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One of the main problems of SAR imagery is the presence of speckle noise, originated by the inherent coherent nature of this
type of systems. For one-dimensional SAR systems it has been demonstrated that speckle can be considered as a multiplicative
noise term. Nevertheless, this simple model cannot be exported when multidimensional SAR imagery is addressed. This paper
is devoted to present the latest advances into the definition of a multidimensional speckle noise model which does not depend
on the data dimensionality. Speckle noise may be modeled by multiplicative and additive noise sources, whose combination is
determined by the data’s correlation structure. The validity of the proposed model is demonstrated by its application to a real
L-band multidimensional SAR dataset acquired by the German ESAR sensor.
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1. INTRODUCTION

Synthetic aperture radar (SAR) has become a well estab-
lished, active, microwave imaging technique capable of mon-
itoring, and characterizing, the surface of the Farth as well as
its dynamics. In a first period, one-dimensional SAR systems
allowed to demonstrate the capacities of this technology to
provide information about the Earth surface reflectivity with
a high spatial resolution, independently of the weather con-
ditions or the day-night cycle [1]. But, the availability of mul-
tidimensional SAR systems which occurred in the last decade
has been the fact which has really boosted the interest of the
remote sensing community in these systems [2].
Multidimensional SAR systems open the possibility to
increase the quantity of information which can be gath-
ered from the scene under observation, and therefore, to
better characterize it in a quantitative way. The additional

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

information that multichannel data sets provide arises
through the increased parameter space of the acquisitions as
well as the correlation structure between the channels. The
associated literature is rich in examples showing the capacity
of multidimensional SAR systems to perform quantitative re-
mote sensing. A first example can be found in the so-called
interferometric SAR (InSAR) systems [3], which allow ob-
taining the terrain’s relief or even, variations of the topogra-
phy by considering differential InSAR techniques [4, 5]. Per-
haps, the most relevant example of multidimensional SAR
imagery is the one provided by polarimetric SAR systems
(PolSAR) [6]. Since this SAR configuration, based on con-
sidering wave polarization diversity, is sensitive to the scatter-
ing properties of the target under study, it has been demon-
strated as a useful tool to characterize quantitatively surface
scattering [7, 8]. In addition, the combination of the in-
terferometric and the polarimetric capacities together into
polarimetric SAR interferometry (PolInSAR), has permit-
ted the study of vegetated areas [9]. Nevertheless, it must
not be forgotten that there exist additional multidimensional
SAR configurations based on different sources of diversity,
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such as SAR tomography [10], multitemporal or multifre-
quency SAR [11], which have demonstrated the potential of
the multidimensional SAR data for quantitative remote sens-
ing.
One of the main properties of the SAR systems is the ca-
pability to provide reflectivity information with a high spatial
resolution. On the one hand, in the dimension perpendicular
to the track of the platform carrying the SAR system, called
range dimension, this spatial resolution is achieved by means
of pulse compression techniques [1]. On the other hand, in
the parallel dimension, denoted by azimuth, the high spa-
tial resolution is obtained by a coherent recording and pro-
cessing of the returned echoes. This coherent nature, which
characterizes SAR systems, is also the origin of one of the
most important problems of SAR imagery, namely, speckle
noise [12, 13, 14, 15]. Despite speckle consists of a true elec-
tromagnetic measurement, it must be considered as a noise
component in order to assure access to the useful signal com-
ponent [14, 16].

For a complete understanding of the speckle noise ef-
fects upon the useful signal component a noise model is re-
quired. Such a model is employed to identify, in the recorded
data, the useful signal component, the noise term, or terms,
and how they interact. In the case of one-dimensional SAR
imagery, for homogenous areas, speckle is characterized by
a multiplicative nature [13, 14]. However, for multidimen-
sional SAR data, the speckle noise present in a Hermitian
product formed from a channel pair can no longer be mod-
eled by a multiplicative noise source [16, 17]. The aim of this
paper is, hence, to present the latest advances on the defini-
tion and study of a general speckle noise model valid for any
type of multidimensional SAR configuration.

The paper has been divided as follows. Section 2 intro-
duces the formulation employed to describe multidimen-
sional data. Section 3 describes the noise model for the phase
component of a Hermitian product, which is extended to
the complete Hermitian product in Section 4. This section
contains also the corresponding extension to present the fi-
nal multidimensional speckle noise model. The speckle noise
model is analyzed in Section 5. Finally, Section 6 presents the
main conclusions of this study.

2. MULTIDIMENSIONAL SAR DATA
REPRESENTATION

A multidimensional SAR system, in what follows, will be
considered as a system capable of recording m different SAR
images. Hence, the set of images is represented by the com-
plex m-dimensional target vector
T
k=1[8,%...,5m] (1)
where S; for i = 1,2,...,m represents each one of the com-
plex SAR images, and T denotes transposition. In (1), the
subindex indicates that the m SAR images have been ac-
quired under some type of diversity, such as space or time
diversity, wave polarization diversity, or frequency diversity.
In the particular case of PolSAR data, (1) is derived from

a vectorization process of the scattering matrix [18]. As
demonstrated, this vector-based formulation allows to over-
come the limitations of a matrix-based formulation in Pol-
SAR [18, 19].

In the same way as (1) represents an extension of the idea
of target vector derived for PolSAR data, one can also export
the concepts of deterministic or point target and distributed
target to a framework of multidimensional SAR data. On the
one hand, the vector k is able to completely characterize a
point target, that is, a target whose properties can be directly
retrieved from k [18]. On the other hand, for distributed
scatterers, the target vector k can no longer be considered to
be a deterministic quantity, rather it may be modeled as an
m-dimensional random variable [18, 20]. Based on the co-
herent nature of SAR systems, under the Gaussian scattering
assumption, and by considering the central limit theorem, k
must be supposed to be described, for homogeneous areas,
by a zero-mean, multidimensional, complex Gaussian ran-
dom variable with probability density function (pdf) [21, 22]

pr(k) = exp (-k#C'k), (2)

1
| C|
where H denotes transpose complex conjugation. From (2),
it is possible to deduce, by using statistical arguments, the
impossibility of k to characterize data, since, its average value
is equal to 0. The pdf given by (2) is completely described
by the m X m, positive semidefinite, Hermitian covariance
matrix C,

E{$;S'} E{SiS5} -+ E{SiSH}
E{S;S1'} E(S:S5} E{S,SI}
C = E{kk"} = : : . : ’
E{SuSi'} E{SnSY} E{S,Si}
(3)

where E{x} represents the expectation operator. Conse-
quently, since the covariance matrix C determines the sta-
tistical behavior of k for distributed scatterers, it is capable of
completely characterizing them [18].

The covariance matrix C needs to be estimated from the
recorded m-dimensional target vector k. By assuming statis-
tical ergodicity and homogeneity, the expectation operator
in (3) can be substituted by a spatial averaging, called multi-
look, which allows defining the so-called sample covariance
matrix

n

> ikl (4)

7,1
i=1

In (4), n denotes the number of samples which have been
employed to estimate C. In the following, the symbol Z, will
denote the one-look sample covariance matrix for n = 1. In-
deed, the sample covariance matrix consists of the maximum
likelihood estimator of C [16]. Since the multidimensional
variable Z, is a random variable, the knowledge of its corre-
sponding statistics are of primary interest, especially for the
one-look data case, that is, Z.
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Considering the Jacobian associated with the change of
variables given by (4) into (2), one can demonstrate that
the sample covariance matrix is characterized by the classi-
cal Wishart distribution [21, 22, 23]

n—-m
mn
n""|Z,|

n

s
1CInT, () etr (-nC™'Z,), (5)

Pz, (Zn) =

where etr(X) is the exponential of the trace of the matrix X,
and the multivariate gamma function is defined as follows:

L) = 7= D2TT" D(n — i+ 1). (6)

The Wishart distribution, as defined in (5), must be consid-
ered with certain restrictions, since the matrices C and Z,
have to be positive definite, that is, of rank m [24]. This fact
imposes that the expression of the Wishart distribution given
by (5) is only valid for n > m. Therefore, it cannot be con-
sidered for multidimensional single-look SAR data charac-
terization. Recently, an extension of (5), taking into account
those cases in which 0 < n < m has been presented in [25].
The extension considers the Wishart distribution as the set
of probabilities on the closed cone of nonnegative matrices,
denoted by Q, of the space of Hermitian matrices generated
by the measure y,:

P2, (2,)(dZ,) = o

e By, dz,), ()
where dZ, denotes the differential volume on Q and (-, -)
represents the inner product. When n > m, (7) reduces to (5)
[25]. As observed, the generalized Wishart distribution (7) is
defined in a differential form and in terms of the measure
Up, making its practical use extremely complicated. Thus, a
different approach is necessary for the study of the statistics
of Z.

The one-look sample covariance matrix Z, as given by
(5), depends on m, and on the covariance matrix C. In addi-
tion, a multidimensional speckle noise model is understood
as a multivariate function of the type

Z = f(Cny,ny,... 0p). (8)

Equation (8) has to be able to identify, within the one-look
sample covariance matrix Z, the useful signal component,
that is, C, and how this component is corrupted by the
speckle noise component, or components, indicated in (8)
byn;fori=1,2,...,p.

The following section of this paper is focused on deriving
a multidimensional speckle noise model, as given by (8), to
characterize the sample covariance matrix Z.

2.1. SARimages Hermitian product
The Hermitian product of a pair of SAR images, that is,

$it, hj=1,2...,m, (9)

where * denotes complex conjugation, is a key quantity since
it represents, as observed in (4), the basic building block
when multidimensional SAR imagery is addressed. As it has
been stated, the Hermitian product for distributed scatterers
has a random nature. This randomness depends on the com-
plex correlation coefficient

E{S:S}
JELISIE(]S; 17}

p=lplexp (jox) = Lj=1,2,...,m

(10)

The amplitude of the complex correlation coefficient, that
is, |pl, is called coherence, whereas ¢, refers to the aver-
age phase difference. In what follows the average power in

the two channels is denoted as v = /E{|S;|2}E{|S;[?} for

iji=1,2...,m.
The Hermitian product in (9) can be decomposed as

$iSF = [SiSF | exp (j(di — ¢;))

= zexp (jo),

(11)
ij=1,2,...,m,

where z is its amplitude and ¢ denotes the measured phase
difference. The analysis to obtain the multidimensional
speckle noise model will be based on a down-up approach.
This method, first, considers the speckle noise model for a
general Hermitian product of a pair of SAR images, based on
the statistics of its different components [22]. Then, the re-
sults are extended to a multidimensional speckle noise model
for the one-look sample covariance matrix Z.

3. PHASE DIFFERENCE NOISE MODEL

From the statistics of the Hermitian product of a pair of SAR
images, the argument of the n-look Hermitian product of
two SAR images is described by the distribution [21]

_T(n+1/2)(1-1pI»)"B
p¢(¢) - Zﬁf(n)(l _ﬁZ)nJrl/Z

(1-1p»)" ( 1 2)
+ o7 2Fl n>1)2)ﬁ >

(12)

where f = [plcos(¢ — ¢5) and ,F)(a, b; c; z) represents the
Gauss hypergeometric function. The phase distribution in
(12) presents its maximum at the value ¢y. For instance, in
interferometric applications, this phase contains terrain’s re-
lief data [3], whereas, for PolSAR data, it has been shown to
contain relevant information about the scatterer being im-
aged [26].

Within the real phase interval [¢, — 7, ¢ + 7), the mea-
sured Hermitian product phase difference ¢ can be described
by an additive noise model [27]

¢ = b+ v, (13)
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06l E{v.} = E{vi} =0,
0.4 1 1 0.685 (20)
cf = s = —(1- 2 .
ol var {v.} = var {v} 2( Ipl?)
%0 o1 02 03 04 05 06 07 08 09 1 Thus, the complex phasor given at (14) can be described by
Ipl the following noise model [29]:
- I‘\’;Cl exp(jp) = Neexp (jox) + (ve + jvg). (21)

FIGURE 1: Parameter N. as a function of the coherence value |p|.

where ¢, denotes the true phase difference defined in (10),
and v is a zero-mean noise term, depending on |p|, and in-
dependent from ¢,. In the following (13) is considered in the
complex plane

exp(j¢) = cos(¢) + jsin(¢). (14)

Since a random variable can be separated into its mean value
and a zero-mean random variable, hence, it is possible to de-
fine cos(v) = N, + v; and sin(v) = v}, which if introduced
into (14) allows us to write

cos(¢) = N, cos (¢x) + v; cos (¢y) — v5sin (¢y),

sin(¢) = Nesin (¢y) + v; sin (¢y) + v5 cos (¢dx).

(15)

The parameter N, which corresponds to E{cos(v)}, is deter-
mined, for one-look SAR imagery, that is, n = 1, by

_r 11, 2)
Nc_ 4|P|2F1(2)2a2>|P| > (16)

where, as deduced from Figure 1, it contains the same infor-
mation as the coherence value |p]. In [28], the authors have
employed N, to introduce a novel coherence estimator. In ad-
dition, the terms v; and vj, present in (15), are two noise
terms such that

(1- |p|2)0‘79,

(17)

N = N =

(1- |P|2)0'58-

In (17), the variance values represent approximations of the
true values, since the corresponding analytical expressions
prevent the extraction of any conclusion concerning the be-
havior of these noise terms due to its complexity [29]. Con-
sidering E{v}v5} = 0, (15) can be simplified to

cos(¢) = Nccos (¢x) + v, (18)

sin(¢) = N,sin (¢y) + vs, (19)

As observed in the previous equation, the first additive term
contains the true phase information, that is, ¢, as would be
expected. Nevertheless, this term also contains the informa-
tion of coherence through the parameter N.. This term is cor-
rupted by the zero-mean, complex, additive term v, + jvs.

4. MULTIDIMENSIONAL SPECKLE NOISE MODEL

4.1. Hermitian product noise model

In this section, the speckle noise model for the Hermitian
product argument, (21), is employed as the basis to derive a
speckle noise model for the Hermitian product in (11). Thus,
introducing the intermediate expressions of (15) into (11),
the real and the imaginary parts of the Hermitian product
take the form

R{zexp(jp)} = Nezcos (¢y) + zv] cos (¢y) — zvysin (¢s),

I{zexp(j§)} = N.zsin (¢x) + zvy sin (¢x) + zv} cos (¢x),
(22)

where R {x} and I {x} represent the real and imaginary parts
of x, respectively. As observed, (22) can be decomposed into
three additive terms, which statistical analysis allows, in the
following, to obtain the speckle noise model for the Hermi-
tian product of two SAR images. The interested reader is di-
rected to [30] for the technical details of this process.

For homogeneous data, the statistics of the first additive
terms of (22) are determined by the amplitude component
z, since N and ¢, correspond to constant values. As it can
be observed from Figure 2, a direct relation cannot be estab-
lished between the mean and the standard deviation values
of z; the main consequence of which is the impossibility to
introduce a noise source able to reproduce this behavior. The
parameter N, introduced in Section 3 as a quantity similar
to the coherence |pl, allows, nevertheless, to identify a noise
mechanism with a multiplicative nature. As Figure 2 details,
the effect of N, over the statistics of z, without considering
power effects, is to transform it in such a way that the mean
and the standard deviation present very similar values. This
mechanism may be easily modeled by a homogeneous multi-
plicative noise source, denoted in the following as n,,. Hence,

ZNcexp (j¢x) = N E{z}ny exp (jox)

i . (23)
= YZ,nuNe exp (jbx),
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FIGURE 2: Mean versus standard deviation relations. This plot shows
the influence of N, allowing to introduce a multiplicative noise
mechanism.

where E{z} = ¥z, has been considered and

1

s 1
z="F|-=,—-= 1 2). 24
Z=2 1( >3 Ipl (24)

It is important to observe that N, modulates the influence
on the multiplicative speckle noise source #,,, in such a way
that for low coherences, the effect of this noise source could
be considered negligible. Finally, as concluded from (23), the
multiplicative noise source n,, corrupts only the amplitude
information of the Hermitian product of two SAR images.
This demonstrates that n, cannot explain the phase vari-
ability of the Hermitian product phase, that is, a multiplica-
tive speckle noise model cannot be employed to characterize
speckle noise for the real and imaginary parts of the Hermi-
tian product of two SAR images.

Unlike the first additive terms of (22), the second ones
are determined, from a statistical point of view, by the
amplitude z and the phase noise component v| intro-
duced in Section 3. Fixing ¥ = 1 and cos(¢x) = 1, then
E{zvi cos(¢)} < 0.2 and E{zv]sin(¢,)} < 0.2, which de-
termines that most of the mean value of the real and imagi-
nary parts of the Hermitian product are concentrated in the
first additive terms of (22). In order to determine the speckle
noise source of the second additive terms, they are separated
into the mean value and an additional zero-mean random
variable, denoted as n,; in the following. Consequently this
new zero-mean random term may be considered as an addi-
tive speckle noise source. The variance properties of 1, can
be obtained from the distribution of the product zv;. Nev-
ertheless, the analytical expression of the variance presents
such a complex equation, that it prevents from extracting any
conclusion with respect to its dependence on the different
signal parameters, and specially the coherence |p|. Thus, the
next approximation is considered:

/ 1 .
var (e} = y2var {na] = 39201 o)™, (29)

where its comparison with the actual variance values is given
by Figure 3. The main characteristic of the speckle noise

~~~~~~ Approximated value

FiGure 3: Real and approximated values for the standard deviation
of the second additive term (25).

component #, is its dependence on |p|, giving as a result
a nonhomogeneous speckle noise component. Introducing
(25) into the second additive terms of (22), one can write

zv) exp (]¢x) = yexp (]¢x){(|P| —Nezy) +na ). (26)

The additive speckle component will present its maximum
variance for a null coherence. If one compares (26) with (23),
it is possible to observe, from a qualitatively point of view
that, without taking into account the modulation performed
by the phase ¢, the real and imaginary parts of the Hermi-
tian product of two SAR images are dominated by the mul-
tiplicative speckle component for high coherences, whereas
they are dominated by the additive speckle term for lower
ones.

Finally, the third additive terms of (22) can be analyzed
in the same form presented in the previous paragraph. These
terms depend statistically on the product zv;. Considering
the distribution of the real and imaginary parts of the Her-
mitian product of two SAR images, one can easily deduce
that their mean value of zvj equals zero. Therefore, since the
terms do not contain information, in terms of mean value, it
can be considered that they are characterized by an additive
noise term, which will be denoted as n,,. The variance of this
term equals

1
var {zvy} = y?var {np,} = 51//2(1 —lpl?), (27)

which presents the same dependence on [p| as ng41, see (25)
and Figure 4. Similarly as performed in the previous para-
graph, but considering the zero-mean value of the third ad-
ditive terms of (22),

jzvyexp (jdx) = jyexp (jdx) az. (28)

Consequently, a novel speckle noise term has been identified.
If (28) is compared with (26), it can be deduced that n,; and
N4, despite being in quadrature, present the same character-
istics.
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Introducing (23), (26), and (28) into (22),

SiS;k = YZ,nuNcexp (jox)
+yexp (jo) {(Ip] = Nezu) +nar} + jy exp (jgs) na
= YZunmNeexp (jéx) + v (Ip| — Neza) exp (jz)
+ W(”al + j”aZ) exp (](lsx)’

(29)

which represents a first speckle noise model for the Hermi-
tian product of two SAR images. Since the additive noise
components #, and 7, are uncorrelated, it is possible to
simplify the last term of (29). Considering the corresponding
real and imaginary parts, two novel additive speckle terms
can be introduced as follows:

Ngr = COS (¢x)nal — sin (¢x)na2:

Hai = sin (¢x) na1 + cos (¢x) a2 Y

From (30),

E{n,} =0, E{ng} = 0. (31)

With respect to the variance values of the additive speckle
terms introduced within (30), it is clear that this value de-
pends on the average phase ¢,. As observed in Figure 4, the
variance of the speckle terms #n,; and n,; present such a sim-
ilar value, that the dependence of n,, and n, on ¢, can be
eliminated by considering their variances to be equal to

%(1 —1p1A)"* (32)

The effect of this approximation is also depicted in Figure 4.

Then, as a final step, the definitions presented in (30) are
introduced into (29). Consequently, the complex Hermitian
product of two SAR images can be described by the following
speckle noise model [30]:

var {ng} = var {n,} =

SiSt = YZutmNe exp (jox)

o

Multiplicative term
+y(Ipl = Nezu) exp (j¢s) + ¢ (ar + jhai) .

Additive term

(33)

The previous equation allows the identification of two
speckle noise mechanisms. On the one hand, a real, homo-
geneous, multiplicative speckle term #,,, which only corrupts
the amplitude of the Hermitian product. On the other hand,
Ngr + jng represents a complex, nonhomogeneous, additive
speckle term introducing noise both in amplitude and in
phase.

4.2. Multidimensional noise model formulation

The complete analysis performed previously has allowed the
derivation of a new speckle noise model for the Hermi-
tian product of two SAR images. As it was made evident in
Section 2, this product can be considered as the basic build-
ing block to completely characterize multidimensional SAR
data under a covariance matrix-based formulation. Hence,
the result presented above by (33) is now introduced into
(4) (with n = 1) in order to derive a multidimensional
speckle noise model [31], in the philosophy presented by
(8).

4.2.1. Multidimensional multiplicative

speckle noise component

First, the multidimensional extension of the multiplicative
term labeled into (33) is considered. As demonstrated in
Section 4.1, the speckle term #,, is homogeneous. Therefore,
as it does not depend on any signal property, it appears in the
diagonal, as well as, the off-diagonal elements of the one-look
sample covariance matrix Z. Based on (33), and in particu-
lar (26), an m X m, real matrix, containing the multiplicative
speckle noise terms, is defined as

11 12 1m
M Ny M
21 22 2m
M M T My
No=| . . | (34)
ml m2 mm
M iy M

whereas an m X m, complex, Hermitian matrix containing
the useful signal term is specified as

WH I//IZNCIZZ}IZejqﬁ}CZ wlmNclmE}lmej@m
1//21NC212ﬁlef¢51 meNgmzzlmejgbf'"
Cn = (35)
wmlerzznlejgb)’;‘l meNCZmZ%mejgbﬁ"‘ ymm
|
It is important to highlight, that, the diagonal elements of ~ basis of the Hermitian product ;S for i = 1,2,...,m, can

the sample covariance matrix, (4), which are defined on the

be considered to be characterized by a complex correlation
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FiGUre 4: Standard deviation values for the different additive
speckle noise terms identified for the Hermitian product of two SAR
images.

coefficient equal to 1 exp(j0). Under this conditions, N, and
Zy are equal to 1, justifying the differences between the diag-
onal and the off-diagonal elements of (35).

When addressing the multidimensional extension of the
multiplicative term, in order to maintain separately the noise

0 Y2 (nif + jingi)

w2+ o)

yr (gt + jngt) oy (ng

And, on the other hand, an m X m, complex matrix which

0 v (lp"| - NP2

V(| - N2Ee!

term, (34), from the useful signal component, (35), a matrix-
based formulation cannot be considered. Hence, a vector-
based formulation must be employed. As a result, the mul-
tiplicative term of (33) extends multidimensionally as

diag (vec (N,,)) vec (Cy), (36)

where vec(X) represents an m? x 1 vector formed by staking
the columns of X, and diag(x) forms an m? x m? diagonal
matrix with the elements of the vector x.

4.2.2. Multidimensional additive speckle
noise component

Although the additive term in (33) could be considered un-
der a matrix-based formulation in the multidimensional ex-
tension, the vector-based formulation imposed by the multi-
plicative term, imposes, also, in this case, a vector-based for-
mulation. Here, two new m X m matrices are defined. On the
one hand, an m X m, complex matrix, which contains the
complex additive speckle noise terms:

Y (g + il
YA (ngy + jngl"
(37)
24 jnl?) .- 0
|
contains the useful signal component:
W (p | - Nzl et
v (g2 | - NE e
(38)

wml(|Pm1 | _ Nc}’nlzrrlnl)ej(p;nl me( |pm2 | _ NZnZZ,TZ)ej¢;n2 . 0

It can be observed, from the previous two expressions, that
the diagonal entries of the matrices are null. As noticed
previously, the diagonal elements can be characterized by
a complex correlation coefficient equal to 1exp(j0). In-
troducing it into (32) for the additive noise components,

and into (26) for the useful signal component, one can
easily demonstrate the zeros at the diagonal of (37) and
(38).

The additive component is, then, extended to a multidi-
mensional framework, under the vector-based formulation
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imposed by the multiplicative one, as
vec (C,) + vec (N,). (39)

4.2.3. Final multidimensional speckle noise model

The final multidimensional speckle noise model for SAR data
is derived by combining (36) and (39). Hence, the one-look
covariance matrix can be written as [31]

vec(Z) = diag (vec (N,,)) vec (C,,) + vec (C,) + vec (N,),
(40)

where the vector-based formulation is imposed by the mul-
tiplicative speckle noise term in order to maintain separately
the useful signal from the noise component. The main char-
acteristic of (40) is that the multidimensional speckle noise
model does not depend on the data dimensionality, that is,

m. In (40), the useful signal component is encountered un-
der

vec (C) = vec (C,,) +vec(C,) = C=C, +C,.  (41)

4.3. Multidimensional speckle noise
model characteristics

First of all, (33) represents a generalization of the multiplica-
tive speckle noise model developed for the SAR images in-
tensity, since, as demonstrated, the diagonal elements of the
one-look sample covariance matrix reduce to

SiSF = |87 = vinf = E{|S;|*1ni, i=1,2,...,m.
(42)
In addition, (33) is also in accordance with the additive noise
model for the phase difference, (13), by construction.

As (40) has made evident, the multidimensional speckle
noise model presents a high degree of heterogeneity. As
shown by (33), the speckle noise for a particular Hermitian
product is determined by the combination of multiplicative
and additive noise sources. This combination is controlled
by the complex correlation coefficient which, additionally,
varies among the elements of the covariance matrix. Con-
sequently, the speckle noise is not equal for all the covariance
matrix entries. This double source of heterogeneity shows the
complexity of the speckle noise mechanism for multidimen-
sional SAR data.

In the case of a particular element of the covariance ma-
trix, attention must be paid to the fact that speckle depends
on the complex correlation coefficient, that is, on the coher-
ence |p| and the phase ¢. As it can be deduced from (33), the
coherence determines the importance of the different speckle
noise sources. On the one hand, |p| controls the weight of the
multiplicative part of speckle through the modulation by N,
(23). On the other hand, the variance of the speckle additive
term depends on |p| (32). As a result, low coherence areas
of a Hermitian product are dominated by the additive term
of speckle, whereas speckle for high coherence areas turns

out to be dominated by the multiplicative term. Neverthe-
less, as one can observe in (33), the multiplicative term of
speckle is also modulated by the phase term ¢,. This second
modulation has very important effects. First, the final na-
ture of speckle noise for the real and imaginary parts of the
Hermitian product of SAR images will differ, since the real
part depends on cos(¢), whereas the imaginary one depends
on sin(¢y). Additionally, the phase dependence can provoke
that, despite an area can be characterized by a high coher-
ence, speckle noise may be dominated by an additive noise
nature. It is clear that the phase of the complex correlation
coefficient ¢, has an evident role in determining the final na-
ture of speckle noise. This effect acquires a crucial impor-
tance in interferometric applications, since the dependence
of ¢, on the terrain topography results in the fact that the to-
pography has an enormous impact on determining the final
speckle noise nature.

5. EXAMPLES AND VALIDATION

In what follows, the multidimensional speckle noise model
is tested over real SAR data. This data correspond to an L-
band, fully polarimetric PolInSAR dataset acquired by the
German system ESAR, operated by DLR, over the region of
Oberfapfenhoffen, Germany. The two interferometric acqui-
sitions were collected in a repeat-pass configuration with an
approximated baseline of 10 meters and a temporal differ-
ence of 10 minutes.

Due to the high dimensionality of the data, it is diffi-
cult to present the behavior of speckle noise for the com-
plete dataset. However, since the multidimensional speckle
noise model, (40), is based on the model for the Hermitian
product of a pair of SAR images, it is sufficient to show the
speckle behavior for the real or imaginary parts of a particu-
lar Hermitian product, extending, later, the derived results to
the multidimensional data. From the presented dataset, the
term R {Spn1 Sy, } is selected, where the SAR image, Sy, cor-
responds to a first interferometric SAR image in which the
signal is transmitted and received in the horizontal polariza-
tion. The second image, S,,, is acquired, on the contrary,
in a different spatial location where the signal is transmitted
and received in the vertical polarization. The flat Earth term
has been removed from data. Figure 5 presents the images
corresponding to the complex correlation coefficient which
characterizes this Hermitian product. If the mean and the
standard deviation of R{S;,1S,,} are estimated over 7 X 7
pixels, nonoverlapping windows, and represented together,
as given in Figure 6, one can deduce that speckle noise, that
is, data variability, cannot be said to be determined, neither
by a multiplicative nor by an additive speckle noise model
[17].

The nature of speckle noise depends, first, on the coher-
ence value. Hence, the data presented in Figure 5 are analyzed
as a function of coherence. Thus, three coherence ranges are
considered. In each case, the scatter diagram corresponding
to the term R {Sun1S;,,}, as well as the ones corresponding
to the multiplicative and the additive terms given in (33),
have been derived. The multiplicative term is obtained by
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FiGure 5: Complex correlation coefficient of the term R {Su1S;i2}- (2) |pl. (b) ¢, in radians.
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multiplying z by the term N, exp(j¢.), obtained from p. The
additive term is just calculated by subtracting the multiplica-
tive term from the Hermitian product of two SAR images.
The results are presented in Figure 7. As it can be deduced
from Figure 7b, the higher the coherence value, the higher
the importance of the multiplicative term of speckle. On the
contrary, Figure 7c shows that the importance of the addi-
tive term of speckle decreases with increasing coherences. For
low coherences, one can observe the similarity of the scatter
diagram of R {Su18S;,,} with the one corresponding to the
additive term. In this case, the signal has an average value
close to zero, whereas the standard deviation can take any
value. This fact confirms the additive nature of speckle noise
in this case. On the contrary, for high coherences, the total
scatter diagram for R {Sn1 S}, } mimics the one correspond-
ing to the one of the multiplicative term. Finally, for medium

coherences, the total diagram, as observed, results from the
combination of the two speckle noise terms.

As mentioned in Section 4.3, the final nature of speckle
noise depends also on the phase term ¢,, which has an im-
portant effect when interferometric applications are consid-
ered. This effect can be observed if PoISAR data is contrasted
with PolInSAR data. Figure 8 compares PolSAR data, corre-
sponding to R{Suu15;,1}, and PolInSAR data, corresponding
to R{SunS;,,}. Data correspond to three different homoge-
neous areas of relatively high coherence, about 0.8, within
the considered dataset. Since the coherence values are very
similar in both datasets, it can be concluded that the three
areas correspond to bare soil, where the sole difference is due
to the topographic component. From Figure 8 it can be ob-
served that the standard deviation of the additive component
does not present differences neither between the PolSAR and
PolInSAR data nor the three selected areas, confirming the
fact that this speckle component does not depend on ¢.
Nevertheless, the standard deviation curves corresponding
to the multiplicative component of speckle, confirm, in the
case of R{Sy1S;,}, that the importance of this noise term
is determined by the terrain’s topography, which is not the
case in case for R{Sun1 S}, }. From the first row of Figure 8
it can be observed that the decrease in value of the phase ¢,
is translated into a decrease of the importance of the mul-
tiplicative speckle noise component, arriving to the extreme
that the additive speckle noise term can dominate, even, for
high coherences.

6. CONCLUSIONS

In the previous sections, a novel multidimensional SAR
speckle noise model has been proposed and compared with
experimental data. As demonstrated, the multidimensional
noise model presents the property that it does not depend
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FIGURE 7: Scatter diagrams of the different terms of R {S;1S;,,} for all the coherence ranges. (a) Total. (b) Multiplicative noise term. (c)
Additive noise term. The first row corresponds to 0 < |p| < 0.2, the second row to 0.4 < |p| < 0.6, and the third row to 0.8 < |p| < 1.0.

neither on the data’s dimensionality nor on the type of phys-
ical information they contain. This makes possible to ap-
ply the model to any type of multidimensional SAR imagery
configuration.

First, a noise model for the complex phase of the Hermi-
tian product of two SAR images has been derived. Then, this
model has been extended to consider speckle noise within
the complete Hermitian product. It is shown that, in this
case, speckle noise may be modeled by the combination of
a real, multiplicative noise term and a zero-mean, complex
additive noise term. The final nature of speckle noise results
from this combination which is determined by the complex
correlation coefficient characterizing the Hermitian prod-
uct. Since this product consists of the basic building block
to construct the covariance matrix formulation, it has been
employed to construct the multidimensional speckle model.

In this case, only a vector-based formulation is possible in
order to maintain, both, the noise terms and the signal in-
formation content separately. The validity of the model has
been confirmed by analyzing a real PolInSAR dataset. A final
comparison with PolSAR data has demonstrated that speckle
noise depends on the terrain’s topography in the case of in-
terferometric applications.
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