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We deal with recursive direction-of-arrival (DOA) estimation of multiple moving sources. Based on the recursive EM algorithm,
we develop two recursive procedures to estimate the time-varying DOA parameter for narrowband signals. The first procedure
requires no prior knowledge about the source movement. The second procedure assumes that the motion of moving sources is
described by a linear polynomial model. The proposed recursion updates the polynomial coefficients when a new data arrives.
The suggested approaches have two major advantages: simple implementation and easy extension to wideband signals. Numerical
experiments show that both procedures provide excellent results in a slowly changing environment. When the DOA parameter
changes fast or two source directions cross with each other, the procedure designed for a linear polynomial model has a better
performance than the general procedure. Compared to the beamforming technique based on the same parameterization, our
approach is computationally favorable and has a wider range of applications.
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1. INTRODUCTION

The problem of estimating the direction of arrival (DOA) of
plane waves impinging on a sensor array is of fundamental
importance in many applications such as radar, sonar, geo-
physics, and wireless communication. The maximum like-
lihood (ML) method is known to have excellent statistical
performance and is robust against coherent signals and small
sample numbers [1]. However, the high computational cost
associated with ML method makes it less attractive in prac-
tice.

To improve the computational efficiency of the ML ap-
proach, numerical methods such as the expectation and
maximization (EM) algorithm [2] were suggested in [3, 4, 5].
Recursive procedures based on the recursive EM (REM) al-
gorithm for estimating constant DOA parameters were dis-
cussed in [6, 7]. Similar procedures for tracking multiple
moving sources were studied in [8, 9]. In [9], the authors
focused on narrowband sources and assumed known signal
waveforms.

The REM algorithm is a stochastic approximation pro-
cedure for finding ML estimates (MLEs). It was first sug-
gested by Titterington [10] and extended to the multidimen-
sional case in [6]. As it was pointed out by Titterington,
REM can be seen as a sequential approximation of the EM
algorithm. The gain matrix of REM is the inversion of the
augmented data information matrix. Through proper de-
sign of the augmentation scheme, the augmented data and
the corresponding information matrixes usually have a sim-
plestructure [2]. In this case, the REM algorithm is very easy
to implement. For constant parameters, estimates generated
by REM are strongly consistent and asymptotically normally
distributed. For time-varying parameters, the tracking abil-
ity of a stochastic approximation procedure depends mainly
on the dynamics of the true parameter, gain matrix, and step
size [11].

Based on REM, we will derive two recursive procedures
for estimating time-varying DOA. The first procedure does
not require any prior knowledge on the motion model. The
only assumption is that the unknown parameter changes
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slowly with time. The second procedure assumes that the
time-varying DOA parameter θ(t) is described by a linear
polynomial of time. This model is important since a smooth
function θ(t) can be approximated by a local linear polyno-
mial in a short-time interval [12]. The procedure reported in
[8] employs a decreasing step size to estimate the polynomial
coefficients. However, since the DOA parameter θ(t) and the
log-likelihood function change with time, a decreasing step
size may not capture the nonstationary feature of the under-
lying system over a long period. To overcome this problem,
we suggest a constant step size to be used in the algorithm.
It is noteworthy that both procedures are aimed at maximiz-
ing the expected concentrated likelihood function [13]. In-
troducing a linear polynomial model implies increasing the
dimension of the parameter space. With the additional de-
gree of freedom, the procedure designed for a linear polyno-
mial model should perform better than the general one.

In contrast to methods based on subspace tracking [14]
or two-dimensional beamforming [12], our approach can be
easily generalized to wideband cases including underwater
acoustic signals. Unlike the Kalman-type algorithms [15], the
recursive procedures considered here have a much simpler
implementation.

This paper is outlined as follows. We describe the sig-
nal model and the REM algorithm briefly in Sections 2
and 3. Section 4 presents two recursive procedures for lo-
calizing moving sources. Simulation results are discussed in
Section 5. We give concluding remarks in Section 6.

2. PROBLEM FORMULATION

Consider an array of N sensors receiving M far-field
waves from unknown time-varying directions θ(t) =
[θ1(t) · · · θM(t)]. The array output x(t) ∈ CN×1 at time in-
stant t is expressed as

x(t) = H
(
θ(t)

)
s(t) + u(t), t = 1, 2, . . . , (1)

where the steering matrix

H
(
θ(t)

) = [d(θ1(t)) · · ·d(θM(t))] ∈ CN×M (2)

consists of M steering vectors d(θm(t)) ∈ CN×1 (m =
1, . . . ,M). To avoid ambiguity, we assume that M < N . The
signal waveform s(t) = [s1(t) · · · sM(t)]T ∈ CM×1 is con-
sidered unknown and deterministic. (·)T denotes the trans-
pose of a vector. Furthermore, the noise process u(t) ∈ CN×1

is independent identically complex and normally distributed
with zero mean and covariance matrix νI , where ν represents
the unknown noise spectral parameter and I is the identity
matrix.

In the following, we assume that the number of sources
M is known. Standard procedures based on minimum de-
scription length (MDL) criteria [16] or multiple hypothesis
testing [7] can be used to determine M. The problem of in-
terest is to estimate the time-varying DOA parameter θ(t) re-
cursively from the observation x(t). We assume that a good
initial estimate θ0 is available at the beginning of the recur-
sion.

3. RECURSIVE PARAMETER ESTIMATION
USING INCOMPLETE DATA

The REM algorithm suggested by Titterington is a stochastic
approximation procedure for finding MLEs. As pointed out
in [10], there is a strong relationship between this procedure
and the EM algorithm [2]. Using Taylor expansion, Tittering-
ton showed that, approximately, REM maximizes EM’s aug-
mented log likelihood sequentially. The unknown parame-
ter is considered as constant in [10]. In the fixed parameter
case, a properly chosen decreasing step size is necessary to
ensure strong consistency and asymptotic normality of the
algorithm [10, 17].

Suppose x(1), x(2), . . . are independent observations,
each with underlying probability density function (pdf)
f (x;ϑ), where ϑ denotes an unknown constant parame-
ter. The augmented data associated with the EM algorithm
y(1), y(2), . . . is characterized by the pdf f (y;ϑ). Accord-
ing to [2], the augmented data y(t) is so specified that
M(y(t)) = x(t) is a many-to-one mapping. Let ϑt denote
the estimate after t observations. The following procedure is
aimed at finding the true parameter ϑ which may coincide
with the MLE in the asymptotic sense [18]:

ϑt+1 = ϑt + εtIEM
(
ϑt
)−1

γ
(
x(t),ϑt

)
, (3)

where εt is a decreasing step size and

IEM
(
ϑt
) = E

[−∇ϑ∇T
ϑ log f (y;ϑ)|x(t),ϑ]|ϑ=ϑt , (4)

γ
(
x(t),ϑt

) =∇ϑ log f
(
x(t);ϑ

)|ϑ=ϑt (5)

represent the augmented information matrix and gradient
vector, respectively. ∇ϑ is a column gradient operator with
respect to ϑ. We assume that both (4) and (5) exist. Under
mild conditions, the estimates generated by (3) are strongly
consistent, asymptotically normally distributed. In view of
the well-known singularities and multiple maxima that are
on likelihood surfaces, one could not of course expect con-
sistency irrespective of the starting point [10].

The augmented data y usually has a simpler structure
than the observed data x. Therefore, the augmented data
information matrix IEM(ϑ

t) is easier to compute and in-
vert than the observed data information matrix I(ϑt) =
E[−∇ϑ∇T

ϑ log f (x;ϑ)|x(t),ϑ]|ϑ=ϑt . Although REM does not
have the optimal convergence rate in the Cramér-Rao sense
as the following procedure [10]:

ϑt+1 = ϑt + εtI
(
ϑt
)−1

γ
(
x(t),ϑt

)
, (6)

it is much easier to implement than (6). Using IEM(ϑ
t)−1 as

the gain matrix is a tradeoff between the convergence rate
and computational cost.

When the parameter of interest varies with time, a de-
creasing step size such as εt = t−α, 1/2 < α ≤ 1, cannot cap-
ture the nonstationary feature of the underlying system. A
classical way to overcome this difficulty is to replace εt with
a constant step size ε. In general, a large step size reduces
the bias and increases the variance of the estimates [11].
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A small step size has opposite effects. Since the time-varying
parameter ϑ(t) may follow a complicated dynamics, an exact
investigation of the convergence behavior of the algorithm

ϑt+1 = ϑt + εIEM
(
ϑt
)−1

γ
(
x(t),ϑt

)
(7)

is only possible when certain assumptions are made on the
parameter model. More discussion about convergence prop-
erties of a stochastic approximation procedure in a nonsta-
tionary environment can be found in [11].

4. LOCALIZATIONOFMOVING SOURCES

The REM algorithm with constant step size (7) is applied
to estimate the time-varying DOA parameter θ(t). We start
with a general case in which θ(t) changes slowly with time
and then consider a linear polynomial model.

4.1. General case

From the signal model in Section 2, we know that the array
observation x(t) is complex and normally distributed with
the log likelihood function

log f
(
x(t);ϑ

)
= −

[
N logπ +N log ν

+
1
ν

(
x(t)−H

(
θ(t)

)
s(t)

)H(
x(t)−H

(
θ(t)

)
s(t)

)]
,

(8)

where ϑ = [θ(t)Ts(t)Tν]T and (·)H denotes the Hermitian
transpose.

According to (7), all elements in ϑ should be updated
simultaneously. Since we are mainly interested in the DOA
parameter θ(t) and since including {s(t), ν} in the recursion
will complicate the gain matrix IEM(ϑ

t)−1, the procedure (7)
is only applied to θ(t). The estimate for signal waveform and
noise level, denoted by st = [st1 st2 · · · stM]T and νt, respec-
tively, is updated by computing their MLEs once the current
DOA estimate is available. For simplicity, we use θ instead of
θ(t) in the following discussion.

Taking the first derivative on the right-hand side of (8)
with respect to θm, we obtain themth element of the gradient
vector γ(x(t),ϑt) [17]:

[
γ
(
x(t),ϑt

)]
m =

2
νt
Re
[(
x(t)−H

(
θt
)
st
)H(

d′
(
θtm
)
stm
)]
, (9)

where d′(θm) = ∂d(θm)/∂θm.
The augmented data y(t) is obtained by decomposing the

array output into its signal and noise parts. Formally it is ex-
pressed as

y(t) = [y1(t)T · · · ym(t)T · · · yM(t)T]T . (10)

The augmented data associated with themth signal

ym(t) = d
(
θm
)
sm(t) + um(t) (11)

(1) Calculate the gradient vector γ(x(t), θt) by (9) and
the matrix IEM(θ

t) by (14).
(2) Update DOA parameters by

θt+1 = θt + ε[IEM(θ
t)]−1γ(x(t), θt).

(3) Update the signal and noise parameters st , νt by
(15).

Algorithm 1: Recursive EM algorithm I (REM I) (arbitrary mo-
tion).

is complex and normally distributed with mean d(θm)sm(t)
and covariance matrix νmI with the constraint

∑M
m=1 νm =

ν. A convenient choice is νm = ν/M. The corresponding log
likelihood is given by

log f
(
y(t);ϑ

)

= −
M∑

m=1

[
N logπ +N log

(
ν

M

)

+
M

ν

(
ym(t)− d

(
θm
)
sm(t)

)H
× (ym(t)− d

(
θm
)
sm(t)

)]
.

(12)

Since the signals are decoupled through the augmentation
scheme (10), IEM(ϑ

t) is anM ×M diagonal matrix when we
only consider the DOA parameter θ. By definition (4), the
mth diagonal element of IEM(ϑ

t) is the conditional expecta-
tion of the second derivative of the augmented log likelihood

[
IEM

(
ϑt
)]

mm = E
[
− ∂2

∂θ2m
log f

(
y(t);ϑ

)∣∣x(t),ϑt], (13)

which is given by

[
IEM(ϑ

t)
]
mm =

2
νt
Re
[
− (d′′(θtm)stm)H(x(t)−H

(
θt
)
st
)

+M
∥∥d′(θtm)stm∥∥2],

(14)

where d′′(θm) = ∂2d(θm)/∂θ2m.
Once the estimate θt+1 is available, the signal and noise

parameters are obtained by computing their MLEs at current
θt+1 and x(t) as follows:

st+1 = H
(
θt+1

)#
x(t),

νt+1 = 1
N
tr
[
P
(
θt+1

)⊥
Ĉx(t)

]
,

(15)

where H(θt+1)# is the generalized left inverse of the matrix
H(θt+1), P(θt+1)⊥ = I − P(θt+1) is the orthogonal comple-
ment of the projection matrix P(θt+1) = H(θt+1)H(θt+1)#,
and Ĉx(t) = x(t)x(t)H .

Given a constant step size ε, the number of sources M,
and the current estimate θt, the (t + 1)st recursion of the al-
gorithm proceeds as shown in Algorithm 1.
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4.2. Linear polynomial model

We consider moving sources described by the linear polyno-
mial model

θ = θ0 + tθ1, (16)

where θ0 = [θ01, . . . , θ0M]T and θ1 = [θ11, . . . , θ1M]T . The
linear polynomial (16) can be seen as a truncated Taylor ex-
pansion which gives a good description for the source mo-
tion in a small observation interval [12].

The REM algorithm is applied to estimate θ0 and θ1. For
notational simplicity, we define the extended DOA parame-
ter as Θ = [ΘT

1 · · ·ΘT
m · · ·ΘT

M]
T , where Θm = [θ0m, θ1m]T .

Similarly to the procedure presented in Section 4.1, REM is
only applied to update the DOA parameter Θ rather than
ϑ = [ΘTs(t)Tν]T .

Based on this approach, the 2mth and (2m+1)st element
of the gradient vector γ(x(t),ϑt) are given by

∂

∂θ0m
log f

(
x(t);ϑ

)|ϑ=ϑt
= 2

νt
Re
[(
x(t)−H

(
Θt)st)H(d′(Θt

m

)
stm
)]
,

∂

∂θ1m
log f

(
x(t);ϑ

)|ϑ=ϑt
= 2t

νt
Re
[(
x(t)−H

(
Θt)st)H(d′(Θt

m

)
stm
)]
,

(17)

respectively, where d′(Θt
m) = ∂d(θm)/∂θm|θm=θt0m+tθt1m . Note

that θ is calculated at the current estimate Θt according to
the linear model (16).

Because each source is described by two unknown pa-
rameters, the augmented data information matrix becomes
block diagonal. Unfortunately, this matrix is singular under
current parameterization. To avoid singularity and simplify
the recursion, rather than using this block diagonal matrix
in the recursion directly, we consider an alternative matrix
ĨEM(ϑ

t) which is the diagonal part of IEM(ϑ
t).

Let d′′(Θt
m) = ∂2d(θm)/∂θ2m|θm=θt0m+tθt1m . According to the

augmentation scheme specified above, the 2mth and (2m +
1)st diagonal components of ĨEM(Θ

t) are given by

2
νt
Re
[(− d′′

(
Θt

m

)
stm
)H(

x(t)−H
(
Θt)stm)

+M
∥∥d′(Θt

m

)
stm
∥∥2],

2t2

νt
Re
[(− d′′

(
Θt

m

)
stm
)H(

x(t)−H
(
Θt)stm)

+M
∥∥d′(Θt

m

)
stm
∥∥2],

(18)

respectively.
Similarly to the general case, the signal and noise param-

eters are updated by (15) once the estimate Θt+1 is available.
The parameter θt+1 in (15) is replaced by Θt+1.

(1) Calculate the gradient vector γ(x(t),Θt) by (17) and
the matrix ĨEM(Θ

t) by (18).

(2) Update DOA parameters by
Θt+1 = Θt + ε[ĨEM(Θ

t)]−1γ(x(t),Θt).

(3) Update the signal and noise parameters st , νt by (15)
with θt replaced by Θt .

Algorithm 2: Recursive EM algorithm II (REM II) (linear polyno-
mial model).

Given the step size ε, the number of sources M, and the
current estimate Θt , the (t + 1)st recursion of the algorithm
proceeds as shown in Algorithm 2.

For simplicity, the REM for the general case and the REM
for the linear polynomial model are referred to as “REM I”
and “REM II,” respectively.

From (9), (14), and (15), the computational complex-
ity of REM I lies approximately between O(MN + MN2)
and O(MN + N3). The dominant term MN2 (or N3)
is associated with st+1 given by (15) which is a solu-
tion to a least square (LS) problem. Different LS algo-
rithms yield different computational loads [19]. Due to
the increased number of unknowns, REM II requires twice
as many computations as REM I in computing the gra-
dient vector and augmented information matrix. Clearly,
REM II is computationally more efficient than the local-
polynomial-approximation (LPA) based beamforming tech-
nique [12] whose computational complexity is given by
O(NTLP) where T represents the number of snapshots, L
denotes the number of points in the angular search domain,
and P denotes the number of angular velocity search do-
main.

It was pointed out in [13] that REM for constant DOA es-
timation is indeed a recursive procedure for finding the max-
imum of the expected concentrated likelihood function

L(θ) = −tr log [P(θ)Cx(t)
]
, (19)

where Cx(t) = E[x(t)x(t)H]. The constant step size con-
sidered in REM I captures the time-varying character of
the likelihood function. Similarly, REM II is aimed at find-
ing the maximum of L(θ). Using a different parameteri-
zation, such as a linear polynomial model implies increas-
ing the dimension of the parameter space. With the addi-
tional degree of freedom, REM II is expected to have a bet-
ter tracking ability. Later in Section 5 we will show that in
critical situations where two source directions cross with
each other, REM II provides more accurate estimates than
REM I.

Choosing a proper step size plays an important role in the
algorithms’ tracking ability. The optimal step size depends
on the dynamics of the true parameters, for instance, rate of
change. Interested readers can find general guidelines in [11]
and an adaptive procedure designed for REM with a decreas-
ing step size in [20].
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Figure 1: True trajectory (solid lines) and estimated trajectory
(nonsolid lines) by REM I for the narrowband case. θ0 =
[10◦, 60◦, 66◦], θ1 = [0.6◦,−1.0◦, 0.4◦]. SNR = 20dB.

4.3. Extension to broadband signals

The algorithms presented previously are derived under the
narrowband signal assumption. Extension to the broad-
band case is straightforward. From the asymptotic theory of
Fourier transform [21], we know that each frequency bin is
asymptotically independent of each other [22]. The log likeli-
hood function associated with the broadband signal is a sum
of the log likelihoods of individual frequency bins. Corre-
spondingly, the gradient vector and augmented information
matrix can be easily obtained by adding up the gradient vec-
tors and augmented data information matrices of relevant
frequency bins. Similarly to the narrowband case, the signal
and noise parameters at each frequency are updated by cal-
culating their MLEs once the current DOA estimate is avail-
able.

5. SIMULATION

The proposed algorithms are tested by numerical experi-
ments. In the first part, we consider REM algorithms’ appli-
cation in narrowband and broadband cases. In the second
part, we compare REM II with the LPA-based beamforming
technique [12].

5.1. Recursive EM algorithms I and II

The narrowband signals generated by three sources of equal
power are received by a uniformly linear array of 15 sensors
with interelement spacings of half a wavelength. The signal-
to-noise ratio (SNR), defined as 10 log(sm(t)2/ν),m = 1, 2, 3,
is kept at 10, 20 dB. The motion of the moving sources is de-
scribed by the linear polynomial model (16). Three different
parameter sets {θ0, θ1} are assumed in the experiments. Each
experiment performs 200 trials.

In the first experiment, we consider relatively fast mov-
ing sources. The true parameters are given by θ0 =
[10◦, 60◦, 66◦], θ1 = [0.6◦,−1.0◦, 0.4◦], where θ1 is mea-
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Figure 2: True trajectory (solid lines) and estimated trajectory
(nonsolid lines) by REM II for the narrowband case. SNR = 20dB.

sured by degrees per time unit. In order to get a good insight
into the tracking behavior, the same initial values are used
in all trials. We applied LPA-based beamforming to 20 snap-
shots to obtain the initial estimates θ00 = [10.5◦, 59.5◦, 68.5◦],
θ01 = [0.58◦,−0.99◦, 0.38◦]. The initial estimate for REM I is
given by θ00. Both algorithms use a constant step size ε = 0.6.
Figures 1 and 2 present the true values of θ and an exam-
ple of estimated trajectories. As shown in both figures, two
source directions cross with each other at t = 32. Obvi-
ously, the recursive procedure designed for the most gen-
eral case cannot follow fast moving sources at all. In con-
trast, the estimated trajectory obtained by REM II is very
close to the true one. Figures 3 and 4 show the root mean
square errors (RMSEs) of the DOA estimates, defined as√
‖θt − θ‖2 =

√∑M
m=1(θtm − θm)2, averaged over 200 trials.

Since REM I fails to track the moving sources, the corre-
sponding RMSE grows with increasing time. On the other
hand, the RMSE associated with REM II decreases slightly
at the beginning of the recursion and then remains almost
constant. Comparing Figures 3 and 4, one can observe that
SNR = 20dB has a slightly lower RMSE than SNR =
10dB.

The second experiment involves three slowly moving
sources. The true parameter values are given by θ0 =
[30◦, 50◦, 62◦], θ1 = [0.06◦,−0.1◦, 0.05◦]. Note that the an-
gular velocity θ1 is approximately 1/10 of that considered in
the previous experiment. We applied the ML method to ob-
tain the initial estimates θ00 = [30.1◦, 50.8◦, 60.9◦]. Because
the angular velocity is very small compared to that in the
previous experiment, we take θ01 = [0◦, 0◦, 0◦] as the initial
value for θ1. The initial estimate for REM I is given by θ00.
Both algorithms use a constant step size ε = 0.6. Figures 5
and 6 present the true and estimated trajectories obtained
by REM I and REM II. Similarly to the first experiment, two
source directions cross with each other at t = 126. The esti-
mated trajectory by REM I is close to the true one when no
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Figure 3: RMSE of θ versus time for the narrowband case. SNR
= 20dB.
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Figure 4: RMSE of θ versus time for the narrowband case. SNR
= 10dB.

crossing happens. Between t = 100 and t = 230, where two
source directions cross with each other, the estimated trajec-
tories associated with the first two sources do not get close to
each other. Instead, they just depart in the vicinity of t = 126.
For the same scenario, REM II provides a more accurate es-
timate. Figure 6 shows that the crossing point causes a larger
deviation from the true trajectory. Due to a higher sensitivity
to the variation of angular velocity at the crossing point, the
estimated trajectory in Figure 6 is slightly worse than that in
Figure 2. Comparison of Figures 7 and 8 with Figures 3 and
4 shows an overall lower RMSE in this scenario. Although
REM I provides more reliable estimates than in the first ex-
periment, REM II still outperforms REM I.
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Figure 5: True trajectory (solid lines) and estimated trajectory
(nonsolid lines) by REM I for the narrowband case. θ0 =
[30◦, 50◦, 62◦], θ1 = [0.06◦,−0.1◦, 0.05◦]. SNR = 20dB.
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Figure 6: True trajectory (solid lines) and estimated trajectory
(nonsolid lines) by REM II for the narrowband case. SNR = 20dB.

In the third experiment, three sources move slowly
with different speeds but do not cross with each other.
The true parameters are given by θ0 = [10◦, 30◦, 62◦],
θ1 = [0.08◦, 0.1◦, 0.06◦]. The initial estimates are θ00 =
[10.04◦, 30.04◦, 62.05◦], θ01 = [0◦, 0◦, 0◦]. We use a constant
step size ε = 0.6. Both algorithms have good tracking abil-
ity. Figures 9 and 10 show that RMSE is the lowest among
all three scenarios. REM II has a better performance than
REM I. While REM II has a better performance at higher
SNR, REM I seems to be less sensitive to SNRs in all three
scenarios.

In addition to the narrowband signals, we also applied
REM I and REM II to broadband signals with 3 frequency
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Figure 7: RMSE of θ versus time for the narrowband case. SNR
= 20dB.
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Figure 8: RMSE of θ versus time for the narrowband case. SNR
= 10dB.

bins. The scenario similar to the second experiment leads to
the results presented in Figures 11 and 12. The estimates be-
have similarly to the narrowband case. Comparison of RM-
SEs shows that using more frequency bins leads to higher ac-
curacy.

5.2. Comparisonwith LPA beamforming

We compare REM II with the LPA-based beamforming ap-
proach suggested by Katkovnik and Gershman [12]. Both
algorithms assume the motion model (16). In the first ex-
periment, the narrowband signals are generated by the fol-
lowing parameter sets θ0 = [10◦, 60◦], θ1 = [0.6◦,−1.0◦],
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Figure 9: RMSE of θ versus time for the narrowband case. SNR
= 20dB. θ0 = [10◦, 30◦, 62◦], θ1 = [0.08◦, 0.1◦, 0.06◦].
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Figure 10: RMSE of θ versus time for the narrowband case. SNR
= 10dB.

SNR= 0, 10 dB. In the second experiment, we consider mov-
ing sources with lower angular velocities θ0 = [30◦, 50◦],
θ1 = [0.06◦,−0.1◦]. A sliding window of 25 snapshots is used
in the LPA beamforming. The REM II is initialized by the
LPA beamforming in the first scenario and ML method in
the second one. To ensure the same data length in each time
interval, we use additional (W−1) samples in the LPA beam-
forming processing.

The estimated trajectories presented in Figures 13 and 14
are very close to the true ones. The RMSEs of θ0 and θ1 cor-
responding to the first source are plotted in Figures 15 and
16. Using the initial value provided by LPA beamforming,
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Figure 11: RMSE of θ versus time for the broadband case. SNR
= 20dB. θ0 = [30◦, 50◦, 62◦], θ1 = [0.06◦,−0.1◦, 0.05◦]. Number of
frequency bins = 3.
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Figure 12: RMSE of θ versus time for the broadband case. SNR
= 10dB.

RMSE associated with REM II changes slowly over time.
While estimates of θ0 remain constant, the estimates of θ1
become more accurate with increasing recursions. Also, we
can observe that while LPA beamforming provides an over-
all better θ0 estimates and better angular velocity estimates
at beginning of the recursion, REM II improves θ1 estimates
with increasing time and has less fluctuations.

Compared with the Cramér-Rao bounds (CRBs) [23],
one realizes that an REM II is certainly not an efficient es-
timator. However, the ML approach suggested in [23], whose
estimation accuracy is close to CRB, is a batch processing and
requires a complicated multidimensional search procedure.
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Figure 13: True trajectory (solid lines) and estimated trajec-
tory (nonsolid lines) by LPA beamforming. SNR = 10dB. θ0 =
[10◦, 60◦], θ1 = [0.6◦,−1.0◦].
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Figure 14: True trajectory (solid lines) and estimated trajectory
(nonsolid lines) by REM II. SNR = 10dB.

In the second experiment, REM II provides much more
accurate estimates than LPA beamforming. Figure 17 shows
that LPA beamforming even fails to follow the moving
sources. We can observe in Figure 18 that REM II has lower
RMSE in both θ0 and θ1 estimation. Consequently, as shown
in Figures 19 and 20 the resulting DOA estimates are much
better than LPA beamforming. In both experiments, the
computational time needed for LPA beamforming is about
800 times as high as that required by REM II due to the two-
dimensional search procedure.

We conclude that REM I is suitable for tracking slowly
time-varying DOA parameters, REM II performs well for
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Figure 15: (a) RMSE of θ0 corresponding to the first source versus
time. (b) RMSE of θ1 versus time. SNR = 10 dB.

both slowly and fast moving sources. Both procedures gener-
ate accurate estimates when there is no crossing point. When
two source directions coincide with each other, the steering
matrix H(θ) becomes rank deficient. The signal waveform
s(t) cannot be determined properly. Consequently the DOA
parameter cannot be estimated accurately. In this case, regu-
larization is needed [23]. Since REM II incorporates a linear
polynomial model, it has a better tracking ability than REM I
when this critical situation occurs. Compared to LPA beam-
forming, our method has a clear computational advantage.
It provides comparable results with LPA beamforming in the
fast moving sources case and outperforms LPA beamforming
in the slow moving source case. In addition, REM is applica-
ble to both narrowband and broadband signals.

6. CONCLUSION

We addressed the problem of tracking multiple moving
sources. Two recursive procedures are proposed to estimate
the time-varying DOA parameter. We applied the recursive
EM algorithm to a general case in which the motion of the
sources is arbitrary and a specific case in which the motion
of sources is described by a linear polynomial model. Be-
cause of the simple structure of the gainmatrix, the suggested
procedures are easy to implement. Furthermore, extension
of our approaches to broadband signals is straightforward.
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Figure 16: (a) RMSE of θ0 corresponding to the first source versus
time. (b) RMSE of θ1 versus time. SNR = 0 dB.
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Figure 17: True trajectory (solid lines) and estimated trajectory
(nonsolid lines) by LPA beamforming. θ0 = [30◦, 50◦], θ1 =
[0.06◦,−0.1◦]. SNR = 10 dB.

Numerical experiments showed that our approaches provide
excellent results in a slowly changing environment. When
the DOA parameter changes fast or two source directions
cross with each other, the procedure derived for a linear



Tracking of Moving Sources Using Recursive EM Algorithm 59

102

101

100

10−1

10−2

R
M
SE

of
θ
0

15 20 25 30 35 40 45 50 55 60

Time index

REM II
LPA beamforming
CRB

(a)

100

10−1

10−2

10−3

R
M
SE

of
θ
1

15 20 25 30 35 40 45 50 55 60

Time index

REM II
LPA beamforming
CRB

(b)

Figure 18: (a) RMSE of θ0 corresponding to the first source versus
time. (b) RMSE of θ1 versus time. SNR = 10 dB.

polynomial model has a better performance than the gen-
eral procedure. Important issues such as step size design and
convergence analysis are still under investigation.
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