (V), and a testing set (Ts). The
training sets consisted of 100 trials for subject S1, and 120 for
subjects S2 and S3. The validation set for each subject con-
sisted of 40 trials. The test (Ts) set consisted of 100 trials for
subject S1, and 120 for subjects S2 and S3. The best subject-
specific frequency bands and all other parameters were cho-
sen by testing the system on a validation data set and choos-
ing the band widths that provided the highest CA rates.

To begin the parameter selection procedure firstly, the FE
window length, M, was chosen. The value of M had to be
large enough so that the window contained enough signal to
extract reliable features; however a window that is too large
may result in degraded performance. For example, if a win-
dow length M = 500 is chosen, the minimum classification
time is 500s*1287!'s = 3.9s and if M = 300 the minimum
classification time is 2.34 s therefore, the IT rate can be signif-
icantly influenced by the choice of M. Six different window
sizes ranging between 100 and 450 were tested. The window
size which provided the best features was selected for further
tests. To tune the remaining STFT parameters firstly, 3 val-
ues of a were chosen and subsequently tests were run with
N =50 :50 : 300 (i.e., N was set for all multiples of 50 up
to 300) whilst ip and ovl were set to 1. It was assumed that
by observing results at 6 different STFT window lengths, for
each of the three different values of «, a sufficient indication
of good combinations of these parameters for each subject
could be attained. The highest CA rates on the training data
were used to indicate the best combinations of all param-
eters. Up to eight different values of ovl were then selected
ranging from 1 to 100 in specific multiples of 5 for small N
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and 10 for larger values of N. The value of ovl must be less
than N. At each value of ovl and the chosen best values of N
and «, obtained from the first selection procedure, another
set of tests were run with ip = 3 : 3 : 18. Again CA rates
were used to choose the best combination of all four param-
eters. It was observed that the CA rates are sensitive to small
changes in ip so another set of tests were carried out where
the best chosen ip values from the previously described tests
were decremented and incremented by 1 and then 2. In cer-
tain cases additional variations of the parameters were intro-
duced for exhaustive tests. In a minority of situations the CA
rates for two or more combinations were equal and in this
case the IT rate was used to decide the best choice. This pa-
rameter selection technique only covers a small percentage of
the possible combinations, therefore a more meticulous anal-
ysis may produce better results. An automated method could
be used to search the parameter space for optimisation of the
system.

9. RESULTS

All parameter selection was done by analysing how well the
system performed on the validation data (40 trials for subject
S1 and 60 trials for subjects S2 and S3). To test the generali-
sation abilities of the system, further tests were performed on
the unseen testing data which consisted of 100 trials for each
of the subjects. All performance quantifiers are estimated at
the rate of the sampling interval (i.e., the performance is av-
eraged over all trials at each time point; therefore, after each
new sample is enveloped in the main FE window, the old-
est sample is removed and a new set of features is extracted
and classified). The results at the best time points (deter-
mined by the point at which CA is maximal) are presented.
Table 1 shows the results obtained based on the parameters
selected using the approach described in the previous sec-
tion. Columns 1 and 2 indicate the subject and the selected
subject specific frequency bands (2 frequency bands for each
subject), respectively. There are three parameter combina-
tions (PCs), and the corresponding results, shown for each
subject. Column 3 specifies the PC for each subject for ease of
reference. Columns 4-8 specify the FE window length M, the
STFT window length N, the window width, «, the overlap be-
tween STFT windows, ovl, and the interpolation interval, ip,
respectively. Column 8 specifies the number of features, m,
which is calculated using (6). The CA rates for the validation
data are specified in column 10. The CA rates, times at which
CA is maximal (CT), the corresponding IT rates, and the
maximum MI for the test data are specified in columns 11—
14, respectively. All simulations were performed using MAT-
LAB (http://www.mathworks.com). Functions from various
toolboxes were utilised and all data manipulation and itera-
tive software routines were developed using MATLAB source
code.

9.1. SubjectS1

From Table 1 it can be seen that the most reactive frequency
bands and feature extraction parameters differ among sub-
jects. For subject S1 the most reactive bands are within the

entire y range and a small band (18-19.5) within the central
B range. When selecting the FE window size for subject SI,
the CA rates for two different windows were equal; there-
fore, the STFT window parameters were selected for each
of these windows and the results were compared. The best
STFT window parameters differed for both FE windows. The
CA rates on the test data were less than those achieved on
the validation data indicating that overfitting occurred. PC2
achieved a higher CA rate on the validation data and also
generalised the best to the test data. Also, the highest IT rates
are not correlated with highest CA rates although the MI for
PC2 is highest. As can be seen, the test CA rates for PC2 are
only 1% higher than those obtained using PC1 but the IT
rates are circa 3 bits/min lower—a substantial difference in
IT rate. This is due to CT being much lower for PCI1. The
classification time is considered as the time interval (CT),
beginning at the moment the user initiates the communica-
tion signal (i.e., second 3 of timing scheme [8]) and ending
at the point where classification is performed. In an offline
analysis, IT rate is calculated at the point where CA is maxi-
mal, thus providing an estimate of the maximum IT that the
system is capable of achieving. The FE window size is signif-
icantly smaller for PC1 than for PC2 and, as mentioned in
Section 4, this can affect the IT rate (i.e., the minimum CT
is always > M*12871). This is possibly the reason for signif-
icant differences in IT rates and indicates the importance of
selecting the best FE window size.

9.2. SubjectS2

The most reactive frequency bands for subject S2 were se-
lected to be at the upper half of the ¢ band (10.75-13), the
upper end of lower  band, and central 3 bands. In this case
the CA rates of the test data are significantly higher than that
of the validation data; however, the PC for this subject was
chosen as the best and the results indicate that this PC gen-
eralises well to the test data. The difference in the CA rates
may be due to the fact that the validation set is much smaller
than the test set and may contain a larger percentage of trials
which are more difficult to classify. The IT rate is significant
at almost 9 bits/min. The MI for this subject is high, indicat-
ing that the SNR is high and that this subject may be able to
perform modulated control of cursor more comfortably than
subject S1.

9.3. SubjectS3

The most reactive bands for subject S3 appeared to be be-
tween the upper end of the y band and the lower end of the
central 8 as well as in the upper f band. The upper S band is a
fairly uncommon reactive band but the selection method de-
scribed in Section 8 resulted in this band being chosen. For
this subject the CA rates are, again, higher for the test data
than for the validation data. This is possibly for the same rea-
sons described for subject S2. The IT rate is significant at al-
most 12 bits/min. It can be seen that the CT is approximately
0.5 s less than that of subject S1 (PC2) but there is large dif-
ference in IT rates. This is due to the CT and the CA rates
for each subject being substantially different. The MI for this
subject is similar to that of subject S2.
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TaBLE 1: FEP parameter combination for three subjects and a comparative analysis of results.
Parameters No. Val Test
2 freq. bands . CA CA CT IT MI
Sub | () e MmN « ol ) | () (s) (b/m)  (bits)
s1 8-13, 200 50 0.68 1 90 85 2.18 10.7 .047
18-19.5 2 360 100 3.68 15 2 8 91.3 86 3.42 7.28 0.52
10.75-13,
S2 17-22.5 1 360 100 0.68 1 4 6 86.3 | 91.7 4.11 8.56 0.65
11.5-19.5,
S3 27 25-30 1 360 50 0.68 5 4 14 87.5 | 91 2.98 11.33 0.63

10. DISCUSSION
10.1.

Results from this work show that the proposed FEP com-
pares well to existing approaches. Performance results vary
depending on different parameters choices. CA rates of 92%
are achieved on unseen data without using cross-validation.
Results ranging from 70% to 95% are reported for experi-
ments carried out on similar EEG recordings [8, 9, 10]. Many
of these results are subject specific and in some cases are
based on a 10*10 cross-validation, results of which provide
a more general view of the classification ability [8]. In [10] it
is shown that the features derived from the power of the fre-
quencies are most reliable for online feature extraction where
results are obtained from 4 subjects, over a number of ses-
sions. In the first few sessions the CA rates range between
73% and 85% and for later sessions the results range from
83% to 90%. The results in this work are based on record-
ings made in the first few sessions at early stages of training
and results range between 85%-92%. Results are reported on
tests across different sessions, indicating that the approach is
fairly stable and robust for all subjects. Robustness appears
to be an advantage of this approach, however an analysis
for multiple subjects over multiple sessions is necessary to
clarify this. Current BCIs have maximum IT rates of up to
25bits/min [25]. In [26] it is shown that IT rates ranging
between 12 and 18 bpm are achieved using left/right motor
imagery data although, some of these results are based on a
10 x 10 fold cross-validation. In this investigation IT rates
between 8—12 bits/min are achieved.

System comparison

10.2. FEP parameters

Due to the considerably large number of possible FEP pa-
rameters combinations, all possible combinations were not
tested. A more efficient way to find the optimum param-
eter settings would be to develop a fitness function which
contains details on the three performance measures and the
CT and use an automated search algorithm to optimise the
PC. Criteria for limiting the optimisation to prevent over fit-
ting may also be necessary. This would require a substan-
tial amount of development and simulation time but would
probably result in improved performance. For this analysis
the results obtained were sufficient and compare well to re-
sults reported in BCI literature utilising similar data.

The selection of subject-specific frequency bands did sig-
nificantly influence the results. The most reactive frequency
bands were initially selected based on the visual inspection
and then adjusted to obtain optimal performance (c.f. Sec-
tion 8). In [10, 27, 28] the most reactive subject-specific
frequency bands were selected by a technique known as
distinction sensitive learning vector quantisation (DSLVQ)
and it is shown that optimal electrode positions and fre-
quency bands are strongly dependent on the subject and that
subject-specific frequency component selection is very im-
portant in BCI systems. In [28] DSLVQ is applied on spec-
tral data in 1s time window starting after cue presentation
whereas in this work the most reactive frequency bands were
selected by analysing the time course of the CA rate. It is
known that the frequency components may evolve during
the course of the motor imagery tasks so it is possible that
the most relevant bands vary during this period also. The
empirical approach to frequency band selection employed in
this work was used to find a general set of frequency bands
for each subject so that CA could be maximised during the
course of performing the mental task. Also, the bands were
adjusted in steps of 0.25 Hz whereas in [28] the analysis was
performed on 1 Hz bands ranging between 9 and 28 Hz. The
approach carried out in this work was not overly time con-
suming and converged to a good set of relevant frequency
bands for each subject. Although the approach described
in this work is a manual approach, it may account for the
evolving relevance of the frequency bands more so than the
DSLVQ approach which is more automated but may have
been more time consuming to perform an analysis such as
that described in this work. In [28] it is suggested that, due
to the relevance of frequency bands changing over the course
of the trial, the DSLVQ algorithm may need dynamic adap-
tation to maintain optimal band selection. Future work will
involve experimentation with DSLVQ to determine its po-
tential for dynamically selecting the relevant frequency bands
from EEG signals as they evolve during the course of the mo-
tor imagery tasks. This may enhance the accuracy and auton-
omy of the feature extraction procedure.

The FE window length can significantly influence the time
course of the CA rates and CT. The best FE-window for all
subjects appeared to be between 200-360 (i.e., between circa
1.56 s and 2.73's long). None of the CTs equalled the win-
dow length, M, indicating that there was some data removed
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(i.e., forgotten) from the FE window before data within the
window became most separable. Therefore proper selection
of the FE window can substantially improve performance
by capturing only signal sequences which are most separa-
ble and forgetting data that may contribute to performance
degradation.

The STFT window parameters (N, a, and ovl) are also
crucially important for this approach. Most CA rates were
maximised by using short but wide (small «) windows with
small amounts of overlap. As detailed in Section 3, if the win-
dow is too narrow, the frequency resolution will be poor, and
if the window is too wide, the time localisation will not be so
precise. The temporal resolution can be made as high as pos-
sible by sliding the STFT window along the FE window with a
large overlap. A small and wide STFT window (M = 50) can
localise the frequency components in time whilst, at the same
time, obtain a good frequency resolution. The window func-
tion utilised in this work becomes more like a uniform win-
dow with a parabolic top (i.e., less Gaussian) as a is decreased
below 2. Therefore, most of the best PCs chosen cause the
frequency components within each STFT window to be em-
phasised more so than a Gaussian window (« > 2) would al-
low. The temporal resolution is achieved by sliding the STFT
along the data with a certain overlap. Results from additional
tests suggest that if the temporal resolution is too high (i.e.,
a large overlap) features overfitting may occur. N was set to
100 in the best PC for subject S2, indicating that the time
localisation did not have to be as precise.

The interpolation process also plays an important role in
the improvement of CA. The degree of smoothing is propor-
tional to the value of ip. If ip is zero then no interpolation
is performed. As can be seen from Table 1, for the best PCs
for all subjects, some degree of smoothing was found to im-
prove the CA rate. The improvement was, in some cases, only
slight (approximately 2%) but nevertheless this is significant.
The feature separability is very sensitive to the value of ip and
increasing ip too much can cause performance degradation.
As outlined in [19], a small increase in CA can significantly
improve the IT rate, therefore the performance enhancement
that the interpolation process can provide is very important
in BCI systems. As mentioned, most of the PCs provided
good time-frequency resolution but if the frequency resolu-
tion is too precise the intraclass variation will increase due
to irregular frequency components. The interpolation pro-
cess reduces the negative effects of irregular frequencies by
smoothing the spectra and thus reducing the intraclass vari-
ance. Even increasing ip to 2 can reduce the intraclass vari-
ance and produce better CA and MI rates; however, in some
cases, the interpolation process can reduce the interclass vari-
ance.

Overall, the parameters for each subject (apart from the
subject-specific frequency bands and FE-window size) show
some coherence. Therefore it may be appropriate to select
a standard set for all subjects. This would allow fast appli-
cation of the system to each individual subject. It is also
possible that, by optimising the parameter combinations for
each subject using an automated search algorithm, improved
performance could be achieved, although the training times

may be costly. Parameters M and N do not have to be very
finely tuned to obtain the best performance. Parameters «,
ip, and ovl are critical parameters and cannot be varied too
much from the selected best without significant degradation
in performance. In additional experimentation, parameters
were chosen arbitrarily with a small STFT window (N = 50)
and high CA rates were achieved on the validation data but
the results on the testing data were unsatisfactory. This oc-
curred when ovl was large. For example, when the overlap
was set equal to 45 (i.e., 95%), a large number of spectra
were produced for each signal. Assuming the FE window size
M = 360 then, the number of spectra (i.e., STFT windows)
isE= (M- ovl)/(N — ovl) = 63 and from (6) m = 126 (cf.
Section 3). This large number of features is almost half the
number of data samples in the window and this can result in
overfitted features. Thus the linear classifier begins to over-
fit. Parameter combinations that produced lower numbers of
features (i.e., < 30) produced classifiers which generalised the
best to the unseen test data.

10.3. The performance quantifying methods

The three performance measures have advantages and dis-
advantages and based on each, different conclusions can be
drawn about the system. All three provide different informa-
tion; classification accuracy rate simply provides the accuracy
and other information such as sensitivity and specificity can
be obtained. Even though these measures provide informa-
tion about how well the system can distinguish between dif-
ferent sets of features extracted from the input space, they do
not provide any information about the time required to do
so. Timing is critical in any communication system and in
most cases communicating in real time or as close as possi-
ble to real time is desirable. So, if a two-class system achieves
100% accuracy but it requires 20 seconds to perform the clas-
sification, then the advantage gained by the high accuracy
is diminished by the fact that the classification required so
much time.

As can be seen from Table 1, differences in CA and CT
have significant effects on the IT rate, a performance mea-
sure which can quantify the performance of the system based
on the CT and CA. The challenge is to find the optimal per-
formance between accuracy and speed. In some cases the op-
timum can be obtained by accepting an FEP or classifier that
has a reduced accuracy but a fairly rapid response. This will
produce significantly faster IT rates but will result in a sys-
tem where the probability of misclassifications occurring is
much higher. This can be observed for the results of subject
S1 where there is a slight difference in CA (1%) but a large
difference in IT. The PC with the highest CA did not obtain
the highest IT, therefore care must be taken when choosing
the best PC.

MI calculation does not consider the accuracy or the time
of classification but does quantify the average amount of in-
formation that can be obtained from the classifier output
about the signal. This may be very important if it is intended
to use the classifier output to control an application which re-
quires proportional control. For example, the control of cur-
sor may be performed by adjusting the cursor proportional
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to the magnitude (TSD) of the classifier output and/or using
the cursor to select from more than two choices on a one-
dimensional scale. A person’s ability to vary the MI would
provide potential for the system to increase the possible IT
rate to more than one bit for a two-class problem [6]. The
MI can quantify how well a system may perform these types
of tasks but does not provide much information about ac-
curacy and time, therefore would not be a better quantifier
than IT rate, although MI does provide information about
the system that the IT rate does not. Overall maximising the
CA rates is the most important although there is more useful
information about the system performance contained in the
IT rate.

11. CONCLUSION

To the best of the authors’ knowledge, this type of TF-based
FEP has not been used for feature extraction in EEG-based
communication before. Although TF-based FEPs have been
reported for application in BClIs, a process which involves a
main FE window and interpolation process is a novel proce-
dure and, as the results demonstrate, significantly enhances
the FEP and overall system performance. Analysing the time
evolution of the frequencies and values of the performance
quantifiers can determine the best FE window size and also
provides information about the signal segments which are
most separable. The FE-window-based approach can be used
for continuous feature extraction and thus has the potential
to be used in an online system.

As the calculation of IT rate utilises knowledge on CA
and duration of classification, IT rate provides significantly
more knowledge about the system than simply the CA rate
and the MI. However, classification accuracy is the most im-
portant in BCI applications and IT rates could be deceiving if
CA and CT are not reported also. Therefore, it is concluded
that, although IT rate is the best performance quantifier, all
three quantifiers can provide information on different and
important aspects of a BCI system. It is suggested that the re-
sults of each performance quantifier should be analysed and
reported.

Further work will involve developing automated pro-
cedures for selecting the most reactive subject-specific fre-
quency bands and an automated parameter optimisation
procedure which can search the parameter space to find the
optimum subject-specific parameters. Although, an empiri-
cal selection procedure can be used to select good subject-
specific parameter combinations, it is anticipated that the full
potential of the proposed approach will be realised only by
developing a more intuitive parameter selection procedure.
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