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Multiple state video coding (MSVC) is a multiple description scheme based on frame-wise splitting of the video sequence into two
or more subsequences. Each subsequence is encoded separately to generate descriptions which can be decoded independently. Due
to subsequence splitting, the prediction gain decreases. But since reconstruction capabilities improve, error resilience of the system
increases. Our focus is on multiple state video coding with unbalanced quantized descriptions, which is particularly interesting for
video streaming applications over heterogeneous networks where path diversity is used and transmission channels have varying
transmission characteristics. The total bitrate is kept constant, while the subsequences are quantized with different stepsizes de-
pending on the sequence as well as on the transmission conditions. Our goal is to figure out under which transmission conditions
unbalanced bitstreams lead to good system performance in terms of the average reconstructed PSNR. Besides, we investigate the
effects of intra-coding on the error resilience of the system and show that the sequence characteristics, and in particular the degree
of motion in the sequence, have an important impact on the decoding performance. Finally, we propose a distortion model that
is the core of an optimized rate allocation strategy, which is dependent on the network characteristics and status as well as on the
video sequence characteristics.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Multimedia communication over the Internet has conflict-
ing requirements on high compression and high error re-
silience. Multiple description coding (MDC) is an error re-
silient source coding method, where two or more descrip-
tions of the source are sent to the receiver over different chan-
nels. If only one description i is received, the signal is recon-
structed with distortion Di. If all descriptions are available,
we achieve a lower distortion D0. Multiple state video coding
(MSVC) is a special multiple description scheme where the
video sequence is splitted into the subsequences of even and
odd numbered frames [1]. An MSVC system has two main
components: multiple state encoding/decoding and a path
diversity transmission system. The generated subsequences
are coded into multiple independently decodable streams
each with its own prediction process and state. The advan-
tages are that the streams are decodable independently and
that the correctly received stream can enable state recov-
ery for the corrupted stream using bidirectional information
from past and future frames.

With the increasing heterogeneity in network infrastruc-
tures, it becomes interesting to build descriptions with dif-
ferent coding rates adaptable to the streaming conditions.

Unfortunately, unbalanced multiple description video cod-
ing has not been widely explored. Unbalanced descriptions
can be generated based on the adaptation of the quantization
temporal or the spatial resolution of the frame-wise splitted
video signal. In [2], we investigated the unbalanced quan-
tizedmultiple state video coding.We also proposed to use the
state recovery property, not only to recover from errors [1],
but also to substitute the coarsely quantized frames by in-
terpolation of the received past and future frames whenever
it is possible to achieve a higher frame PSNR [2]. We apply
the substitution by interpolation only if the error propaga-
tion on the next frame due to interpolation is below a given
threshold.

Our goal in this paper is to build on our previous work, in
order to figure out under which conditions unbalanced bit-
streams lead to efficient system performance in terms of the
average reconstructed frame PSNR. We differentiate between
low and high motion sequences. The sequences are recon-
structed with the extended MSVC approach at different loss
probabilities and unbalance rates. Besides, we investigate the
effects of extra intra-coding on the error resilience of the sys-
tem. Next, we discuss the effect/penalty of the unbalanced de-
scriptions on the reconstruction performance if unbalancing
is inevitable (e.g., because of bandwidth limitations). Finally,
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Figure 1: Block diagram of the MSVC system.

we propose a distortion model that is the core of an op-
timized rate allocation strategy, dependent on the network
characteristics and status.

Section 2 gives background information for MDC and
MSVC. Section 3 analyzes the system performance of a one-
dimensional AR(1) source as a simplified model for video
to understand the effect of unbalanced rates on the average
distortion. In Section 4, an end-to-end distortion model is
proposed for MSVC dependent on the network status, and
sequence characteristics. Next an optimized rate allocation
scheme for unbalanced quantized MSVC is discussed based
on this model. Section 5 provides a performance analysis at
different streaming conditions, whereas Section 6 concludes
the paper.

2. BACKGROUND

Multiple description coding is applied to some major cod-
ing techniques such as scalar quantization, vector quanti-
zation, correlating transforms, or quantized frame expan-
sions. A summary of the state-of-the-art system designs can
be found in [3]. MDC techniques are also investigated and
applied for video coding. Some of them are MD protection
of the most significant DCT coefficients [4], MDC of motion
vectors [5], altering of prediction loops [6], scalar quantizers
[7], matching pursuit [8], or forward error correction [9],
respectively. High rates, low latency requirements, and error
drift are however the main problems encountered in MDC
schemes for video streaming due to possible desynchroniza-
tion of encoders and decoders.

The idea of channel splitting has a longer history. It be-
came first popular with speech coders and information the-
orists in Bell Laboratories in 1978 and 1979. Gersho pro-
posed the use of modulo PCM encoding for channel split-
ting [10], followed by Jayant who proposed the separation of
odd and even samples for speech coding [11, 12]. A more
recent technique combines prediction with simple separa-
tion for speech coding [13]. Reudink dealt also with scalar
quantization for channel splitting. He was the first to propose
channel splitting techniques that do not significantly increase
the total rate and do not rely entirely on the inherent redun-
dancy in the source sequence [14]. Multiple state video cod-
ing (MSVC) approach [1], which is the MDC technique sub-
ject to this work, is inspired by the idea of frame-wise split-
ting of the video signal as in video redundancy coding [15].
The block diagram of MSVC is given in Figure 1 and state
recovery method in Figure 2. Figure 2 shows that the packet
carrying the coded data for frame #5 is lost and interpolated
using the reconstructed frames #4 and #6 whose data were
coded in the second stream. Coding gain (bitrate reduction)

· · ·

· · ·

Stream 1

Stream 2

3 5 7
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Figure 2: Error concealment in MSVC.

in MSVC is smaller than that for single description coding
due to the larger temporal distance between adjacent frames
in each subsequence. In other words, coding gain is traded
off with the resilience to transmission errors.

Unbalancedmultiple description video coding, where the
descriptions are coded with different bitrates, has not yet
been widely explored. One of the works investigating unbal-
anced MD video coding is [16], where the system produces
two descriptions with different resolutions of transform co-
efficients. The video data is encoded into a high-resolution
video stream using an encoder that produces an H.263 com-
pliant stream. In addition, a low-resolution video stream is
also generated by duplicating the most important informa-
tion from the high-resolution video stream such as head-
ers, motion vectors, and some of the discrete cosine trans-
form (DCT) coefficients. The scheme is especially designed
for packet loss rates below 10%. The number of duplicated
coefficients are determined for a given packet loss probability
and rate budget by minimization of the expected distortion.
The main disadvantage of the work is that error propaga-
tion is not considered in the expected distortion formulation.
Another work on unbalanced video coding is given in [17],
where MSVC is extended to an unbalanced system based on
frame rate adaptation. The video is coded into two distinct
streams producing unbalanced frame rates of 2 : 1. But for
high motion sequences, due to the increased temporal dis-
tance, the recovery of the high-rate stream does not work
well causing a decrease in the average reconstruction qual-
ity. Unbalanced quantized MSVC is the topic of this paper
which investigates the unbalanced extension of MSVC based
on quantization adaptation.

3. ANALYSIS: ODD/EVEN SEPARATION FOR
AN AR(1) SOURCE

A video signal can be roughly approximated as a collection
of AR(1) sequences of corresponding (motion compensated)
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Figure 3: Comparison of Dfull(R) to Dhalf (R) at R = log2(1 + a2).

pixels along time [18]. In this section, we will analyze the
effects of channel splitting on one-dimensional autoregres-
sive sources of first order, AR(1). The insights we gain from
the analysis of one-dimensional sources will give us some
hints about the error-prone transmission of video signals.
Odd/even sample separation makes use of the correlation
between consecutive samples. Consider a discrete time first-
order autoregressive, AR(1), source model given as

x[k] = ax[k − 1] + z[k], (1)

where k ∈ Z and z[k] is a sequence of independent, zero-
mean Gaussian random variables and a is the correlation co-
efficient between consecutive samples. x[k] is normalized to
have unit power if the variance of z[k] is set to 1 − a2. The
distortion rate function for an AR(1) source is given as [19]

D(R) = (1− a2
)
2−2R, for R ≥ log2(1 + a). (2)

The subsequences of odd and even samples are AR(1) se-
quences each with the correlation coefficient a2 and have the
distortion rate expression

Dfull(R) =
(
1− a4

)
2−2R, for R ≥ log2

(
1 + a2

)
. (3)

If we assume that the even samples are received and the
odd samples are reconstructed by interpolation (half-rate de-
coder), the average distortion over all samples is given as

Dhalf (R) = 1
2

[
(1− a)2 +

1
2

(
1− a2

)
]
+
3
4
Dfull(R) (4)

if the quantization error is uncorrelated. The distortion
of the even samples does not change, whereas the distor-
tion term on the interpolated samples depends on two fac-
tors: (1) interpolation distortion and (2) quantization dis-
tortion of the odd samples. At high rates, the component
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Figure 4: PSNRavg over R1, comparison of full-rate to the half-rate
decoder in the high-rate region.

of Dhalf (R) dependent on quantization becomes almost zero
and Dhalf (R) approaches asymptotically to interpolation dis-
tortion 1/2[(1− a)2 + 1/2(1− a2)]. At high rate, Dhalf (R) ex-
ceeds Dfull(R). At rate R = log2(1 + a2), we have

Dfull(R) = 1− a2

1 + a2
,

Dhalf (R) = a4 − 4a3 + a2 − 4a + 6
4
(
1 + a2

) .

(5)

Figure 3 depicts the performance comparison of both de-
coders for 1 > a > 0 stating that Dfull(R) ≤ Dhalf (R).

However in the low-rate region, where R < log2(1 + a2),
half-rate decoder yields competitive and at times smaller av-
erage distortion than the full-rate decoder [3]. The above
equations forDfull andDhalf are however not valid in the low-
rate region [19].

Next, we test the unbalanced quantized operation in the
high-rate region, where R > log2(1 + a2), Ri > log2(1 +
a2), for all i ∈ [1, 2], R = Ravg = (R1 + R2)/2 = 2 bit/sample,
and a = 0.9. Figure 4 shows the comparison of the full-rate
decoder to the half-rate decoder. We see that at balanced op-
eration, full-rate coder performs best, but when R1 becomes
larger, (i.e., the unbalance increases), half-rate decoder per-
forms better.

Based on these insights, we investigated what happens
when the transmission is lossy, that is, samples are lost with
given probabilities. The results are obtained via simulations,
where 100 samples are transmitted and 20 000 iterations are
used. Increasing the number of iterations beyond did not
change the experimental results. The transmission rate is 0.2
bit/sample averaged over both subsequences, that is, lower
than the threshold rate, log2(1 + a2). The loss probabilities
vary between 0 and 0.1. We consider also the unbalanced rate
allocation between the subsequences.
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Figure 5: PSNRavg over R1, a = 0.9, Ravg = 0.2 bit/sample.

Average PSNR over the rate of the first subsequence R1 is
plotted for a = 0.9 in Figure 5. Since the total average rate
is constant, as R1 increases R2 decreases. The curves depicted
are generated by comparing the full rate and the half-rate de-
coders at each unbalance rate and picking the larger value. As
R1 increases and R2 decreases, after some point, half-rate de-
coder exceeds the full-rate decoder since the distortion due
to error propagation and coarse quantization exceed the in-
terpolation distortion.

In Figure 5, when no loss occurs and R1 > 0.27 bit/ sam-
ple, half-rate decoder performs better than the full-rate one.
When the first channel is lossless but the second channel is
lossy, the threshold rate where half-rate coder exceeds the
full-rate coder is smaller. If the loss probabilities are moder-
ate and rate unbalance is high, using half-rate coder increases
average PSNR.

The same comparisons are depicted for a = 0.5 in Fig-
ure 6. Due to the decreased correlation between consecu-
tive samples, half-rate coder cannot perform as good as the
full-rate coder. Only when both channels are lossless and
R1 > 0.37 bit/sample, half-rate decoder outperforms the full-
rate decoder. Moreover, we see that the highest average PSNR
is achieved at balanced rate allocations. The optimal rate al-
location is reached at unbalance only when the second loss
probability is larger than 10%. When the loss probabilities
are balanced, full-rate decoder at balanced operation is pre-
ferred.

To sum up, correlation coefficient matters. This corre-
sponds to the correlation of corresponding blocks in video
sequences as discussed in Section 5. If the correlation is
low, the error due to interpolation is large. In this case,
when the quantization error is not large enough (i.e., high
coding rate), the half-rate decoder cannot outperform full-
rate coder. Similarly, for low motion sequences, since the
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Figure 6: PSNRavg over R1, a = 0.5, Ravg = 0.2 bit/sample.

correlation between corresponding blocks is high, we expect
the half-rate to yield good results. In contrary, for high mo-
tion sequences, the correlation is low, and therefore there is
a penalty associated with the half-rate decoder. Basically, as
we will see in the next section, activity in the sequence di-
rectly drives the interpolation efficiency and thus the coding
strategy.

4. RATE ALLOCATION FOR UNBALANCED
QUANTIZEDMSVC

Based on a distortion estimation model for unbalanced
quantized multiple state video coding system [20], we will
present a simplified, nearly optimal solution to the rate allo-
cation problem to guide our optimized coding strategy. Sum-
mary of the distortion model is given in Section 4.1 and the
model-based rate allocation in Section 4.2.

4.1. Distortionmodel

For the optimized coding strategy, we will use a recursive
block-based distortion estimation model. The model gives
a comprehensive estimation of the average distortion which
depends on the channel conditions and scene activity. The
detailed analysis of the estimation method is provided in
[20]. According to the model, the distortion on the current
block is dependent on the distortion of its corresponding
blocks on the previous frames of the video sequence. The cor-
responding blocks on the previous frames are located using
the motion vector field extracted in the encoding stage. For
each block, four cases are considered depending on the re-
ception of the current and corresponding blocks on the pre-
vious adjacent frame on the same thread and the next adja-
cent frame on the other thread.
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(i) Blocks x(n) and x(n− 2) are both received:

D1(n) = α
(
D(n− 2)− σ2q2

)
+ σ2q2. (6)

(ii) Block x(n) is received but block x(n− 2) is lost:

D2(n) = α
(
D(n− 2) + σ2q2

)
+ σ2q2. (7)

(iii) Block x(n) is lost but block x(n + 1) is received:

D3(n) =
(
1 +

√
α
)2

4
D(n− 1) +

1 + α

4
σ2q1

−
(
1 +

√
α
)√

α

2
σ2q1
(
1− p1

)

+ σ2interp.

(8)

(iv) Blocks x(n) and x(n + 1) are both lost:

D4(n) = D(n− 1) + σ2rep, (9)

where x(n) is the current block on the first thread, x(n − 2)
the corresponding block on the previous frame on the same
thread, x(n + 1) the corresponding block in the next frame,
and x(n − 1) on the previous frame of the other thread;
whereas D(n), D(n − 2), D(n + 1), and D(n − 1) are their
corresponding distortion terms, respectively. σ2interp denotes
the interpolation distortion and σ2rep the repetition distor-
tion if interpolation is impossible and the lost block is to be
replaced by its corresponding block on the previous frame.
σ2q1 and σ2q2 are the average quantization distortions for both
streams corresponding to R1 and R2, respectively. The model
is applicable to inter-coded as well as to intra-coded blocks
so that intra-updates can also be considered. α is a variable
which depends on the scene activity of the video sequence
and should be determined adaptively. All parameters used in
the model are estimated at the encoder and are obviously se-
quence dependent. To predict α, we canmatch the simulation
results to the real distortion values on a frame basis and min-
imize the gap for a given loss rate. The predicted α value can
then be used for the distortion estimation at other loss rates.
The formulas for a block on the other thread is symmetric
to the given one, where the subscripts “1” and “2” are to be
exchanged.

The block distortion values for each case are weighted by
their respective probabilities to yield the overall block distor-
tion:

D(n) = (1− p2
)(
1− p2

)
D1(n) +

(
1− p2

)
p2D2(n)

+ p2
(
1− p1

)
D3(n) + p2p1D4(n).

(10)

The individual frame distortions are calculated from the
block distortions, whereas the frame PSNR values from the
frame distortions. The average PSNR values for specific rate
allocations are calculated by averaging the frame PSNR esti-
mations over the whole sequence. To get the optimal coding
rates, the distortion should be minimized while the rate con-
straints of the channels are respected.

4.2. Optimized rate allocation

In this section, a nearly optimal rate allocation will be de-
scribed based on the average distortion estimation. For our
model, we will use an α value averaged over all frames, blocks
and streams as an approximation. To be exact, α is slightly
dependent on the coding rate, therefore different α values
are associated with differently quantized streams. The aver-
age quantization distortions of the two substreams are σ2q1
and σ2q2 , respectively. Similarly, the sum of the average dis-
tortion terms of the corresponding blocks along the odd and
even video subsequence are denoted byDO and DE. Our goal
is minimizing the total distortion min{DE + DO} subject to
f (σ2q1 , σ

2
q2 ) ≤ C, that is, R1 + R2 ≤ RT , for a given constant C.

DO can be expressed as

DO =
N−1∑

n=1:2
D(n)

= σ2q1 +
N−1∑

n=3:2

[(
1− p1

)2
D1(n) +

(
1− p1

)
p1D2(n)

+ p1
(
1− p2

)
D3(n) + p1p2D4(n)

]
,

(11)

using the distortion model. N is the number of frames con-
sidered. A symmetric formula can also be written for DE

by summing only the even numbered frame distortions by
exchanging the subscripts. After expanding the summation
terms we obtain for DO

DO = 1
1− (1− p1

)
α

×
[
σq1
[
1 +

(
1− p1

)2N − 2
2

(1− α)

+
(
1− p1

)
p1
N − 2
2

(1 + α)
]

+ σq2

[
(
1− p2

)
p1
N − 2
2

(1 + α)
4

− (1− p2
)2
p1
N − 2
2

N − 2
2

(1 +
√
α)

2

√
α
]

+D(N − 1)
[
2
(
p1 − 1

)]

+D(N)
[
− (1− p2

)
p1
(1 +

√
α)2

4
− p1p2

]

+ σ2interp

[
(
1− p2

)
p1
N − 2
2

]

+ σ2rep

[
p1p2

N − 2
2

]

+DE

[(
1− p2

)
p1
(1 +

√
α)

4
+ p1p2

]]
,

(12)

where the averaged values for α, σ2interp, and σ2rep over all
blocks of the whole sequence are used to simplify the equa-
tion. A similar equation can also be written for DE by ex-
changing the subscripts. Next, the equations for DE and DO

can be combined and formulated in the following way:

DE = K1σ
2
q1 + K2σ

2
q2 + K3D(N − 1) + K4D(N) + K5,

DO = K6σ
2
q1 + K7σ

2
q2 + K8D(N − 1) + K9D(N) + K10,

(13)



6 EURASIP Journal on Applied Signal Processing

where Ki, i ∈ [1, 10], are given by the system and depen-
dent on p1, p2, α, N , σinterp, and σrep. For large N , D(N − 1)
and D(N) can be neglected in comparison to the remaining
terms. Adding the equations for DE and DO together, we ob-
tain

DE +DO =
(
K1 + K6

)
σ21 +

(
K2 + K7

)
σ22 +

(
K5 + K10

)
,
(14)

which is an equation with two variables σq1 and σq2 which are
dependent on the quantizers Q1 and Q2. The constraint for
the optimization is R1(Q1) + R2(Q2) ≤ R.

5. PERFORMANCE ANALYSIS FOR UNBALANCED
QUANTIZEDMSVC

5.1. Preliminaries

In balanced MSVC, each subsequence is quantized with the
same step size after splitting the original sequence into odd
and even frames. The resulting descriptions require the same
bitrate, have the same frame rate, and yield the same aver-
age PSNR if no loss occurs. On the other hand, unbalanced
descriptions could be advantageous if we have transmission
paths with different characteristics, such as different band-
widths and loss probabilities. We investigate here unbalanced
quantized MSVC [2], where the subsequences are quantized
with different stepsizes depending on the sequence as well as
on the transmission conditions. In our work, MSVC is mod-
ified to recover the streams not only from state losses, but
also from error propagation, and more importantly to im-
prove the low quality stream which is coarsely quantized to
increase the average reconstructed PSNR. The extended re-
covery method chooses the best frame PSNR reconstruction
method from all available alternatives at every stage. This in-
formation can be sent to the decoder as side information. Us-
ing this, the decoder reconstructs the best possible sequence
depending on the received video packets.

If the current packet is lost, there is only one reconstruc-
tion method available: interpolating the previous and next
frames from the other description. If it is received, on the
other hand, two alternatives are present: (1) using the re-
ceived packet and (2) interpolating as if the packet was lost.
If the interpolation using the finely quantized frames yields
a higher frame PSNR than the coarsely quantized and the
reconstructed one, the second alternative should be chosen.
An important point is that due to prediction in hybrid cod-
ing, the interpolation error on the reconstructed frame prop-
agates to the following frames in the same subsequence. The
severity of error propagation depends on the scene activity
and the interpolation method. To take this effect into ac-
count, we employ the second alternative only if the PSNR
degradation of the future frame (after the current one) is
below a certain threshold. The threshold can be preset de-
pendent on the content as well as on the application. The
comparison based on PSNR cannot be performed directly
at the decoder since the original sequence is not present.
But the encoder can predetermine the rate allocation be-
tween given paths so that the average reconstructed frame

PSNR, PSNRavg, is maximized. Our goal is to allocate a given
total bitrate RT optimally between two streams by setting
their quantization stepsizes, as well as intra-group of blocks
(GOB) or frame coding periods based on a comprehensive
end-to-end distortion model which takes the scene content,
loss probabilities, and coding rates into account. Alterna-
tively, the encoder can detect the motion activity of the se-
quence or part of the sequence and adapt the rate unbalance
according to the precalculated and prestored tables.

5.2. System setup

We modified the H.264 codec (version 9.0) to support the
MSVC structure, and two parallel decoders are implemented
which help each other to recover from losses as explained
here above. The reliability values can be determined recur-
sively. The optimal reconstruction method depends on both
the loss history and the scene activity. Side information is
sent by the encoder to help choosing the best reconstruc-
tion strategy. The side information can be some hint speci-
fying the motion activity for each particular frame (or frame
block), that is, representing the difficulty of interpolating it
using the adjacent frames. The hint track can for example be
generated offline at the encoder. An alternative scenario that
we do not consider here consists in estimating sequence ac-
tivity directly at the receiver to choose the best reconstruction
method.

Finally, we assume that each frame (I or P) is transmitted
in a single packet [1]. Moreover, we assume that the very first
frame in each sequence is never lost (e.g., retransmission). If
the packet is lost (I or P), all information is lost for the cor-
responding frame including the motion vectors for P frames.
The reconstruction method for the lost I and P frames is the
same.

5.3. Performance analysis

We now analyze the performance of unbalanced MSVC for
different sequences and different streaming conditions. A
careful analysis will provide us with important insights for
the design of efficient coding strategies. The results are given
for two sequences here: Foreman and Akiyo representing the
high motion and low motion sequences, respectively. For
each coding option (non-intra, with intra-GOB updates, and
with intra-frame updates), four operating points (P.1, P.2,
P.3, and P.4) are considered. Operating points correspond to
different settings of quantization stepsizes of both streams.
The first operating point denotes the balanced rate alloca-
tion, whereas the fourth one represents the most unbalanced
one. Tables 1, 2, and 3 list the bitrates and the correspond-
ing QP’s for the two streams chosen for coding the sequences
Foreman and Akiyo without and with intra-coding of GOB’s
and frames. The total rate RT is set to 140 kbit/s for Foreman
and 19 kbit/s for Akiyo which is to be split between R1 and
R2. For Foreman, every 9th frame and for Akiyo, every 36th
one is intra-coded for the coding option with intra frame up-
dates. Similary, one GOB in every frame for Foreman and in
every 4th frame for Akiyo is intra-coded for the option with
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Table 1: Unbalanced quantized MSVC, quantization stepsizes, and
the corresponding bitrates for the two subsequences: Foreman and
Akiyo.

QP1 R1 (kbits/s) QP2 R2 (kbits/s)
P.1 14/18 111.88/13.92 26/27 27.48/5.03
P.2 15/19 95.94/12.16 21/24 43.01/6.75
P.3 16/20 83.16/10.64 19/22 54.91/8.41
P.4 17/21 71.38/9.41 17/21 71.04/9.41

Table 2: Unbalanced quantized MSVC, quantization stepsizes, and
the corresponding bitrates for the two subsequences: Foreman and
Akiyo with GOB-intra-updates.

QP1 R1 (kbits/s) QP2 R2 (kbits/s)
P.1 17/22 106.38/13.22 27/30 34.02/5.97
P.2 18/23 94.55/11.67 24/28 46.98/7.14
P.3 19/24 83.27/10.59 22/26 59.14/8.72
P.4 20/25 73.83/9.64 21/25 65.68/9.64

Table 3: Unbalanced quantized MSVC, quantization stepsizes, and
the corresponding bitrates for the two subsequences: Foreman and
Akiyo with frame-intra-updates.

QP1 R1 (kbits/s) QP2 R2 (kbits/s)
P.1 20/23 83.90/11.26 29/30 55.68/7.97
P.2 21/24 78.23/10.56 26/28 61.36/8.61
P.3 22/25 74.04/9.95 24/27 66.73/8.97
P.4 23/26 70.24/9.45 23/26 70.24/9.45

intra-GOB updates. The vertical location of the intra-coded
GOB is shifted downwards periodicaly every frame. A total
of 200 frames are considered from each sequence. To investi-
gate the system performance, 100 different random loss pat-
terns for each loss probability pair are generated with a uni-
formly distributed independent loss model. Although some
of the loss patterns generated contain bursty errors (espe-
cially if the loss probability is high), bursty loss models will
be investigated in the future work. Encoded subsequences are
decoded and reconstructed using the extended recovery ap-
proach. Block-based motion controlled interpolation is em-
ployed for extended state recovery.

Figures 7, 8, and 9 show for Foreman the average re-
constructed frame PSNR over the rate allocated to the first
stream for balanced and unbalanced loss probability pairs
in case the subsequences are coded without intra-coding,
with GOB-intra-updates, and with frame updates, respec-
tively. The same comparison is depicted for Akiyo in Figures
10, 11, and 12. PSNRavg is given on the y-axis, whereas R1,
the rate allocated to the first stream, is given on the x-axis.
The left corner of the x-axis corresponds to balanced rate al-
location, whereas the right corner represents the most un-
balanced one. Observations for the three categories of loss
probability pairs are listed below.
(a) First stream is lossless and second stream is lossy.

(i) For Foreman, whether the periodic intra-GOB
coding is applied or not, the unbalanced opera-
tion is preferred. The optimal rate R1is smaller with
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Figure 7: PSNRavg over R1, Foreman.
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Figure 8: PSNRavg over R1, Foreman with GOB-intra-updates.

the intra-GOB coding than with no-intra-coding.
With intra-frame coding, unbalanced rates are fa-
vorable only when p2 increases beyond 5%.

(ii) For Akiyo, however, interpolation yields very good
results due to low motion. The optimal operating
point for Akiyo is therefore the most unbalanced
one whatever intra-coding option is used.

(iii) Note that, the packets which are received but not
used (since interpolation yields better results) are
not employed to enhance the reconstruction re-
sults in the experiments (subject of future work). If
the received but discarded packets, that is, coarsely
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Figure 9: PSNRavg over R1, Foreman with frame-intra-updates.
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Figure 10: PSNRavg over R1, Akiyo.

quantized images, can be incorporated to enhance
the reconstruction further, we expect the optimal
rate R1 to increase, favoring unbalanced operation
even more. Using coarsely quantized images as side
information is discussed in [21] in the context of
the Wyner-Ziv coding.

(iv) For Foreman, if both streams are lossless, PSNRavg

decreases slightly, first as R1 increases, followed by a
slight increase. The slight decrease in performance
is due to the conservative (suboptimal) threshold
setting in the simulations.
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Figure 11: PSNRavg over R1, Akiyo with GOB-intra-updates.
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Figure 12: PSNRavg over R1, Akiyo with frame-intra-updates.

(b) Both streams are lossy.

(i) Balanced loss probabilities call for balanced rate al-
locations whether periodic intra-coding is applied
or not and whether the sequence has high motion
content or not.

(ii) For Foreman at unbalanced loss probabilities, bal-
anced operation is still slightly favored. For Akiyo
at unbalanced loss probabilities and at loss rates
that are smaller than 20%, unbalanced operation
is preferred.
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Sequence or part of the sequence

Categorization

High motion Low motion

Balanced losses Unbalanced losses Balanced losses Unbalanced losses

Balanced coding rates
& intra-updates

Unbalanced coding rates
only if unbalanced loss

rates & intra-updates are high

Balanced coding rates
& intra-updates only
if loss rates are high

Unbalanced coding rates
& no intra-updates

Figure 13: Heuristics for coding decisions.

(iii) The low-rate stream is not fully used in the cur-
rent work. Since the higher-rate stream is also lossy,
the low-rate stream is to be used to recover the
high-rate stream. If the sequence length until the
next refreshment is long, the overall quality can de-
crease due to the coarse quantization of the second
description.

(iv) As noted before, the results can be improved in fa-
vor of unbalanced operation by incorporating the
received but discarded packets into the reconstruc-
tion.

(v) Performance differences between operating points
are smaller when intra-updates, especially frame
updates are used.

Heuristics and results we obtained from the here-above
analysis and experiments are summarized in Figure 13. First,
we have to distinguish between high and low motion se-
quences. Second, we should check whether the loss proba-
bilities of the channels are balanced or not. For high mo-
tion sequences, if we have balanced loss probabilities, bal-
anced coding rates with intra-updates are optimal. But if the
loss probabilities are highly unbalanced, unbalanced rates in
combination with intra-updates are to be preferred. For low
motion sequences, on the other hand, at balanced loss rates,
balanced rates are favorable and the frame updates are to be
used only if the loss rates are high (more than 10%). For
unbalanced loss probabilities, however, no intra-updates are
necessary and unbalanced rates are the best strategy.

6. CONCLUSIONS

Unbalanced descriptions are particularly interesting for
video streaming applications over heterogeneous networks
using path diversity, where transmission channels have vary-
ing transmission characteristics. By using flexible and adap-
tive rate allocation over available transmission paths, the re-
constructed signal quality at the receiver can be improved.
In this work, unbalanced descriptions of the video signal are

generated using the multiple state video coding approach.
The total bitrate is kept constant while the subsequences are
quantized with different stepsizes adaptive to the sequence as
well as to the transmission conditions. Besides, the state re-
covery approach of MSVC is extended to enhance the quality
of the coarsely quantized stream. The system performance in
terms of average PSNR is investigated for different loss rates,
rate allocations, coding options, and sequences. To deter-
mine the optimal coding parameters, we distinguish between
high and low motion sequences as well as between balanced
and unbalanced transmission conditions (bandwidth or loss
probabilities). For high motion sequences and for balanced
loss probabilities, balanced coding rates with intra-updates
are optimal. But if the loss probabilities are highly unbal-
anced, unbalanced rates in combination with intra-updates
are to be preferred. For low motion sequences and balanced
loss rates, balanced rates are favorable and the frame updates
are to be used only if the loss rates are high (more than 10%).
If the loss probabilities are unbalanced, no intra-updates are
necessary and unbalanced rates are optimal. Another result
is that extended state recovery reduces the penalty in the av-
erage system performance due to unbalancing. At last, we
introduce a distortion model to guide the optimized coding
strategy. Additionally, we present a nearly optimal rate allo-
cation method based on this distortion model. Future work
will focus on the improvement of the results in unbalanced
operation using the coarsely quantized images as side infor-
mation at the interpolation process.
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