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Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indis-
pensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important
procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome man-
ual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image
analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First,
we propose the extended δ-regular sequence to index blocks and spots, which enables a novel automatic gridding procedure.
Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of
microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial
tools.
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1. INTRODUCTION

Microarray is a principal technology in molecular biology,
because it results in hundreds and thousands of expressions
of genotypes at once [1]. Themicroarrays are queried in a co-
hybridization assay using two or more fluorescently labeled
probes prepared from the mRNA from the cellular pheno-
types of interest [2]. The kinetics of hybridization allows ex-
pression levels to be determined relative to the ratio with
which each probe hybridizes to an individual array element.
Hybridization is assayed using a confocal laser scanner to
measure fluorescence intensities, which allow the simultane-
ous determination of the relative level of expression of all the
genes represented in the array.

The first step of a microarray experiment is to generate a
raw image, which consists of spots (genes) that form regular
arrays (blocks). Figure 1 shows a typical microarray image
which consists of 4 × 4 blocks and each block is composed
of 24× 24 spots [3]. In order to measure the level of expres-
sion of each spot, the location of each block and spot must be
identified in a process called “gridding,” and then the area of
each spot is determined. Finally, the intensity of both the true
spot and the background is estimated; this is called “spots

quantification.” The gridding procedure must be performed
correctly to quantify all spots precisely, but the huge number
of spots makes this procedure difficult to be done manually.
In order to overcome this, many automated and/or semiau-
tomated gridding methods andmetagridding methodologies
have been proposed.

There are many automatic gridding algorithms for com-
puting the exact location of each block and spot. Steinfath
has proposed a robust automatic imaging system for mi-
croarray experiments [4]. One drawback of Steinfath’s sys-
tem is that if the spot expression rate is less than 70% or the
microarray image is skewed, it does not guarantee acceptable
performance. Roberto has proposed an automatic gridding
method by mathematical morphology [5]. However, it is not
a fully automatic method since it requires manual work to
correct image rotation, and the suggested gridding method
using horizontal and vertical projection may be sensitive to
noise. Generally, the other automatic gridding methods can-
not be fully or correctly implemented if the image has a lot
of noise or a low level of expression [6–8].

In this paper, we propose two methods. One is an au-
tomatic gridding algorithm that computes the extended δ-
regular sequence by allowing extra pseudopoints. The other
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Figure 1: A typical raw image of a microarray: it consists of 4 × 4
blocks and each block is composed of 24× 24 spots [3].

is a hierarchical metagrid alignment methodology to provide
reliable and efficient batch processing for a set of microarray
images. Figure 2 shows a flow chart of our automated im-
age analysis system. The basic idea of our automatic gridding
algorithm is as follows. In a microarray image, if the spots
are in a single block, it is highly likely that they are in the
form of a regular sequence. So we compute a set of regular
sequences for an entire microarray image and then cluster
the “near” regular point patterns, which form a spot grid in
a single block. However, handling microarray images with
a low expression rate and/or experimental error is difficult.
Our model easily overcomes this problem. In batch process-
ing, we align the metagrid to a real image according to the
structure of the metagrid which consists of a chipbox, blocks,
and spots.

The organization for this paper is as follows. Section 2 ex-
plains the concept of the extended δ-regular point sequence
and how to apply this procedure to locate the block/spot in-
dex. Hierarchical metagrid alignment will be discussed in
Section 3. Finally, experimental work and results are given in
Sections 4 and 5.

2. EXTENDED δ-REGULAR SEQUENCE

The task of detecting regular spatial sequences in images
arises in many computer vision applications, including scene
analysis, military applications, and other areas [9, 10].
The general problem is one of recognizing equally spaced
collinear subsets in a given set of points. In an ideal microar-
ray image, all of the spots in a row or column in each block
should be included in the exact regular sequence. However,
it is not desirable to apply an ideal definition of regular pat-
tern sequence to a microarray image, since a microarray im-
age contains much noise and the location of each spot varies
somewhat in practice due to the mechanical error in the mi-
croarray production machine (spotter). So we propose a new
relaxed algorithm to compute the regular sequences and to
correctly locate the positions of spots and blocks.

2.1. Preliminary

In the ideal microarray image, all spots in a row/column are
collinear and equally spaced. So we give formal definitions
of “collinear” and “equally spaced” for the given finite set of
points.

Definition 1. P = {p1, p2, . . . , pn} is called collinear if the area
�(pi, pj , pk) = 0 and |P| ≥ 3. In a similar way, P = {p1,
p2, . . . , pn} is called equally spaced if |pi− pi−1| = |pi+1− pi|,
for 2 ≤ i ≤ n − 1. Note that |p − q| denotes the Euclidian
distance between points p and q.

Now, we define a regular sequence as follows.

Definition 2. P = {p1, p2, . . . , pn} is a regular point sequence
if P is collinear and equally spaced.

A maximal regular sequence of a set of points is one that
is not properly contained as a contiguous subsequence in any
other regular sequence. Based on the definition of a regular
sequence, we define the δ-regular sequence as follows.

Definition 3. A sequence of points is δ-regular if each of its
points can be displaced by at most δ along each axis to yield
a regular sequence; that is, given a fixed δ ≥ 0, a sequence
of points P = {p1, p2, . . . , pn} ⊂ E2 is a δ-regular sequence if
P = {p1, p2, . . . , pn} and δ ≥ |xi − xi|, δ ≥ |yi − yi|, for all
1 ≤ i ≤ n, where pi = (xi, yi) and pi = (xi, yi) [10].

Definition 4. A maximal δ-regular sequence is one that is not
properly contained as a contiguous subsequence in any other
δ-regular sequence.

A regular sequence should be one of a δ-regular sequence
with δ = 0. Figure 3 shows an example of a maximal δ-
regular sequence. In order to show a more relaxed form of
a regular sequence, we define an extended δ-regular sequence
for analyzing microarray images.

Definition 5. A set of δ-regular sequences is called an ex-
tended δ-regular sequence if we can make them a single δ-
regular sequence by adding pseudopoints in between them.

Figure 4 shows how to construct extended δ-regular se-
quences from input points. Simply, the extended δ-regular
sequence is constructed by concatenating two adjacent and
collinear δ-regular sequences by inserting pseudopoints be-
tween them.

2.2. Automatic block indexing

A maximal δ-regular sequence helps calculate the rotational
angle θ and unit distance du of a given microarray image,
and it identifies block structure. In order to reduce time to
find all maximal δ-regular sequences and extended δ-regular
sequences, we only consider the horizontal (or vertical) δ-
regular sequences.
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Figure 2: A flow chart of our automatic image analysis system. Part 1 is responsible for performing automatic gridding by using the extended
δ-regular sequence and part 2 aligns the metagrid to the images using hierarchical metagrid alignment for batch processing.
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Figure 3: A δ-regular sequence: a sequence (solid dots) whose
points are within δ of the corresponding (ideal) points of a regu-
lar sequence [10].

In our method, we first construct a set of points {Pi} by
image segmentation and by computing the geometric cen-
ter of the spots. From this, we will find maximal δ-regular
sequences. Let stepi denote the distance between adjacent
points in a δ-regular sequence ri. Algorithm 1 shows the
method for calculating the rotational angle and the unit dis-
tance. In Algorithm 1, we use the spots detected by segmenta-
tion methods, and then we perform spot filtering to remove
spurious spots. A set of spots may contain several spurious
spots after filtering. However, since the probability of the
maximal occurrence of a δ-regular sequence which is com-
posed of spurious spots is very low, they are not generally
considered. In extreme cases, some spurious spots may not
be eliminated by our algorithm, but every automated image
analysis system fails to provide for some type of some ex-
treme case. Handling spurious spots is an important aspect
of the process. However, previous systems have not consis-
tently responded to these spots.

Next, we generate a block of {Pi}with rotational angle, θ,
and unit distance, du. Algorithm 2 shows the steps for block
construction. Figure 5 shows an extended δ-regular sequence
in a microarray image. Figure 5(a) shows the input point
set, Figure 5(b) is the δ-regular sequences of Figure 5(a), and
Figure 5(c) is the extended δ-regular sequence.

Let the number of expressed spots be n and the valid
cells be m. The work of Andrew implies an Θ(n2) time algo-
rithm for all maximal regular sequences in two dimensions
[9]. We calculate all of the maximal regular sequences of a
set of points of valid cells to get the rotational angle and unit
distance of the microarray image.

3. HIERARCHICALMETAGRID ALIGNMENT

Since the date of a single microarray experiment consists of
10 ∼ 20 scanned images obtained from an identical microar-
ray, the grid structure computed for the first image can be
applied to all of the following images (especially for the du-
plicate experiment data). So it is reasonable to use batch pro-
cessing for the scanned images obtained from an identical
chip. Therefore most commercial systems (such as GenePix
[11] and ImaGene [12]) provide a metagrid file to enable
batch processing. A metagrid file is a template file that con-
tains the properties (e.g., dimension, location, size, etc.) of
the blocks and spots in a microarray image. Without a meta-
grid file, an experiment must find the spot/block index for
every raw microarray image one by one. Batch processing
with a metagrid proceeds as follows.

(1) Generate ametagrid template based on a basemicroar-
ray image.

(2) Load one raw image file and a ready-made metagrid
template.

(3) Compute the signal intensity of the image segmenta-
tion bounded by a metagrid circle for a spot.

It should be noted that the geometric properties (the physical
locations of the blocks and spots) of a scanned image differ
slightly from each other although they have all been obtained
from the same microarray slide. This is due to the mechani-
cal errors of scanners and experimental (manual work) error.
Figure 7 shows the result of metagridding using an identical
GAL file (a metagrid file provided in GenePix). Figure 7(b)
shows a typical case of metagrid displacement. Clearly, the
metagridding method requires some manual work.

In this section, we propose a new algorithm, hierarchical
metagrid alignment (HMA). HMA consists of three sequen-
tial steps: chipbox, block, and spot alignments. The problem
of aligning a metagrid to a given image could be considered
as a point set matching problem [13]. But it is an expensive
algorithm, running in O(n3) (n is point number). Applying
the hierarchical alignment concept, we can easily get subop-
timal alignment results bymatching an image from themeta-
grid and an image from the chipbox area to the spot area.
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Figure 4: (a) Input points, (b) regular sequences, (c) δ-regular sequences, (d) extended δ-regular sequences. An empty circle denotes an
inserted pseudopoint.

Input: (i) {Pi}; a set of center points of expressed spots
(ii) δ; a threshold constant given by user.
Output: rotational angle θ and unit distance du.

(1) Divide a microarray image into cells whose sizes are 2∗δ
by 2∗δ for the given δ-value.
Let cv (valid cell) refer to a cell that contains at least one
spot of P.

(2) Construct a set of center points P of cvs and compute all
maximal δ-regular sequences R = {r1, r2, . . . , rn} of P.
Figure 6 shows an example of valid cell, Pi, and center
points of valid cells.
We construct only the ri that have stepi smaller than the
stepj (1 ≤ j ≤ i− 1). If stepi = 2 · δ, we select ri and exit

this procedure.

(3) Select maximal δ-regular sequences R which has
the smallest step.

(4) Set θ = the angle of R to horizontal line,
du = distance between the adjacent points in the R.

Algorithm 1: Computing the rotational angle of a given image and
the unit distance between two adjacent spots.

3.1. Chipbox alignment

Let ChipBox be the minimum rectangular area including
all blocks in a chip. There are two kinds of chipboxes: one
is mChipBox from the metagrid, and the other is fChipBox
from fSpots (the real image given). In the following, mBlock
(mSpot) denotes the block (spot) of a metagrid and simi-
larly, fBlock (fSpot) denotes the block (spot) of a scanned im-
age. The ChipBox alignment is to determine the fChipBox,
so mChipBox is aligned with fChipBox by matching the left
upper points of the two regions. We first determine the
fChipBox to calculate MBR of all expressed spots and then
align themChipBox with the fChipBox.

Figures 8(a) and 8(b) show the before/after snapshots of
the chipbox alignment. In Figures 8(a) and 8(b), the yellow
objects indicate target spots, the red rectangle is a fChipBox
and the cyan objects aremBlocks.

Input: (i) {Pi}; a set of center points of cv ,
(ii) θ; rotational angle of a microarray image given,
(iii) du; unit distance of a given microarray image.
Output: block index of an input microarray.

(1) Rotate the whole image by −θ degree.
{P′i} = Rotation ({Pi},−θ).

(2) Construct the set of extended maximal regular sequences
Re = {re1, re2, . . . , ren} of P′.

(3) Make a simple graph G(V ,E) from Re.
If the point pi of ri is equal to pj of rj , they are connected.
e(vi(≡ pi), vj(≡ pj)).

(4) Apply the MBR (minimum boundary rectangle) of
each graph to the block.

(5) Re-rotate the whole image by +θ degree.
MBRs′ = Rotation (MBRs, +θ).

Algorithm 2: Block gridding.

3.2. Block alignment

Assume that the chipbox alignment has already been per-
formed. Figure 9(a) shows a situation in which the mBlock
does not correctly match the fBlock. So we have to align ev-
ery block. Block alignment is similar to chipbox alignment.
First, we divide the chipbox into uBlocks for detecting fBlocks
using the gap between the nearest blocks and the block size
from metagrid. Second, we assign the fBlocks to MBR of
expressed spots in the uBlocks and then align the fBlocks with
themBlocks. We perform the following two steps to align the
mBlocks with the fBlocks.

(1) We align the fBlocks which are similar in size to
mBlocks. In this case, we align the fBlock to fitmSpot0,0,
which is the upper left spot in themBlock, with the up-
per left position of the fBlock.

(2) After the first step, we calculate the upper left position
of the fBlock using neighboringmBlocks which have al-
ready been aligned. And then, the mBlock is aligned to
fit the upper left position of the fBlock.
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(a) (b)

(c) (d)

Figure 5: A simple example of a grid structure constructed from an
extended δ-regular sequence with input points: (a) input points, (b)
a graph by δ-regular sequence merging, (c) adding pseudopoints
between δ-regular sequences, (d) a grid graph by merging all ex-
tended δ-regular sequences. The shaded box points are the inserted
pseudopoints.

(1, 1)

P j

cv

Pi
δ

(3, 3)

Figure 6: An example of {Pi}, valid cells and center points of valid
cells. We construct a set of center points P of cv (valid cell)s and
compute all maximal δ-regular sequences R = {r1, r2, . . . , rn} of P.

Figure 9 shows the before/after snapshots of the block
alignment. The red rectangle denotes the fBlock and the cyan
objects denote themBlock.

3.3. Spot alignment

This step assumes that the chipbox and the block are already
aligned. Now we want to align the metagrid spot (mSpot) to
the real grid spot (fSpot). The spot alignment in each block

(a) Image Ia

(b) Image Ib

Figure 7: The metagridding snapshots of two images using the
same GAL file in GenePix. Ia shows that the metagrid fits the given
image correctly. Ib shows an image that has a discrepancy between
the metagrid and the given image. Manual work is required for Ib.

is the last step of HMA. In this alignment, we first have to
classifymSpots into active spots and nonactive spots. Figure 10
shows an active spot and a nonactive spot. A mSpot is an
active spot if it has one fSpot within the distance, d. After
identifying all active spots, we align the active spots to the cor-
responding fSpots.

Figure 11 shows the result of spot alignment. In Figure
11(b), the red circles denote active spots and the cyan objects
are nonactive spots.

4. EFFECTIVENESS OF EXTENDED
δ-REGULAR SEQUENCE

Generally, the length (the number of points) of an extended
δ-regular sequence is expected to be longer than that of a δ-
regular sequence. First, we need to know the expected size of
the extended δ-regular sequence and the δ-regular sequence.

Let Pδ denote the probability that there exists at least one
δ-regular sequence with length i in a point sequence S, |S|=n.
Let s denote the expression rate of spots, and let q be the
probability that a point is located in the δ box (see Figure 2).
Such a δ-regular sequence can start (end) with the first (last)
spot, or can be located in the middle of S. Accordingly, the
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(a)

(b)

Figure 8: (a) A snapshot before chipbox alignment, (b) a snapshot
after chipbox alignment. The yellow object is a fSpot, the red rect-
angle is a fChipBox, and the cyan object is amBlock.

probability, Pδ , is given as follows:

Pδ = Prob(boundary δ − regular sequence)

+ Prob(middle δ − regular sequence)

=
n−2∑

i=3
(s · q)i(1− s · q) +

n−1∑

i=3
(s · q)i(1− s · q)2

= (s · q)3(1− s · q)

×
(
1− (s · q)n−4) + (1− s · q)(1− (s · q)n−3)

(1− s · q) .

(1)

Let PE be the probability that there exists at least one
extended δ-regular sequence of length i in S. An extended
δ-regular sequence includes two types of sequences: one
from the original δ-regular sequence and another from
the concatenation of two adjacent δ-regular sequences by
adding one pseudopoint in the middle of those two δ-regular
sequences. So PE should be

PE = Pδ + Prob(δ − regular sequence extends)

= Pδ +
n−2∑

i=3
(s · q)i−1(1− s · q)3 +

n−1∑

i=3
(s · q)i−1(1− s · q)2

(a) A snapshot before block alignment

(b) A snapshot after block alignment

Figure 9: (a) A snapshot before block alignment, (b) a snapshot af-
ter block alignment. In (a) and (b), the red rectangle denotes the
fBlock and the cyan (yellow) object denotes mSpot (fSpot), respec-
tively.

= Pδ + (s · q)2(1− s · q)2

× (1− s · q)(1− (s · q)n−5) + (1− (s · q)n−4)
(1− s · q) . (2)

We compute the expected length of the δ-regular se-
quence and the extended δ-regular sequence in S with |S| =
n, E(Lδ) =

∑n
k=3 k · Pδ , and E(LE) =

∑n
k=3 k · PE.

This calculation reveals the effectiveness of the “ex-
tended” δ-regular sequence versus the δ-regular sequence.
The calculation shows that the extended δ-regular sequence
is more than twice the length of the δ-regular sequence if the
spot expression rate is low (see Table 1 and Figure 12). If the
expression rate is high, there is no difference. This means
that if the expression rate, s, and tolerance probability, q,
approach 1, the extended δ-regular sequence should be the
same as the δ-regular sequence.

In practice, the spot expression rate is about 40% to 60%
(see Table 2). So we can say that this extended δ-regular se-
quence greatly helps to identify the block structures in prac-
tice, especially for microarray images with low expression
rates.
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Figure 10: A mSpot is an active spot if it has one fSpot within dis-
tance, d. (a) An active spot, (b) a nonactive spot.

(a)

(b)

Figure 11: The progress of spot alignment. (a) A snapshot of active
spots, (b) a snapshot after spot alignment. The red circles and cyan
objects denote active spots and nonactive spots, respectively.

We have shown that a δ-regular sequence can be exten-
ded to another longer δ-regular sequence by inserting one
pseudopoint in between two disjoint and collinear δ-regular
sequences. Now we will show the effectiveness of this ex-
tended δ-regular sequence for the spot indexing procedure.

Let Pa be a set of points obtained by spot image seg-
mentation for a microarray image. As we explained above,
we construct a geometric grid graph G(Pa) after spot seg-
mentation by adding edges among them. Figure 13 shows an

Table 1: Comparison of the expected length of the extended δ-
regular sequence (= E(LE)) and the expected length of the δ-regular
sequence (= E(Lδ)), where the number of point rows (n = 20),
columns (n = 20), and q = 0.9.

s · q E(Lδ) E(LE) E(LE)/E(Lδ)

0.40 1.06 2.7 2.50

0.45 1.26 2.82 2.22

0.50 1.49 3.00 2.00

0.55 1.77 3.22 1.81

0.60 2.10 3.50 1.67

0.65 2.50 3.85 1.54

0.70 3.02 4.32 1.43

0.75 3.72 4.96 1.33

0.80 4.69 5.86 1.25

0.85 6.13 7.21 1.18

0.90 8.42 9.37 1.11

0.95 12.42 13.08 1.05

1.00 20.00 20.00 1.00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

sq

E(LE)/E(Lδ)

Figure 12: E(LE)/E(Lδ), the ratio of the expected length of the ex-
tended δ-regular sequence to the δ-regular sequence.

example for segmented spots and its corresponding G(Pa). If
G(Pa) is connected and the minimum bounding box (MBR)
of G(Pa) is the same as to the MBR of a single block of mi-
croarray image given, then we call G(Pa) successful since we
correctly separate each block in the whole microarray image.
It is crucial to get a successful G(Pa), which enables us to in-
dex (i, j) of each spot automatically. Otherwise, if G(Pa) is
disconnected or MBR of G(Pa) does not cover a block re-
gion, then G(Pa) is called unsuccessful for the given microar-
ray image since we do not automatically index the spots.

Let Gδ(Pa) (Geδ(Pa)) be a grid graph obtained from a
set of δ-regular sequences (extended δ-regular sequences).
Figure 14(b) shows an unsuccessful example of Gδ(Pa) and
Figure 14(d) shows a successful example of Geδ(Pa). In order
to give the spot index of an unsuccessful Gδ , manual inter-
vention is required to set the index of spot.
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Table 2: Probability functions pδ(s) and peδ(s).

s pδ(s) peδ(s)

0.100 0.0000 0.0000

0.200 0.0000 0.0002

0.250 0.0000 0.0018

0.275 0.0004 0.0174

0.300 0.0010 0.0578

0.325 0.0050 0.2186

0.350 0.0380 0.3832

0.375 0.0800 0.6412

0.400 0.2224 0.7784

0.425 0.3626 0.9094

0.450 0.5842 0.9544

0.475 0.7200 0.9856

0.500 0.8636 0.9922

0.525 0.9222 0.9974

0.550 0.9688 0.9982

0.575 0.9860 0.9994

0.600 0.9966 0.9994

0.625 0.9984 1.0000

0.650 0.9990 1.0000

0.675 0.9994 1.0000

0.700 1.0000 1.0000

0.900 1.0000 1.0000

Let pδ(s) and peδ(s) be the probability functions of the
expression rate s that grid graphs Gδ(Pa) and Geδ(Pa) are
successful, respectively. Now we want to compare the prob-
abilities pδ(s) and peδ(s). Since the expression rate of each
spot is a random variable, G(Pa) should be a kind of a ran-
dom graph where the existence of each edge is dependent on
a probabilistic model.

There are so many interesting results on random graph
[14]. One of interesting results is about the characteristics
in the probability of graph connectedness. That is the fa-
mous Erdös and Renyi theorem [15]. Let p be the probability
of edge existence with n vertices graph. It is known that
p = logn/n is the threshold function for graph connected-
ness. That means if lim p/(logn/n) = 0 implies lim pδ(s) = 0
and if lim p/(logn/n) = 1 implies lim peδ(s) = 1, this thresh-
old function property is one important feature of random
graph.

So far we did not find any probabilistic graph model
which is exactly the same as microarray grid graphs. We be-
lieve that constructing a rigorous probabilistic model for this
grid graph is very hard. Instead of this, we tried to apply a
Monte-Carlo method to estimate the threshold value for the
connectedness of random grid graph by using 50 000 artifi-
cial grid graphs.

First we generate 50 000 sets of artificial spot to sim-
ulate microarray images for each expression rate s = 0.1,
0.2, . . . , 0.7, 0.9. Let PU be the set of 50 000 point sets. Next
we construct Gδ(Ps) and Geδ(Ps), for each Ps ∈ PU .

(a)

G(Ps)

MBR

(b)

Figure 13: (a) A set of spot points, Pa, obtained from a microar-
ray image segmentation. (b) A case of unsuccessful G(Pa) since the
MBR of G(Pa) does not cover the whole block.

(a) (b)

(c) (d)

Figure 14: Example for unsuccessful and successful cases where ex-
pression rate s = 0.51. (a) A set of input points, Pa. (b) A case of un-
successful Gδ(Pa), due to 7 disconnected components. (c) A point
set Pb = Pa ∪ {pseudopoints inserted}. Each “◦” denotes a pseudo-
point. (d) Successful Geδ(Pa), which is one connected component
and its MBR covers the whole block.

Table 2 shows the pδ(s) and peδ(s) values and Figure 15
shows pδ(s) and peδ(s) curves according to the expression
rate s. In Figure 15, solid curve and dotted curve denote pδ(s)
and peδ(s), respectively. As was noted, we can see the sharp
hill of the threshold value for graph connectedness. Interest-
ingly, we can see that our extended regular sequence gives the
much higher successful probability of Geδ(Ps) in expression
rate interval s[0.3, 0.5] compared to Gδ(Ps).

It is also interesting to see that there is no difference be-
tween pδ(s) and peδ(s), if the spot expression rate is less than
0.3 or higher than 0.7. In practice, we know that the ex-
pression rate is normally between 0.3 and 0.7. This means
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our extended δ-regular sequence is very helpful and effec-
tive to enable the automatic spot indexing. The ratio rs =
pδ(s)/peδ(s) is plotted in Figure 16.

Determining the number of pseudopoints to be inserted
in a δ-regular sequence is crucial to the gridding of the whole
microarray index. The more pseudopoints are allowed, the
higher the probability of connectedness for a single block be-
comes. But this leads to an undesirable situation in which
two adjacent blocks are connected into a single component,
which prevents identification of the block structure. There-
fore, the number of pseudopoints must be based on the dis-
tance between blocks in a scanned real microarray image.

5. EXPERIMENTAL RESULTS

We tested our method using images of four different chips
(from a medical center, a university, and a biocompany).
Table 3 shows the specifications of the test data set. #B and
#S are the dimensions of the block and the spot of a given
chip, respectively, and ds is the diameter of the spot. gapb and
gaps are the gap distances of adjacent blocks and spots, re-
spectively. # Img indicates the number of images to be tested
per chip.

Figure 17 shows the three different grid structures after
adjusting the ratio rx = gapb /(2·gaps +ds). This figure shows
that rx is an important characteristic constant in obtaining a
successful block/spot gridding. It is the same rx = 0.5 as the
distance between adjacent center points of expressed spots
in the ideal microarray image. In Figure 17, rx = 0.25 is too
small to detect each single block and rx = 1.0 is too large
resulting in merged blocks. Optimal block gridding occurs
when rx = 0.5. This implies that the block gridding perfor-
mance goes best when the distance between points in both
sides of the pseudopoint in an extended δ-regular sequence.

Figure 18 shows an successful gridding result of microar-
ray with 2 × 2 grid structures using our automatic gridding.
In Figure 18, microarray image leans about 2 degrees. Our
algorithm finds successfully the locations of all blocks and
spots.

Now we will explain the efficacy of HMA. Let ΔM de-
note the total displacement distance of all spots to metagrid-
ding spots. And let ΔH denote the total displacement dis-
tance needed for HMA. ΔM and ΔH are computed as

ΔM =
∑

b∈blocks

∑

i, j∈spots

∣∣∣m(b)
i j − s(b)i j

∣∣∣, (3)

where m(b)
i j is the physical position of a metagrid spot whose

index is (i, j) in block b, and where s(b)i j is the physical position
of a real spot in the block in a scanned image.

ΔH = ΔChipBox+
∑

b∈blocks
ΔBlockb

+
∑

b∈blocks

∑

i, j∈spots

∣∣∣m̃(b)
i j − s(b)i j

∣∣∣,
(4)

where m̃(b)
i j is the physical position of a metagrid spot after

chipbox and block alignments. ΔChipBox and ΔBlock are
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Figure 15: The probability functions pδ(s) and peδ(s) according to
the expression rate s. Solid and dotted curves denote the pδ(s) and
peδ(s), respectively.
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Figure 16: The ratio rs = Pδ(s)/Peδ(s) with respect to the expression
rate s (horizontal axis). If s is near 0.3, the Peδ(s) is 60 times higher
than Pδ(s). If s = 0.325, the rs is about 40.

Table 3: The specification of the test data set.

Chip #B #S ds gapb gaps # Img

A 4× 4 12× 14 14 98.58 12.20 5

B 4× 4 10× 10 16 90.75 18.90 8

C 4× 4 18× 18 14 34.13 8.53 8

D 4× 4 10× 10 16 91.66 18.81 8

the displacement distances of the chipbox and block align-
ments, respectively. Figure 19 compares the ΔM and ΔH ,
which were computed with four chips using HMA, and a
straightforward metagrid overlapping. We can see that HMA
drastically reduces the displacement distance by more than
90% as compared to the straightforward simple metagrid-
ding.

Figure 20 shows the rate of displacement sum after each
procedure (chipbox, block, spot alignments). In Figure 20,
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(a) rx = 0.25

(b) rx = 0.5

(c) rx = 1.0

Figure 17: rx and its corresponding autogridding result in chip B.
(a) rx = 0.25 does not detect the block clusters. (b) rx = 1.0 is too
large resulting inmerged blocks. (c) rx = 0.5 gives the optimal block
gridding.

the metagridding results before HMA (none) have many dis-
placement distances, but the further the alignment processes
in HMA proceed, the better the results are. HMA finally at-
tains the ideal gridding results.

6. CONCLUSION

It is very important to develop an automated and intelligent
system for analyzing microarray images. The contributions
of this paper are as follows.

Figure 18: The correct gridding result. This image consists of 4× 4
blocks with 18× 18 spots each, and leans about 2 degrees.
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Figure 19: Total displacement distance required by metagridding
and our HMA.
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Figure 20: Reduction of displacement distances after {chipbox,
box, spot} alignment.

(i) The autogridding method using the extended δ-regular
point sequence is reliable for index blocks and spots,
which is useful for minimizing manual work.
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(ii) HMA (hierarchical metagrid alignment) is a novel
method for processing microarray image batches be-
tween all real spots and metagrid spots, and reduces
the total displacement distance by more than 90% as
compared to straightforward metagridding methods
(e.g., GenePix style).

We are developing a more rigid probabilistic model for
the extended δ-regular sequence. It is well known that the
probability of connectedness for a random graph approaches
1 when the edge probability of the random graph is above
O(logn/n). It is easy to see that the graph model con-
structed from the microarray point sequences for block/spot
indexing is a bipartite graph. So it is instructive to deter-
mine the probability of bipartite graph connectedness when
the edge probability, p, is given. We also use Monte-Carlo
simulation method to estimate the probability of the con-
nectedness of the grid graph. It is also a very interest-
ing problem to establish the complete probabilistic model
for the grid graph obtained from microarray experiment.
The supplemental information is available on our website
(http://jade.cs.pusan.ac.kr/∼gridding).
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