
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 13438, Pages 1–17
DOI 10.1155/ASP/2006/13438

Classification-Based Spatial Error
Concealment for Visual Communications

Meng Chen, Yefeng Zheng, andMinWu

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

Received 1 March 2005; Revised 11 August 2005; Accepted 22 August 2005

In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual con-
tent. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different
nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-
art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively
selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems
should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block
concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimen-
tal results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment
approaches outperform the conventional approaches.
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1. INTRODUCTION

Due to the various kinds of distortion and failures, part of
a compressed image or video can be damaged or lost dur-
ing transmission or storage. The widely used block-based vi-
sual coding systems have prompted a need of block-based
error concealment on the decoder side. A number of con-
cealment approaches have been proposed in recent years [1–
8]. The smoothness and continuity properties in spatial or
frequency domain, the repeating patterns, and other proper-
ties of visual data have been exploited to recover corrupted
blocks from the survived surroundings. Through a bench-
marking effort on the existing error concealment approaches,
we have observed that different approaches are suitable for
different image characteristics of a corrupted block and its
surroundings, and none of the existing approaches is an all-
time champion. This motivates us to explore a classification-
based concealment approach that can combine the better
performance of two state-of-the-art approaches in the litera-
ture. The classification-based approach also helps us achieve
a better tradeoff between the concealment quality and the
computation complexity on the receiver side. This is because
some state-of-the-art approaches have rather high compu-
tation demand, and classification allows the computation
power to be spentmore strategically by performing expensive
computations only when they are likely to offer a substantial
gain in the concealment quality.

The classification in the proposed new framework of er-
ror concealment can be done either on the receiver side or on
the sender side. The receiver-side classification uses the sur-
vived surrounding pixels to determine which candidate con-
cealment approach would give better concealment quality for
each corrupted block. As will be seen in this paper, the pro-
posed receiver-side classification approach does not require
side information and the overall concealment quality can
outperform each candidate alone. To provide more proactive
protection and further exploit the knowledge from the orig-
inal, uncorrupted image, a few recent works in the literature
[9–11] have jointly considered the design of sender and re-
ceiver systems to facilitate error concealment.We explore this
sender-driven perspective for our classification-based con-
cealment framework by obtaining a small amount of classi-
fication data on the sender side. As the classification results
need to be delivered as side information from the sender to
the receiver, we examine and compare two approaches for de-
livering the side information, namely, by attaching as part of
the file header and by embedding in the image signal.

The paper is organized as follows. Section 2 provides a
brief description of the evaluated algorithms and presents
benchmarking results on a collection of natural and artifi-
cial images. Since the performance on various images shows
the advantages and disadvantages of different error conceal-
ment techniques, a classification scheme on the receiver side
is proposed in Section 3 to take advantages of the sweet spots



2 EURASIP Journal on Applied Signal Processing

of existing techniques. The sender-side classification-based
error concealment is proposed in Section 4 to further im-
prove the concealment quality by supplying the ground truth
of concealment technique selection to a receiver. We com-
pare the concealment performance, computation complex-
ity, and bandwidth usage of the three proposed schemes as
well as their suitable application scenarios in Section 5, and
conclude the paper in Section 6.

2. MOTIVATION

2.1. Prior work

Early explorations on spatial domain image concealment
were reviewed in [1]. Among them, the multidirectional
interpolation (MDI) approach performs pixel-domain in-
terpolation along eight possible edge directions and con-
siders the cases of both single edge and multiple edges
[2]; the projection-onto-convex-sets (POCS) approach con-
strains the feasible solution set based on such prior informa-
tion as smoothness and neighborhood consistency [3]; and
the maximally smooth recovery (MSR) method makes use of
the smoothness property of visual signals and formulates the
concealment as a constrained energy minimization problem
[4].

Three recent works in [5–7] have demonstrated the per-
formance improvement on classic images such as “Lena”
or “Barbara” over the earlier approaches. The geometric-
structure-based (GSB) error concealment by Zeng and Liu
[5] is a directional interpolation scheme, which uses the lo-
cal geometric information extracted from the surroundings.
Two layers of pixels surrounding a corrupted block are con-
verted to a binary pattern to reveal the local geometric struc-
ture and to classify the block as flat or nonflat. For flat blocks,
the projective interpolation technique of [12] is applied. For
nonflat blocks, the edges inside the lost block are estimated
by pairing significant transition points from the aforemen-
tioned binary pattern, and the lost pixels are recovered by
bilinear interpolation along the edge directions.

The orientation adaptive sequential interpolation (OASI)
scheme by Li and Orchard [6] employs a linear regression
model. It first estimates the local characteristics from a neigh-
borhood of about four layers of uncorrupted pixels, and then
uses the model parameters obtained to estimate each miss-
ing pixel from its surrounding pixels. More specifically, the
interpolation can be characterized by S = ∑N

k=1 αksk, where
S is an estimate of the missing pixel and sk’s are N neigh-
boring pixels. The interpolation coefficients αk form a vector
α, which can be determined using the classical least-square
method from an M-pixel neighborhood Mn with M > N ,
that is, α = (CTC)−1Cy. Here, y is anM×1 vector represent-
ing M pixels in the training area Mn; C is an M × N matrix,
and each of its M rows consists of N neighbors around the
corresponding pixel in y. When CTC is singular, αk is set to
1/N .

The long range correlation (LRC) scheme by Zhang
and Wang [7] exploits the repeating patterns in an image.
It extracts a ring window surrounding the corrupted area,

Table 1: The names and the references for the benchmarked ap-
proaches.

Acronym Name Reference

MDI Multidirectional interpolation [2]

POCS Projection-onto-convex-sets [3]

MSR Maximally smooth recovery [4]

GSB Geometric-structure-based [5]

OASI
Orientation adaptive

sequential interpolation
[6]

LRC Long range correlation [7]

searches for an area in the image that best matches the pat-
tern of this ring in a mean-squared error sense, and replaces
the corrupted area with the pattern inside the best match-
ing ring. LRC is also exploited in the recent image inpaint-
ing work by Bertalmio et al. [8], where the basic texture syn-
thesis procedure for concealing the lost area is similar to the
LRC concealment algorithm. By simultaneously filling in the
structure and texture information of missing areas, the in-
painting technique demonstrates excellent subjective quality
when the missing area is relatively small compared with the
size of the whole image. It is worth noticing that the image
inpainting technique focuses more on the overall subjective
quality and is not designed to optimize an objective error
measure of the concealment quality (such as MSE or PSNR)
on many small blocks.

2.2. Performance benchmarking

If an image is compressed by a block-based codec and trans-
mitted over an error-prone channel, the error impairments
are likely to be in the block domain. We focus on iso-
lated block concealment in this work because block-based
codecs are dominant for image or video transmission and
the interleaving techniques can be employed in packetiza-
tion to significantly reduce consecutive block loss [10]. Since
various error concealment techniques employ quite differ-
ent “philosophies,” it was not conclusive from the litera-
ture which one is the best. We attempt to address this issue
through a benchmarking effort, which also sheds light on the
design direction of a new concealment framework that can
outperform the existing approaches.

We use a collection of fifteen 8-bit gray-scaled images
with different characteristics to evaluate the performance of
the six approaches reviewed above, namely, MDI, POCS,
MSR, GSB, OASI, and LRC. The names and the correspond-
ing references for these approaches are listed in Table 1. The
collection of the 15 images is shown in the upper part of
Figure 11. They can be divided into roughly four categories
according to the visual content, namely, portraits, artificial
images, natural scenery images, and rich texture images. We
test the concealment on a typical loss pattern as shown in
Figure 1, where a total of 25% blocks are lost in a checker-
board fashion and the block size is 8 × 8. This damage pat-
tern is used in all following experiments if not specified
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Table 2: Comparison of algorithms in concealment quality PSNR (dB). For each image, the scheme achieving the best performance is
highlighted in bold font. The Better-2 column lists the concealment quality of the recovered images in which each concealed block is the
better one selected between GSB and OASI.

Type Name Size MDI POCS MSR LRC GSB OASI Better-2

Bassharbor 512× 512 29.47 28.12 28.83 27.84 30.69 30.37 31.46

Blueflower 512× 512 27.88 27.55 27.09 26.77 29.68 29.85 31.04

House 512× 512 28.78 26.08 27.00 26.86 29.47 30.00 30.98

Natural NewYork 512× 512 24.25 21.00 23.66 22.80 24.13 24.52 25.29

Operahouse 512× 512 30.91 28.88 28.53 29.08 30.88 31.30 32.38

Papermachine 512× 512 29.77 28.46 25.80 31.78 33.85 33.75 36.12

Watch 512× 512 31.40 29.59 29.41 31.35 33.77 33.99 35.52

Portrait

Lena 512× 512 32.28 29.49 29.20 30.64 34.43 35.12 36.08

Barbara 512× 512 27.41 23.35 27.14 29.78 29.26 30.79 31.80

Kid 480× 480 31.86 29.62 29.57 30.21 33.47 33.45 34.98

Man 512× 512 27.59 25.41 26.07 25.60 28.77 29.13 30.12

Circletrain 512× 512 41.62 34.16 32.11 46.51 48.33 34.90 48.33

Artificial Tulip 512× 512 29.74 28.05 26.71 27.61 33.22 33.47 35.13

Waterfall 512× 512 27.92 26.36 26.52 26.18 28.79 29.12 30.20

Texture Bear 384× 384 30.05 29.55 27.99 27.82 32.33 33.30 34.38

Figure 1: A checkerboard pattern with 25% block loss used in the
concealment experiments.

otherwise. We examine the quality of recovered images in
terms of PSNR and the computation complexity in terms of
the concealment speed, and summarize the results in Tables
2 and 3, respectively. All algorithms have been implemented
in C/C++ with a moderate amount of optimization and the
same speed-up settings, and tested on a 1.20GHz Pentium-4
PC with 256MB RAM.

We can see fromTable 2 that among the three recent tech-
niques reviewed earlier, the LRC approach does not outper-
form the GSB and OASI approaches on most images. One
reason is that the checkerboard error pattern leaves a very
limited number of the candidate matching windows that do
not suffer from the loss. The LRC approach does not per-
form well on most natural scenery images either, since there
are few repeating patterns. On the other hand, the GSB and

Table 3: Comparison of algorithms in speed (seconds) for conceal-
ing the “Lena” image using a 1.20GHz Pentium-4 PC with 256MB
RAM.

MDI POCS MSR LRC GSB OASI

Lena 3.03 219.58 0.59 98.45 0.56 7.12

OASI approaches significantly outperform other approaches
on these benchmark images, although neither of the two
gives the best performance for all images. The lack of all-time
champion suggests that the image characteristics vary signif-
icantly from one to another, so a single algorithm based on
an assumption about one aspect of the characteristics is not
suitable for all images. This motivates us to go one step fur-
ther and assemble a recovered image in which each concealed
block is the better one selected between the GSB and OASI
concealment results. As shown in the last column (“Better-
2”) of Table 2, this assembled image gives a much higher
overall concealment quality than using GSB or OASI alone.

In terms of computation complexity measured in con-
cealment speed, Table 3 shows that MSR and GSB are the
fastest. MDI and OASI are about an order of magnitude
slower, and LRC and POCS are by far the slowest algorithms.
Jointly considering the concealment quality and speed, we
see that although GSB andOASI both have high performance
on concealment quality, OASI has relatively high computa-
tion complexity. If we could choose the OASI method to con-
ceal corrupted blocks only when it provides significant per-
formance gain, we would achieve both higher concealment
quality and relatively lower computation complexity. This
motivates us to research on an adaptive scheme for select-
ing error concealment methods to combine the advantages
of these two top performing schemes.
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Figure 2: Illustration of better performing concealment scheme be-
tween GSB and OASI on the “Lena” image: (white blocks) OASI
performs better; (black blocks) GSB performs better; (gray blocks)
GSB and OASI do not have significant performance difference.

2.3. Classification-based concealment

For a receiver to pick the better one between the two state-of-
the-art techniques correctly is a nontrivial task. This is be-
cause a receiver does not have the original undamaged im-
age to compare with and determine which scheme gives bet-
ter performance. Available to a concealment system are only
the survived pixels that surround each corrupted block. If we
could establish the connection between the image character-
istics of the survived surrounding pixels and the correct se-
lection between GSB and OASI using a training set, we could
make a smart decision on which scheme to choose for a new
damaged image.

To help exploring a rule in classifying the survived sur-
rounding pixels, we take a close look at the “Better-2” test
from Table 2. For each block, we quantify the error conceal-
ment performance of GSB and OASI by

P1 =
K∑

i=1

∣
∣C1i −Oi

∣
∣,

P2 =
K∑

i=1

∣
∣C2i −Oi

∣
∣,

(1)

where K is the number of pixels in the block and is 64 in
our case; Oi is the original value of the ith pixel in the block;
C1i and C2i are the corresponding recovered pixel values
by GSB and OASI, respectively. We visualize in Figure 2 the
scheme selection for each lost block of the “Lena” image. The
gray blocks indicate that GSB and OASI do not have signifi-
cant performance difference (i.e., |P1− P2| < 96); the white
blocks indicate that P2 is much smaller for the corresponding
blocks; and the black blocks indicate that P1 is much smaller.
From Figure 2, we do not observe any obvious trend in de-
termining where GSB and OASI would perform better: the
black blocks appear in both edges and some texture areas and
so do the white blocks.

We further explore if one could deduce some simple rules
from the spatial characteristics of survived pixels surround-
ing the lost blocks. We define a smoothness feature from

(a) (b)

Figure 3: Feature extraction from survived surrounding pixels: (a)
grouping of survived pixels into small 2× 2 segments, (b) scanning
order for constructing a feature vector.

four layers of survived surrounding pixels as follows. First,
we group the pixels into a total of 48 segments, and each seg-
ment has 2× 2 pixels, as shown in Figure 3(a). For each seg-
ment, we generate a binary value characterizing smoothness:
if the range of the pixel intensity in the segment exceeds a
predetermined threshold of 15, we use “1” to indicate it as a
nonflat segment; otherwise, we use “0.” Next, the binary val-
ues from different segments are scanned according to the or-
der in Figure 3(b) to form a feature vector, which is a binary
sequence. We count the total number of 1s in the feature vec-
tor (i.e., the number of nonflat segments) for each of the 15
images used in our benchmark test. For each possible count
of nonflat segments, we also compute the ratio of the num-
ber of blocks where OASI performs better versus those where
GSB performs better. The relation is visualized in Figure 4,
where we can see a general trend that GSB is likely to perform
better on smooth blocks, and OASI tends to be better for tex-
ture blocks. But the curve is not monotonic and the ratios
do not deviate much from one, suggesting that we cannot re-
liably determine the better performing concealment scheme
just based on the nonflat segment count of the surviving sur-
roundings.

The difficulty for a receiver in arriving at a simple rule
to determine the better performing scheme can be tackled
in two ways. If a decision is to be made solely on the re-
ceiver side, there is a need of employing advanced classi-
fication tools to group all possible surrounding pixel pat-
terns into two classes, one class favoring the use of OASI
for concealment and the other class favoring GSB. Alterna-
tively, we can avoid the difficult task of receiver-side classi-
fication by determining the classification information on the
sender side where the uncorrupted image is available for pro-
viding ground truth, and by sending such extra information
to the receiver through attachment or data embedding tech-
niques. In the next two sections, we will present the details
of the proposed receiver-side and sender-side schemes, re-
spectively. While we use OASI and GSB as building blocks to
investigate our proposed framework of classification-based
concealment, the new framework is general so that it can
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Figure 4: Examining the feasibility of a simple smoothness measure
for distinguishing the better performing scheme: the x-axis repre-
sents the number of nonflat segments in survived surroundings and
the y-axis represents the ratio of the block counts where OASI per-
forms better to those where GSB is better.

be easily extended to incorporate other appropriate conceal-
ment schemes and perceptual criteria.

3. RECEIVER-SIDE ADAPTIVE BLOCK CONCEALMENT
USING SVM CLASSIFICATION

3.1. Classification based on support vectormachine

We formulate a receiver’s choice of concealment scheme for
each block as a supervised classification problem. Each error
concealment method is considered as a class, and a feature
vector is extracted from the pixels that surround an image
block. In the training stage, we collect a number of feature
vectors from training images, and label every feature vector xi
with a ground truth class corresponding to the best conceal-
ment method for the associated block. We train the classifier
using these feature-class pairs.

We adopt support vector machine (SVM) classifiers, as
they often exhibit good generalization performance [13, 14]
with theoretical insights of structural risk minimization [15,
16]. The design of an SVM classifier can be boiled down to
a convex quadratic programming problem with global opti-
mal solutions in training. For our two-class pattern classifi-
cation problem that decides between the GSB and OASI con-
cealment approaches, two kernel functions have been used to
search for the optimal classification solution, namely, a linear
kernel function and a radial kernel function.

3.1.1. Linear SVM

The linear SVM determines a linear discriminant function (a
hyperplane) that gives the maximum separation margin be-
tween the two classes of training data [15]. The optimization

problem can be formulated as

minimize f (w, b) = ‖w‖2,
subject to yi

(
xTi w + b

)− 1 ≥ 0,
(2)

where xi is the ith training feature vector and yi ∈ {−1, 1}
represents the corresponding class label. The separating hy-
perplane is parameterized by a vector w and a scalar b,
where w is the norm of the separating hyperplane. The La-
grangian multiplier formulation for this constrained opti-
mization problem is

Lp = 1
2
‖w‖2 −

l∑

i=1
αi yi

(
xTi w + b

)
+

l∑

i=1
αi, (3)

where {αi} is a set of Lagrangian multipliers. Now, the prob-
lem is reduced to minimizing Lp with respect to w and b
under the following restrictions: (i) the derivatives of Lp

with respect to all αi’s vanish and (ii) αi ≥ 0. For this con-
vex quadratic programming problem, it is well established
that the solution can be obtained through the Karush-Kuhn-
Tucker (KKT) conditions or through an easier dual problem
[15].

When the training data of the two classes is linearly sep-
arable, the linear kernel SVM approach gives a classifier in
the form of a hyperplane separating the two classes of train-
ing data with the largest margin. If the training data is not
linearly separable, a positive slack variable ξi (ξi ≥ 0) can be
introduced to alleviate the sensitivity of noisy training pat-
terns [17]:

yi
(
xTi w + b

)− 1 + ξi ≥ 0, (4)

Lp= 1
2
‖w‖2+C

l∑

i=1
ξi−

l∑

i=1
αi
[
yi
(
xTi w+b

)−1+ξi
]−

l∑

i=1
uiξi,

(5)

where C is a parameter adjusting the relative penalty given to
the classification errors on the training data.

To use a trained classifier to classify a new test sample z,
we evaluate the sign of the following function:

f (z) = wTz + b =
Ns∑

i=1
αi yixTi z + b. (6)

Here, w is explicitly determined by a set of Ns support vec-
tors, which are such training vectors that lie closest to the hy-
perplane separating the two classes [15]. The sign reflects on
which side of the decision boundary that z lies and thus de-
termines the classification result.

3.1.2. Handling nonlinearity

The feature vector as an input to a classifier for the conceal-
ment problem can be the pixel pattern surrounding a lost
block, or some statistics generated from the pattern (such as
the binary feature vector defined in Section 2). The training
features for each class may have complicated distributions,
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Figure 5: Handling the nonlinearity by a divide-and-conquer technique that trains a set of classifiers, one for each subset of the feature
space.

and in general are far from separable by a linear discrimina-
tion function in the original vector space. The nonseparabil-
ity by a linear discrimination function can be handled in two
ways. One is to extend the linear SVM with the kernel tech-
nique and the other is to divide the vector space into groups
and find one classifier for each group.

Nonlinear classification functions [15] can be built by
replacing the dot product term 〈xi, x j〉 = xTi x j in the lin-
ear kernel SVM by an appropriate kernel function K(xi, x j).
This is equivalent to transforming feature vectors to a higher-
dimensional space H through a mapping Φ : Rd → H , and
then finding a linear SVM classifier in this new space with
K(xi, x j) = 〈Φ(xi),Φ(x j)〉. The radial basis kernel function
in the form of

K
(
xi, x j

) = e−‖xi−x j‖2/2σ2 (7)

is commonly used for its good generalization capabilities, es-
pecially when very limited information is available about the
data distribution and separability for all classes. Here, σ is
the width of the radial basis. It affects the classification per-
formance substantially and will be addressed later in this sec-
tion.

An alternative way of dealing with the nonlinearity is
to use a divide-and-conquer technique. The idea is illus-
trated by the two-dimensional example shown in Figure 5,
where the two classes of data represented in Figure 5(a) are
not linearly separable. However, if we divide the space into
four stripes as shown by the dashed lines in Figure 5(b), the
data within each stripe becomes more separable by a lin-
ear function. The subdivision of the feature space naturally
accommodates the nonlinearity in the class boundary, yet
the training process is comprised of training a set of rel-
atively simple linear SVMs. Subdividing the feature space
into nonoverlapped subsets can be done through dividing

the dynamic range of some feature elements or according to
the norm of the feature vector. The latter reflects the over-
all smoothness of the surrounding pattern for the feature
vector defined in Section 2, as the L1 norm of the vector
gives the total number of nonflat 2× 2 segments over the 48
pixel segments surrounding a lost block. Recalling the trend
seen in Figure 4 on the classes as a function of the overall
smoothness, the subdivision allows us to naturally adapt to
the changing characteristics.

The nonlinearity in the classification can also be handled
using a combination of the above two approaches. This hy-
brid approach divides the feature space into subsets and pro-
vides a nonlinear SVM (such as the radial kernel function)
for each subset. It offers a great amount of flexibility, allow-
ing the subsets to use different kernel parameters (such as σ
in the radial basis function) or even different kernels. The
nonlinear SVM obtained for each subset of feature space can
have a much smaller number of support vectors; hence can
be considerably simpler than a nonlinear SVM trained for
the entire space. As such, the hybrid approach has a low com-
putational complexity in both the training and test phases.

3.1.3. Determining kernel parameters

In practice, the relation between the classification accuracy
on the training set and on test set relies highly on the gener-
alization capability of the classifier. In SVMs, there are several
important parameters affecting the generalization capability,
such as C in (5) and σ in (7). Choosing SVM kernel param-
eters can be viewed as a validation process, and evaluating
the performance of the trained model on a validation set is
a general approach to select kernel parameters. Based on this
approach, we propose the following preprocessing procedure
for choosing the kernel parameters.
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Figure 6: Block diagram of the proposed receiver-side classifica-
tion-based concealment approach.

Step 1. Dividing the training samples into two subsets, A and
B: in each iteration below, we use set A for training and set
B for validation.

Step 2. Choosing kernel parameters and constructing a new
training set R: we adjust kernel parameters σ (1) and C(1) so
that the sum of training errors onA and validation errors on
B is minimized. More generally, we may employ an objective
function using a weighted sum of the two types of errors, and
low error rate on the validation set is often desirable to en-
sure a good generalization capability of the classifier. Since
SVM is known to generalize well and does not usually suffer
from overfitting problem as much as the conventional classi-
fiers do, we choose to minimize the sum of errors (i.e., with
equal weights) for simplicity. A new training set R is then
generated consisting of the support vectors from set A and
the successfully classified samples from setB.

Step 3. Switching subsets: we switch setA with setB and re-
peat Step 2. We record the kernel parameters as σ (2) and C(2)

and denote the new training set as S. The union of setR and
set S becomes the final training set T .

Step 4. Determining kernel parameters: the kernel parame-
ters obtained from the two iterations above provide a search

range for determining the final parameters. For example, σ (1)

and σ (2) specify a range over which we will search for the fi-
nal value of σ that can minimize the training error on set T .
Other kernel parameters can be jointly determined through
the search.

In addition to determining kernel parameters, we also fil-
ter out the samples that have very similar values but different
class labels. These samples are usually located in such region
of the feature space that is difficult to classify and they can
make the classification boundary very complex. Removing
them from the training set helps improve the generalization
capability of the classifier.

3.2. Overall algorithm

The overall algorithm of our proposed receiver-side classifi-
cation-based block concealment is summarized in Figure 6.
Below we explain a few additional details of the training and
concealment processes.

3.2.1. Selection of training data

We choose a set of training images that represent a variety
of characteristics. Because of the spatial correlation in most
natural images, we use about one fourth of blocks in the
checkerboard pattern from each training image as candidates
to form a training set. As discussed earlier, we further filter
out the blocks where different concealment schemes do not
give substantially different performance.

3.2.2. Construction of feature vectors

Since different spatial block concealment techniques may use
different sets of surrounding pixels, the feature vectors de-
rived for classification should come from the union of the
sets of pixels used by these techniques. For example, GSB
often uses two surrounding layers to extract the geomet-
ric structure information, while OASI uses four surrounding
layers to compute the interpolation coefficients. The classi-
fication region should therefore includes four surrounding
layers of pixels. For block size of 8×8, 192 pixels are involved
in classification.

While pixels can be used directly as features, they often
require a sophisticated kernel function to ensure separabil-
ity and thus incur high computation complexity. We gener-
ate a more compact feature vector from pixel values using a
similar approach as described in Section 2.3 and summarized
as follows. We first partition the four surrounding layers of
pixels into segments, as illustrated in Figure 3(a). For the ith
segment of four pixels, the feature value vi characterizes the
smoothness of the segment and is computed as

vi = floor
[(
max

{
pk
}−min

{
pk
}− s

)
/Qv

]
+ 1, (8)

where {pk} are the pixels in the ith segment, the floor func-
tion returns the largest integer less than or equal to the in-
put. The two parameters s and Qv control the sensitivity of
the feature. We choose s = 15 and Qv = 50 based on our
experimental results. We then put these feature values into
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Table 4: Overall classification accuracy on the 13 test images.

1 group 16 subgrouping 48 subgrouping
48 subgrouping with

preprocessing

Linear SVM 50.55% 65.96% 66.26% 67.11%

Radial SVM 65.54% 66.75% 67.17% 70.16%

a vector. The ordering of features in the feature vector does
not affect the performance of a trained SVM classifier since
the kernel functions widely used in SVM classification are in-
variant with respect to the ordering of features.

3.2.3. Subgrouping

As discussed earlier, to handle the nonlinearity of the class
boundary, we divide the feature space into n subsets and train
an SVM classifier for each subset. We use a simple empirical
partitioning rule based on the number of nonzero values in
a feature vector.

3.2.4. Preprocessing of training samples

The feature vectors we used for training are divided into sets
A andB. Each set includes images from all four representa-
tive categories mentioned before, namely, portraits, artificial
images, natural scenery images, and rich texture images. We
determine in this step the kernel parameters and training set
using the approaches described in Section 3.1.3.

3.2.5. Concealment process

After the training process is performed off-line, the parame-
ters of trained SVM classifiers are stored in the receiver sys-
tem. To conceal a corrupted image block, the receiver system
use the same approach as in the training process to construct
feature vector and identify to which subgroup the feature
vector belongs. The classification result will then determine
which concealment scheme to use.

3.3. Experimental results and performance analysis

In this section, we present the experimental results on the
proposed block concealment method using receiver-side
classification. We use the SVMlight toolkit [18] to accomplish
this classification task. SVMlight is an implementation of SVM
based on the optimization algorithm in [19].

A total of 15 images are used for training and 13 for test-
ing, which are shown in Figure 11. There are a total of 5 562
blocks in the training images and 3 804 blocks in the test im-
ages having substantially different concealment performance
by GSB and OASI. These blocks are used to evaluate the clas-
sification accuracy.

We first train a linear SVM using the 48-dimension fea-
ture vectors of all training blocks. The classification accu-
racy of this trained linear SVM on the test blocks is only
50.55%. The failure of this classification experiment indi-
cates the high nonlinearity in the boundary of the two classes.

We then examine the effects of various approaches in han-
dling the nonlinearity. The simulation results of this explo-
ration are shown in the first row of Table 4. We compare
the cases of no subgrouping, 16-group subgrouping, and 48-
group subgrouping. For these three cases, the kernel param-
eters are chosen that can provide the highest classification
accuracy on three of the training images, “Lena,” “Barbara,”
and “Bassharbor.” We also consider the case of applying pre-
processing with 48-group subgrouping for thorough selec-
tion of kernel parameters and filter out noisy samples, us-
ing the approaches described in Section 3.1.3. As shown in
the table, subgrouping significantly improves the classifica-
tion accuracy bymore than 15%; and preprocessing and finer
subgrouping can further improve the classification accuracy.

Based on results from the above exploration, we adopt
48 subgroups with preprocessing procedure for our train-
ing process and examine the concealment performance of
the proposed receiver-side classification-based scheme on the
thirteen 8-bit gray-scaled test images. The classification accu-
racy for each subgroup ranges from 58.82% to 83.09%, and
the overall classification accuracy is 67.11%. From the com-
parison of concealment results with that of GSB [5] andOASI
[6] in Table 5, we can see that the classification-basedmethod
with a linear kernel has up to 0.84 dB gain when compared to
the GSB method and up to 1.06 dB gain when compared to
the OASI method.

We then train a radial basis kernel SVM to evaluate how
well it handles the nonlinearity of training data. The prepro-
cessing and subgrouping are also evaluated for this nonlin-
ear kernel. As with the linear kernel, the radial basis kernel
can also benefit from the preprocessing and finer subgroup-
ing for improving the classification accuracy, although the
improvement due to grouping is less significant on the ra-
dial basis kernel than on the linear kernel. This latter aspect
is expected as the radial basis kernel has a good capability
of handling the nonlinear classification boundary even with-
out subgrouping. The classification accuracy for each group
ranges from 60.00% to 80.53%, and the overall classification
accuracy is 70.16%. As shown in Table 5, the classification-
based method using the radial basis kernel SVM has up to
0.94 dB gain compared to the GSB method and up to 1.26 dB
gain when compared to the OASI method. The proposed
scheme consistently outperforms the two prior algorithms
on all test images. As an example, we show a portion of the
“Nickel” image in Figure 7, and we can see that the proposed
concealment scheme provides better visual quality and leaves
fewer artifacts.

It is worth noting that a radial basis kernel gives about 3%
higher classification accuracy than a linear kernel, under the
same 48-group subgrouping and preprocessing procedure.
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Table 5: Comparison of concealment quality in PSNR (dB) of existing concealment schemes and the proposed receiver-side classification-
based approaches.

Type Name Size GSB OASI Better-2 Linear kernel Radial kernel

Fishingboat 512× 512 30.93 31.10 32.28 31.36 31.64

Goldhill 512× 512 32.35 32.41 33.52 32.63 32.84

Peppers 512× 512 35.18 35.55 36.72 36.02 35.79

Skylinearch 400× 400 32.01 31.34 33.22 32.40 32.60

Natural Lochness 512× 512 32.74 32.33 33.40 32.78 32.78

Bellflower 512× 512 33.27 33.70 35.57 34.12 34.21

Brandyrose 512× 512 39.47 39.27 40.42 39.86 39.80

Lake 512× 512 28.54 28.73 30.14 29.10 29.04

F14 496× 496 38.64 38.86 39.88 38.75 39.05

Portrait
Elaine 512× 512 35.17 35.93 36.35 35.85 35.96

Couple 512× 512 30.74 31.06 32.22 31.49 31.43

Artificial Nickel 256× 256 29.05 28.55 30.53 29.33 29.58

Texture Baboon 512× 512 26.11 26.48 27.12 26.62 26.62

The small improvement in classification accuracy, however,
does not always translate into the improvement of conceal-
ment quality. For example, we can see from Table 5 that
radial basis kernel provides slightly better concealment for
some test images, while linear kernel is better for others.
This is because the set of accurately classified blocks may
be different by the two kernel techniques, and the quality
gain on the slightly bigger set of accurately classified blocks
may not always offset the quality loss on the falsely classified
ones. On the other hand, we see that the classification-based
schemes give consistently higher concealment quality than
the two current state-of-the-art algorithms. With more ac-
curate classification, the concealment quality can be further
improved. Along the line of seeking more accurate classifi-
cation information, we are inspired by the growing impor-
tance of involving both sender and receiver in efficient and
reliable multimedia communications. In the next section, we
investigate what role the sender system can play in facilitating
classification-based concealment.

4. BLOCK CONCEALMENTWITH SENDER-SUPPLIED
CLASSIFICATION INFORMATION

The receiver-side classification algorithm proposed in
Section 3 outperforms the conventional error concealment
approaches. Coming with such benefit is the increase in com-
putation complexity at receiver-side for performing classifi-
cation. The increased complexity may pose a challenge for
systems that have very limited computation resources and/or
stringent real-time rendering constraints. If some parts of the
concealment task could be moved to the sender side, it would
help reduce the computation burden on the receiver side, as
demonstrated in several recent works [9, 10].

An important benefit of moving the classification task
from a receiver to a sender is that it allows for an easy access
of the perfect classification information. This is because the
sender has full reference to the original, uncorrupted image,

and can compare the concealment quality by various tech-
niques to obtain the ground truth about which technique
works better. The higher accuracy of the classification infor-
mation can further improve the overall concealment qual-
ity upon what we have achieved in Section 3, which is an
even more attractive advantage than the reduced receiver-
side computation complexity.

In this section, we extend the classification-based con-
cealment framework from a sender-driven perspective to de-
sign and evaluate error concealment schemes with sender-
supplied classification information. We will examine two
main approaches to conveying the classification information
from a sender to a receiver: one is to attach the side informa-
tion in the header and the other is to embed the side infor-
mation in the image signal using data hiding technique.

4.1. Conveying classification
information by attachment

A quite straightforward way to convey the classification in-
formation from the sender to the receiver is to transmit the
information along with the image, for example, in the image
header. The side information requires extra bandwidth, and
therefore, the appropriateness of the attachment approach
depends on the application and the image/video size. An al-
ternative approach to avoid the increase in bandwidth is to
encode the image at a lower rate to spare room for side in-
formation. This would reduce the image quality, leading to
a similar tradeoff as in the data embedding approach to be
discussed in the next subsection.

We present the system block diagram of the sender-side
attachment scheme in Figure 8. On the sender side, in ad-
dition to encoding an image as usual, the system would
perform the following tasks:

(1) perform error concealment on each block or on se-
lected blocks using multiple error concealment meth-
ods;
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(a) (b)

(c) (d)

(e)

Figure 7: Visual quality comparison of three concealment schemes:
(a) original image; (b) corrupted image; (c) recovered image using
GSB; (d) recovered image using OASI; and (e) recovered image us-
ing the proposed classification-based method.

(2) compare the quality of the images obtained by these
concealment methods and classify each block accord-
ing to the winning technique;

(3) encode the classification information for each block,
possibly using lossless compression techniques;

(4) attach the classification information to the compressed
image bit stream.

On the receiver side, upon detecting the corrupted blocks,
the receiver will extract the classification information from
the received stream and use this side information to select the
appropriate method for concealing each corrupted block. We
can further apply forward error correction coding with ap-
propriate strengths to protect the image stream and the side
information.

Regarding the detailed encoding method for side infor-
mation, we denote the side information for the GSB con-
cealment method as “0” and that for OASI as “1.” The side
information for all blocks can be put together as a binary se-
quence. Recall that GSB concealment has lower computation
complexity than OASI. So as before, we choose the error con-
cealment technique with lower computation complexity for
the blocks where the performance of the two concealment
methods are not significantly different. This also helps give a
long run of “0” in the side-information encoding. We then
apply run-length coding and arithmetic coding to compress
the binary sequence of classification information.

It can be seen that the attachment scheme trades ad-
ditional bandwidth for improved concealment quality. The
tradeoff can be adjusted as follows. For each block, the per-
formance of each algorithm (P1 and P2) is calculated accord-
ing to (1). The binary-valued side information L for the block
is determined by

L =
⎧
⎨

⎩

1, if P1− P2 > Δth,

0, otherwise,
(9)

where Δth is a threshold. An experiment with different set-
tings of Δth is performed on the JPEG-compressed “Lena”
image with quality factor Q = 80%, where the image size is
512× 512 and the JPEG file size is 303 072 bits. As shown in
Figure 9, the larger Δth we choose, the lower PSNR we get.
On the other hand, since more blocks are labeled as “0” with
a larger Δth, compressing the classification information us-
ing run-length coding and arithmetic coding will achieve a
higher compression ratio. The results in Figure 9 shows that
when Δth is around 96, the gain in error concealment quality
is significant, yet the additional bandwidth for classification
side information is quite moderate and only about one per-
cent of the image file size. Thus we use this value to evaluate
the overall concealment quality.

The simulation results of the attachment scheme are
listed in Table 6. The results suggest that our proposed
concealment scheme by attaching classification information
outperforms each individual receiver-side concealment ap-
proach. The error concealment quality can be improved by
about 1 ∼ 2 dB when compared to the better one between
the two individual methods. Readers may notice that the at-
tachment scheme has 0 dB gain on the “Circletrain” image
when compared to GSB. As shown in Figure 11, this artificial
image has uniform background and smooth edges. GSB gives
better concealment quality in terms of PSNR for every recov-
ered blocks, so we cannot get any improvement compared to
GSB.

4.2. Conveying classification information
by embedding

Although the attachment scheme has excellent performance,
the additional bandwidth for side information may not be
available or too pricey in some systems. Recoding the image
part to a slightly lower rate requires a nontrivial amount of
computation complexity to ensure that the total bandwidth
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Figure 8: Block diagram of the sender-side attachment approach.
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Figure 9: Relation of the threshold Δth versus the concealment quality and the bandwidth required for side information, respectively, when
applying the sender-side attachment approach on the “Lena” image.

of the image plus the side information is unchanged. A viable
alternative to convey side information with little additional
bandwidth is embedding it in the image. More specifically,
we embed 1-bit classification information of a block into
its neighboring block. The embedding will be incorporated

in the visual communication system along with interleaved
packetization mentioned at the beginning of the paper, so
that the neighboring blocks are packed into different pack-
ets. In such a way, it is unlikely for a block and its neigh-
bor holding its classification information to be corrupted
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Table 6: Performance evaluation of the sender-side attachment approach.

Image type Image name
JPEG file Side-information Quality gain Quality gain

size (bytes) size (bytes) over GSB (dB) over OASI (dB)

Bassharbor 50 867 368 0.52 1.14

Blueflower 53 528 495 0.87 0.90

House 46 975 361 1.28 1.26

Natural Newyork 73 830 436 0.89 0.67

Operahouse 48 666 365 1.09 0.99

Papermachine 41 773 285 1.95 2.07

Watch 41 773 293 1.23 1.09

Portrait

Lena 37 884 287 0.99 0.93

Barbara 50 867 424 2.21 1.12

Kid 30 791 257 1.12 1.08

Man 61 810 431 0.80 0.79

Circletrain 15 709 124 0 11.19

Artificial Tulip 48 641 437 1.45 1.68

Waterfall 44 734 292 0.93 0.75

Texture Bear 26 089 280 1.32 1.12
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Figure 10: Block diagram of the sender-side embedding approach.

simultaneously. As we will see later in this subsection, the
embedding in the neighboring block has additional advan-
tage when dealing with smooth blocks. We summarize the
system block diagram in Figure 10 and explain a few details
of embedding below.

As can be seen from the previous subsection, the amount
of classification information is on the order of a couple of
thousand bits, which calls upon an embedding technique
with quite high embedding rate. Unlike many copyright

protection applications, there is no major adversary to cir-
cumvent the embedded data in error concealment applica-
tion, where the side information helps improve the perfor-
mance of image communications [20]. The quantization-
based data embedding is a viable choice to meet these re-
quirements [21].

We use a simple version of quantization embedding,
known as the odd-even embedding technique [22], to em-
bed the classification information in an image. To avoid a
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Bassharbor (512× 512) Blueflower (512× 512) House (512× 512) Newyork (512× 512) Operahouse (512× 512)

Papermachine (512× 512) Watch (512× 512) Lena (512× 512) Barbara (512× 512) Kid (480× 480)

Man (512× 512) Circletrain (512× 512) Tulip (512× 512) Waterfall (512× 512) Bear (384× 384)

Fishingboat (512× 512) Goldhill (512× 512) Peppers (512× 512) Skylinearch (400× 400) Lochness (512× 512)

Bellflower (512× 512) Brandyrose (512× 512) Lake (512× 512) F 14 (496× 496) Elaine (512× 512)

Couple (512× 512) Nickel (256× 256) Baboon (512× 512)

Figure 11: The first fifteen 8-bit gray-scaled images are used for training and the next thirteen 8-bit gray-scaled images are used for testing
in the classification-based concealment. The image sizes are listed in parentheses after the image names.
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Table 7: Performance evaluation of the sender-side embedding approach. Images are in JPEG format with quality factor Q = 80%.

Image type Image name
PSNR of image Concealment gain Concealment gain

after embedding (dB) over GSB (dB) over OASI (dB)

Bassharbor 41.89 0.14 0.76

Blueflower 41.73 0.77 0.80

House 42.01 1.00 0.98

Natural Newyork 38.25 0.74 0.52

Operahouse 40.57 0.63 0.53

Papermachine 42.42 1.02 1.14

Watch 42.82 0.74 0.60

Portrait

Lena 43.21 0.30 0.24

Barbara 42.25 1.94 0.85

Kid 43.16 0.60 0.56

Man 39.48 0.49 0.48

Circletrain 47.36 −2.80 8.39

Artificial Tulip 42.31 0.78 1.01

Waterfall 40.47 0.62 0.44

Texture Bear 43.91 0.63 0.43

substantial impact on compression size and visual quality
of the image, the classification information for each block is
embedded into the last quantized nonzero DCT coefficient
in a zigzag scan order. The coefficient is forced to be an even
value if we want to embed “0,” or an odd value if to embed
“1,” and the embedding tries to make minimum necessary
changes to enforce such a relation. If all the quantized AC
coefficients in a block are zero, which we would encounter
for smooth blocks, we will not make any changes on the co-
efficients. In this case, the receiver would consider a “0” to
be embedded in the block based on the above-mentioned
rules, and apply the concealment technique of lower compu-
tation complexity (i.e., GSB) for the corrupted block. Such
an arrangement works well in practice. This is because GSB
usually performs better for blocks with relatively “flat” sur-
rounding; in the mean time, the characteristics of nearby
blocks are likely to be similar and can be fully exploited by
neighborhood embedding presented earlier, where classifica-
tion information is embedded into neighboring block.

The experimental results of the embedding scheme are
shown in Table 7. The improvement of concealment qual-
ity on most images is significant: we have a 0.14 ∼ 1.94 dB
gain compared to GSB and 0.24 ∼ 1.14 dB gain compared to
OASI. For most images, GSB performs better on some blocks
and OASI performs better on some other blocks. As such, the
quality degradation introduced by the embedding procedure
is overcome by the substantial concealment gain compared
to either GSB or OASI alone. An interesting exception ap-
pears on the “Circletrain” image. Different from other im-
ages, GSB is the better selection for all blocks in the “Cir-
cletrain” image and the concealed quality is very high (with
the PSNR dB value being in high forty). The sender-supplied
classification information thus provides no gain when com-
pared to using GSB alone. On the other hand, the embed-
ding technique inevitably introduces a moderate amount of

quality degradation. As a result, for the “Circletrain” image,
the embedding scheme achieves a net loss of 2.8 dB in PSNR
compared to GSB, although little visual difference could be
visible at such high PSNR levels. In comparison with OASI,
the gain over OASI is over 8 dB and is much more noticeable.

5. COMPARISONS ANDDISCUSSIONS

In the previous two sections, we have proposed three
classification-based error concealment schemes to improve
the concealment quality. Among the three schemes, one per-
forms classification on the receiver side using an SVM classi-
fier and features derived from the survived pixels surround-
ing a corrupted block, and the other two schemes convey the
sender-supplied classification information to receiver by at-
tachment and embedding, respectively. As we can see from
Tables 5, 6, and 7, they all improve the concealment qual-
ity quite substantially. In this section, we compare the three
schemes, discuss their advantages and shortcomings, and
identify the application scenarios that each scheme is suitable
for. We also discuss a few directions for further extension and
generalization.

We first compare the quality of concealed images by these
three schemes and show the results in Table 8. For each
image, we use the uncorrupted JPEG compressed version
with a quality factor of 80% as reference. Since the attach-
ment scheme provides the ground truth of concealment tech-
nique selection to the receiver, it gives the highest conceal-
ment quality among the three schemes. The improvement
over the individual concealment schemes is in the range of
0.5 ∼ 1.5 dB. While the embedding scheme also provides
the ground truth of most blocks to receiver (except for some
very smooth blocks), its performance is lower than the at-
tachment scheme by about 0.3 ∼ 0.5 dB. This small loss is
due to the distortion introduced by embedding, a price paid
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Table 8: Comparison of concealment quality in PSNR (dB) by the receiver-side and sender-side approaches. Images are in JPEG format with
quality factor Q = 80%.

Image type Image name GSB OASI
Receiver-side Sender-side Sender-side

classification embedding attachment

Natural Fishingboat 30.81 30.87 31.03 31.55 32.02

Portrait Elaine 35.47 35.18 35.43 35.84 36.22

Artificial Nickel 28.48 28.41 28.71 29.40 29.93

Texture Baboon 26.02 26.19 26.25 26.45 26.74

for sending side information without additional bandwidth.
The receiver-side classification scheme has the smallest im-
provement over individual scheme because the classification
result at the receiver is not always accurate.

In addition to the visual quality of concealed image, other
important issues include computational complexity, band-
width usage, and complexity associated with overall system
deployment. The receiver-side classification-based error con-
cealment requires neither side information to be sent nor
any special involvement of a sender. It can be therefore in-
tegrated in a standard-compliant coding system. The train-
ing involves a large amount of computation but can be per-
formed off-line. A moderate amount of run-time computa-
tion power is required from the receiver to extract features
and feed them into a trained SVM classifier to determine
which concealment scheme to use, and this is done only for
corrupted blocks. As the classification results are not always
perfect and depend heavily on the generalization capability
of the classifier, the concealment performance may vary sub-
stantially from one image to another. This scheme is suitable
for applications where there is limited design flexibility on
the sender side.

The schemes with sender-supplied classification infor-
mation provide more proactive protection. They require a
significant amount of computation power and cooperation
on the sender side to perform concealment, provide ground
truth on the concealment scheme to use for every block, and
encode or embed the classification information with the im-
age. The attachment scheme requires additional bandwidth
to deliver the ground truth of classification. After such an at-
tachment, the resulting media stream may not be standard-
compliant. In contrast, the embedding scheme can maintain
standard compliance of the resulting media stream. This is
at an expense of minor reduction of the perceptual qual-
ity in the transmitted image, even when the transmission
is free from error. On the other hand, the more accurate
sender-supplied classification information provides substan-
tial improvement in concealment quality and also eliminates
the computation needed on the receiver side for classifica-
tion. These schemes are suitable for applications with pow-
erful sender and simple receiver and for scenarios where the
visual data is encoded once but delivered and consumed by
many users.

The spatial concealment schemes investigated in this pa-
per can be used for both image and video transmissions.
They can be applied to each corrupted video frame and can
be used in conjunction with other temporal concealment

methods [23, 24]. The schemes that maintain standard-
compliance of the transmitted video, such as the receiver-end
classification and the embedding schemes, allow image/video
to be handled by a number of existing visual communica-
tion systems that support the standard, with few additional
changes to the system.

In addition to conveying side information to facilitate
concealment, data embedding can also be used for detecting
corrupted blocks [25]. For this error detection purpose on
each block, the parity information or some known patterns
should be embedded inside the corresponding block. The re-
ceiver will check the correctness of the parity or the integrity
of the patterns to determine whether the block is corrupted.
On the other hand, the side information of a block for facil-
itating its concealment must be stored outside that block, as
seen in the algorithm presented in Section 4.

We have so far assumed that the block damage is isolated
(i.e., all neighboring blocks of the damaged one are correctly
received). Since consecutive block damage is a challenge to
most error concealment techniques, interleaving techniques
have been suggested in packetization to avoid packing neigh-
boring blocks together [1, 10]. As such, consecutive block
losses rarely happen at a moderate loss rate. In case when
there remain some consecutive block losses, both GSB and
OASI techniques have been demonstrated to handle a small
number of consecutive blocks [5, 6]. The classification can
also be extended to cope with this case, for example, to in-
corporate the loss of two horizontal or vertical neighboring
blocks by training additional classifiers. And since what we
have proposed is a general framework, it can be further ex-
tended to incorporate other concealment techniques and ac-
commodate more than two candidate techniques.

6. CONCLUSIONS

In this paper, we present a new, classification-based spatial
error concealment framework for visual communications.
Our proposed framework takes advantages of state-of-the-
art concealment techniques and adaptively selects the best
suitable one for concealing each corrupted block. Under this
new framework, we have proposed a receiver-side classifi-
cation scheme to combine the sweet spots of several cur-
rent state-of-the-art techniques, while maintaining standard
compliance and requiring no special involvement on trans-
mitter. We have also examined a sender-driven perspective
to provide perfect classification information to a receiver
through attachment or embedding, and thus further enhance
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the error concealment performance. The advantages of each
of the three proposed schemes have been analyzed and the
suitable application scenarios suggested. Our experiments
on a diverse set of images have shown that the proposed
classification-based concealment framework provides up to
2 dB higher concealment quality over the current state-of-
the-art algorithms.
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