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We propose a new blind minimum mean square error (MMSE) equalization algorithm of noisy multichannel finite impulse re-
sponse (FIR) systems, that relies only on second-order statistics. The proposed algorithm offers two important advantages: a
low computational complexity and a relative robustness against channel order overestimation errors. Exploiting the fact that the
columns of the equalizer matrix filter belong both to the signal subspace and to the kernel of truncated data covariance matrix,
the proposed algorithm achieves blindly a direct estimation of the zero-delay MMSE equalizer parameters. We develop a two-step
procedure to further improve the performance gain and control the equalization delay. An efficient fast adaptive implementation
of our equalizer, based on the projection approximation and the shift invariance property of temporal data covariance matrix, is
proposed for reducing the computational complexity from O(n3) to O(qnd), where q is the number of emitted signals, n the data
vector length, and d the dimension of the signal subspace. We then derive a statistical performance analysis to compare the equal-
ization performance with that of the optimal MMSE equalizer. Finally, simulation results are provided to illustrate the effectiveness
of the proposed blind equalization algorithm.
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1. INTRODUCTION

1.1. Blind equalization

An elementary problem in the area of digital communica-
tions is that of intersymbol interference (ISI). ISI results from
linear amplitude and phase dispersion in the transmission
channel, mainly due to multipath propagation. To achieve
reliable communications, channel equalization is necessary
to deal with ISI.

Conventional nonblind equalization algorithms require
training sequence or a priori knowledge of the channel [1].
In the case of wireless communications these solutions are
often inappropriate, since a training sequence is usually sent
periodically, thus the effective channel throughput is consid-
erably reduced. It follows that the blind and semiblind equal-
ization of transmission channels represent a suitable alterna-
tive to traditional equalization, because they do not fully rely
on training sequence or a priori channel knowledge.

In the first contributions [2, 3], blind identification/equ-
alization (BIE) schemes were based, implicitly or explicitly
on higher- (than second-) order statistics of the observation.
However, the shortcoming of these methods is the high er-
ror variances often exhibited by higher-order statistical esti-

mates. This often translates into slow convergence for on-line
methods or unreasonable data length requirements for off-
line methods. In the pioneering work of Tong et al.[4], it has
been shown that the second-order statistics contain sufficient
information for BIE of multichannel FIR systems. Later, ac-
tive research in BIE area has led to a variety of second-order
statistics-based algorithms (see the survey paper [5], as well
as the references therein). Many efficient solutions (e.g., [6])
suffer from the lack of robustness against channel order over-
estimation errors and are also computationally expensive. A
lot of research effort has been done to either develop effi-
cient techniques for channel order estimation (e.g., [7, 8]) or
to develop BIE methods robust to channel order estimation
errors. Several robust techniques have been proposed so far
[9–13], but all of them depend explicitly or implicitly on the
channel order and hence have only a limited robustness, in
the sense that their performance degrades significantly when
the channel overestimation error is large.

1.2. Contributions

In this work, we develop a blind adaptive equalization algo-
rithm based on MMSE estimation, which presents a num-
ber of nice properties such as robustness to channel order
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overestimation errors and low computational complexity.
More precisely, this paper describes a new technique for di-
rect design of MIMO blind adaptive MMSE equalizer, hav-
ing O(qnd) complexity and relative robustness against chan-
nel order overestimation errors. We show that the columns
of the zero-delay equalizer matrix filter belongs simultane-
ously to the signal subspace and to the kernel of truncated
data covariance matrix. This property leads to a simple esti-
mation method of the equalizer filter by minimizing a cer-
tain quadratic form subject to a properly chosen constraint.
We present an efficient fast adaptive implementation of the
novel algorithm, including a two-step estimation procedure,
which allows us to compensate for the performance loss of
the equalizer, compared to the nonblind one, and to choose
a nonzero equalization delay. Also, we derive the asymptotic
performance analysis of our method which leads to a closed
form expression of the performance loss (compared to the
optimal one) due to the considered blind processing.

The rest of the paper is organized as follows. In Section 2
the system model and problem statement are developed.
Batch and adaptive implementations of the algorithm, us-
ing respectively, linear and quadratic constraints are intro-
duced in Sections 3 and 4. Section 5 is devoted to the asymp-
totic performance analysis of the proposed blind MMSE fil-
ter. Simulation examples and performances evaluation are
provided in Section 6. Finally, conclusions are drawn in
Section 7.

1.3. Notations

Most notations are standard: vectors and matrices are rep-
resented by boldface small and capital letters, respectively.
The matrix transpose, the complex conjugate, the hermi-
tian, and the Moore-Penrose pseudo-inverse are denoted by
(·)T , (·)∗, (·)H , and (·)#, respectively. In is the n × n iden-
tity matrix and 0 (resp., 0i×k) denotes the zero matrix of
appropriate dimension (resp., the zero matrix of dimension
i×k). The symbol⊗ stands for the Kronecker product; vec(·)
and vec−1(·) denote the column vectorization operator and
its inverse, respectively. E(·) is the mathematical expecta-
tion. Also, we use some informal MATLAB notations, such
as A(k, :),A(:, k),A(i, k), . . . , for the kth row, the kth column,
the (i, k)th entry of matrix A, respectively.

2. DATAMODEL

Consider a discrete timeMIMO system of q inputs, p outputs
(p > q) given by

x(t) =
L∑

k=0
H(k)s(t − k) + b(t), (1)

whereH(z) =∑L
k=0H(k)z−k is an unknown causal FIR p×q

transfer function. We assume (A1) H(z) is irreducible and
column reduced, that is, rank(H(z)) = q, for all z andH(L) is
full column rank. (A2) The input (nonobservable) signal s(t)
is a q-dimensional random vector assumed to be an iid (inde-
pendently and identically distributed) zero-mean unit power

complex circular process [14], with finite fourth-order mo-
ments, that is, E(s(t+τ)sH(t)) = δ(τ)Iq, E(s(t+τ)sT(t)) = 0,
E(|si(t)|4) < ∞, i = 1, . . . , q. (A3) b(t) is an additive spatially
and temporally white Gaussian noise of power σ2b Ip and in-
dependent of the transmitted sequence {s(t)}.1

By stacking N successive samples of the received signal
x(t) into a single vector, we obtain the n-dimensional (n =
Np) vector

xN (t) =
[
xT(t) xT(t − 1) · · · xT(t −N + 1)

]T

= HNsm(t) + bN (t),
(2)

where sm(t) = [sT(t) · · · sT(t−m+1)]T , bN (t) = [bT(t) · · ·
bT(t−N+1)]T ,m = N+L andHN is the channel convolution
matrix of dimension n× d, (d = qm), given by

HN =

⎡
⎢⎢⎣

H(0) · · · H(L) 0
. . .

. . .
0 H(0) · · · H(L)

⎤
⎥⎥⎦ . (3)

It is shown in [15] that if N is large enough and under as-
sumption (A1), matrix HN is full column rank.

3. ALGORITHMDERIVATION

3.1. MMSE equalizer

Consider a τ-delay MMSE equalizer (τ ∈ {0, 1, . . . ,m − 1}).
Under the above data model, one can easily show that the
equalizer matrix Vτ corresponding to the desired solution is
given by

Vτ = argmin
V

E
(∥∥s(t − τ)−VHxN (t)

∥∥2
)
= C−1Gτ , (4)

where

C
def= E

(
xN (t)xHN (t)

) = HNHH
N + σ2b In (5)

is the data covariance matrix and Gτ is an n× qmatrix given
by

Gτ
def= E

(
xN (t)sH(t − τ)

) = HN Jqτ,q,q(m−τ−1), (6)

J j,k,l is a truncation matrix defined as follow:

J j,k,l
def=
⎡
⎢⎣
0 j×k
Ik
0l×k

⎤
⎥⎦ . (7)

Note thatHN Jqτ,q,q(m−τ−1) denotes the submatrix ofHN given
by the column vectors of indices varying in the range [τq +

1 Note that the column reduced condition in assumption (A1) can be re-
laxed, but that would lead to more complex notations. Similarly, the cir-
cularity and the finite value of the fourth-order moments of the input
signal in assumption (A2) and the Gaussianity of additive noise in as-
sumption (A3) are not necessary for the derivation of our algorithm, but
used only for the asymptotic performance analysis.
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1, . . . , (τ+1)q]. From (4), (5), (6) and using matrix inversion
lemma, matrix Vτ is also expressed as Vτ = HNVτ , where Vτ

is a d × q-dimensional matrix given by

Vτ = 1
σ2b

(
Id − 1

σ4b

(
σ2b Id +HH

NHN
)−1

HH
NHN

)
Jqτ,q,q(m−τ−1).

(8)

Clearly, the columns of MMSE matrix filter Vτ belong to the
signal subspace (i.e., range(HN )) and thus one can write

Vτ =WṼτ , (9)

where W is an n × d matrix whose column vectors form an
orthonormal basis of the signal subspace (there exist a non-
singular d × d matrix P such that W = HNP) and Ṽτ is a
d × q-dimensional matrix.

3.2. Blind equalization

Our objective here is to derive a blind estimate of the zero-
delay MMSE equalizer V0. From (4), (6), (7), and (9), one
can write V0 =WṼ0, with

CWṼ0 =

⎡
⎢⎢⎢⎣

H(0)
0
...
0

⎤
⎥⎥⎥⎦ . (10)

If we truncate the first p rows of system (10), we obtain

TṼ0 = 0, (11)

where T is an (n− p)× d matrix given by

T
def= CW, (12)

C = C(p + 1 : n, :) = JTp,n−p,0C. (13)

MatrixC is a submatrix ofC given by its n−p rows. Equation
(11) shows that the columns of Ṽ0 belong to the right null
space of T(nullr(T) = {z ∈ Cd : Tz = 0}). Reversely, we
can establish that (11) characterizes uniquely the zero-delay
MMSE equalizer. We have the following result.

Theorem 1. Under the above data assumptions and for N >
qL + 1 the solution of

TṼ = 0, (14)

subject to the constraint

rank(Ṽ) = q, (15)

is unique (up to a constant q× q nonsingular matrix) and cor-
responds to the desired MMSE equalizer, that is,

Ṽ = Ṽ0R, (16)

for a given constant q × q invertible matrix R.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of
C. Since HN is full column rank, the signal part of the co-
variance matrix C, that is, HNHH

N has rank d, hence λk > σ2b ,
k = 1, . . . ,d and λk = σ2b , k = d + 1, . . . ,n. Denote the unit-
norm eigenvectors associated with the eigenvalues λ1, . . . , λd
by us(1), . . . ,us(d), and those corresponding to λd+1, . . . , λn
by ub(1), . . . ,ub(n − d). Also define Us = [us(1) . . .us(d)]
and Ub = [ub(1) . . .ub(n − d)]. The covariance matrix is
thus also expressed as C = Us diag(λ1, . . . , λd)UH

s + σ2bUbUH
b .

The columns of matrix Us span the signal subspace, that
is, range(HNHH

N ) = range(HN ), there exist a nonsingular
d × d matrix P′ such that Us = HNP′, while the columns
of Ub span its orthogonal complement, the noise subspace,
that is, UH

b Us = 0. As W is an orthonormal basis of the
signal subspace, there exists nonsingular d × d matrices P
and P′′ such that W = HNP = UsP′′, hence CW =
(HNP′ diag(λ1, . . . , λd)UH

s + σ2bUbUH
b )UsP′′ = HNS, where

S = P′ diag(λ1, . . . , λd)P′′ is nonsingular. Consequently, T =
C(p + 1 : n, :)W = HN (p + 1 : n, :)S. Since HN is block-
Toeplitz matrix (see equation (3)), HN (p + 1 : n, :) =
[0(n−p)×q HN−1]. As HN−1 is full column rank, it implies
that dim(nullr(T)) = dim(nullr([0(n−p)×q HN−1])) = q. It
follows that any full column rank d × q matrix Ṽ, solu-
tion of (14), can be considered as a basis of the right null
space of matrix T. According to (11) the columns of matrix
Ṽ0, which characterize the MMSE filter given by (10), be-
long to nullr(T) and are linearly independent, it follows that
Ṽ = Ṽ0R, where R is a nonsingular q × q matrix.

3.3. Implementation

3.3.1. The SIMO case

In the SIMO case (q = 1) matrix Ṽ is replaced by the d-
dimensional vector ṽ and (14) can be solved, simply, in the
least squares sense subject to the unit norm constraint:

ṽ = arg min
‖z‖=1

(
zHQz

)
, (17)

where Q is a (d × d) matrix defined by

Q
def= THT. (18)

Then, according to (9) and (16), we obtain the MMSE equal-
izer vector v0 = rv, where r is a given nonzero scalar and v is
the n-dimensional vector given by

v =Wṽ. (19)

A batch-processing implementation of the SIMO blind
MMSE equalization algorithm is summarized in Algorithm
1.

3.3.2. TheMIMO case

In this situation, the quadratic constraint on Ṽ does not guar-
antee condition (15) in Theorem 1. One possible solution is
to choose a linear constraint (instead of the quadratic one)
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C = 1
K

K−1∑

t=0
xN (t)xHN (t), (K : sample size)

(
W,Λ1

) = eigs(C,d), (extracts the d principal eigenvectors of C)

T = C(p + 1 : n, :)W

Q = THT

ṽ = the least eigenvector of Q

v =Wṽ

Algorithm 1: SIMO blind MMSE equalization algorithm.

such as the q × q first block of matrix Ṽ is lower triangular

Ṽ(1 : q, 1 : q) =
⎡
⎢⎣
1 · · · 0

× . . .
...

× × 1

⎤
⎥⎦ , (20)

which will guarantee that matrix Ṽ has a full column rank q.
It is clear that (14) is equivalent to (see [16] for more

details)

(
Iq ⊗ T) vec(Ṽ) = 0. (21)

Taking into account the lower triangular constraint in (20),
(21) becomes

a + Av = 0, (22)

where

v = JT vec(Ṽ),

a = vec
(
TJ0,q,d−q

)
,

A = (Iq ⊗ T
)
J,

J = diag
(
J1, J2, . . . , Jq

)
,

Jk = Jk,d−k,0, k = 1, . . . , q.

(23)

The solution of (22) is given by

v = −A#a. (24)

Matrix Ṽ, solution of (14), is then given by Ṽ = vec−1(ṽ)
where ṽ is obtained from v by adding ones and zeros at the
appropriate entries according to

ṽ = Jv + vec
(
J0,q,d−q

)
. (25)

From (9) and (16), we obtain the MMSE equalizer matrix
V0 = VR−1, where R is a constant invertible q×qmatrix and
V is an (n× q) matrix given by

V =WṼ. (26)

Thus, we obtain a block-processing implementation of the
MIMO blind MMSE equalization algorithm that is summa-
rized in Algorithm 2. Note that the q × q constant matrix

R comes from the inherent indeterminacies of MIMO blind
identification systems using second-order statistics [15].
Usually, this indeterminacy is solved by applying some blind
source separation algorithms.

3.4. Selection of the equalizer delay

It is known that the choice of the equalizer delay may af-
fect significantly the equalization performance in SIMO and
MIMO systems. In particular, nonzero-delay equalizers can
have much improved performance compared to the zero-
delay ones [10]. Indeed, one can write the spatiotemporal
vector in (2) as follows:

xN (t) =
m−1∑

k=0
Gks(t − k) + bN (t), (27)

where Gk is defined in (6) and represents a submatrix of
HN given by the column vectors of indices varying in the
range [kq + 1, . . . , (k + 1)q]. One can observe that ‖G0‖ ≤
‖G1‖ ≤ · · · ≤ ‖GL‖ = ‖GL+1‖ = · · · = ‖GN−1‖ and
‖GN−1‖ ≥ ‖GN‖ ≥ · · · ≥ ‖Gd−1‖. In other words, the
input symbols with delays τ, L ≤ τ ≤ N − 1 are multi-
plied in (27) by (matrix) factors of maximum norm. Con-
sequently, the best equalizer delay belongs, in general, to the
range [L, . . . ,N − 1]. One can observe also that, the perfor-
mance gain of the nonzero equalizer with delay in the range
[L, . . . ,N − 1] can be large compared to that of equalizers
with extreme delays, that is, τ = 0 or τ = d− 1. The gain dif-
ference becomes, in general, negligible when we consider two
equalizers with delays belonging to the interval [L, . . . ,N−1]
(see [10]). Hence, in practice, the search for the optimal
equalizer delay is computationally expensive and worthless
and it is often sufficient to choose a good delay in the range
[L, . . . ,N − 1], for example, τ = L as we did in this paper.

Moreover, it is shown in Section 5 that the blind estima-
tion of the MMSE filter results in a performance loss com-
pared to the nonblind one. To compensate for this perfor-
mance loss and also to have a controlled nonzero equaliza-
tion delay which helps to improve performance of the equal-
izer, we propose here a two-step approach to estimate the
blind MMSE equalizer. In the first step, we estimate V0 ac-
cording to the previous algorithms, while, in the second step,
we refine this estimation by exploiting the a priori knowledge
of the finite alphabet to which belongs the symbols s(t). This
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C = 1
K

K−1∑

t=0
xN (t)xHN (t), (K : sample size)

(W,Λ) = eigs(C,d), (extracts the d principal eigenvectors of C)

T = C(p + 1 : n, :)W

a = vec
(
T(:, 1 : q)

)

A = (Iq ⊗ T
)
J

v = −A#a

Ṽ = vec−1(Jv) + J0,q,d−q
V =WṼ

Algorithm 2: MIMO blind MMSE equalization algorithm.

Estimate ŝ(t), t = 0 . . . K − 1, using V given by Algorithm 1 or Algorithm 2

followed by BSS (e.g., ACMA in [17]).

Gτ = 1
K

K+τ−1∑

t=τ
xN (t)ŝH(t − τ)

Vτ = C−1Gτ

Algorithm 3: Two-step equalization procedure.

is done by performing a hard decision on the symbols that
are then used to reestimate Vτ according to (4) and (6).2

More precisely, operating with equalizer filter V in (26)
(or in (19) for the SIMO case) on the received data vector
xN (t) in (2), we obtain, according to (9) and (16), an estima-
tion of the emitted signal s̃(t) = VHxN (t) = RHVH

0 xN (t), as
VH
0 xN (t) = s(t) + ε(t), where ε(t) represents the residual es-

timation error (of minimum variance) of s(t), it follows that

s̃(t) = RHs(t) + ε̃(t), (28)

where ε̃(t) = RHε(t). It is clear from (28), that the estimated
signal s̃(t) is an instantaneous mixture of the emitted sig-
nal s(t) corrupted by an additive colored noise ε̃(t). Thus,
an identification of R (i.e., resolving the ambiguity) is then
necessary to extract the original signal and to decrease the
mean square error (MSE) towards zero. This is achieved by
applying (in batch or adaptive way) a blind source separa-
tion (BSS) algorithm to the equalizer output (28), followed
by a hard decision on the symbols. In this paper, we have
used the ACMA algorithm (analytical constant modulus al-
gorithm) in [17] for batch processing implementation and
the A-CMS algorithm (adaptive constant modulus separa-
tion) in [18] for adaptive implementation. Indeed, constant
modulus algorithms (CMA)-like algorithms (ACMA and A-
CMS) have relatively low cost and are very efficient in sepa-
rating (finite alphabet) communication signals. The two-step

2 We assume here the use of a differential modulation to get rid of the phase
indeterminacy inherent to the blind equalization problem.

blind MMSE equalization algorithms are summarized in Al-
gorithms 1, 2, and 3.

3.5. Robustness

We study here the robustness of the proposed blind MMSE
equalizer against channel order overestimation errors. Let us
consider, for simplicity, the SIMO case where the channel
order is used to determine the column dimension equal to
d = L + N of matrix W (which corresponds, in practice, to
the size of the dominant subspace of C). Let L′ > L be the
over-estimated channel order and hence d′ = L′ + N is the
column dimension of W, that is, we consider the subspace
spanned by the d′ dominant eigenvector of C. We argue here
that, as long as the number of sensors p plus the overesti-
mation error order L′ − L is smaller than the noise subspace
dimension, that is, p + L′ − L < n − d, the least squares so-
lution of (14) provides a consistent estimate of the MMSE
equalizer. This observation comes from the following.

Note that, using (5), matrixC defined in (13) is expressed
as C = [H′ C′], where H′ is an (n − p) × p-dimensional
matrix and C′ = HN−1HH

N−1 + σ2b In−pan(n − p) × (n − p)
full-rank matrix. It follows that the right null space of C,
nullr(C) = {z ∈ Cn : Cz = 0}, is a p-dimensional subspace.
Now, one can observe that only one direction of nullr(C) be-
longs to the signal subspace since nullr(C) ∩ range(HN ) =
nullr(CHN ) = nullr(CW) (the last equality comes from the
fact that HN and W span both the same (signal) subspace).
According to the proof of Theorem 1, dim(nullr(CW)) = 1.

Let b1, . . . ,bp be a basis of nullr(C) such that b1 belongs
to the signal subspace (i.e., range(HN )). Now, the solution of
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(14) would be unique (up to a scalar constant) if

range(W)∩ range
( [

b1 · · · bp

] )
= range

(
b1
)
, (29)

or equivalently

range(W)∩ range
( [

b2 · · · bp

] )
= {0}. (30)

The above condition would be verified if the intersection of
the subspace spanned by the projections of b2, . . . ,bp onto
the noise subspace and the subspace spanned by the L′ − L
noise vectors ofW introduced by the overestimation error is
empty (except for the zero vector). As the latter are randomly
introduced by the eigenvalue decomposition (EVD) of C and
since p + L′ − L < n − d, then one can expect this subspace
intersection to be empty almost surely.

Note also that, by using linear constraint, one obtains
better robustness than with quadratic constraint. The reason
is that the solution of (14) is, in general, a linear combination
of the desired solution v0 (that lives in the signal subspace)
and noise subspace vectors (introduced by the channel or-
der overestimation errors). However, it is observed that, for a
finite sample size and for moderate and high SNRs the con-
tribution of the desired solution v0 in (14) is much higher
than that of the noise subspace vectors. This is due to the
fact that the low energy output of the noise subspace vectors
comes from their orthogonality with the system matrix HN

(this is a structural property, independent of the sample size),
while the desired solution v0 belongs to the kernel of C due
to the decorrelation (whiteness) property of the input signal
which is valid asymptotically for large sample size. Indeed,
one can observe (see Figure 6) that when increasing K (the
sample size), the robustness of the quadratically constrained
equalizer improves significantly. Consequently, in the context
of small or moderate sample sizes, solving (14) in the least
squares sense under unit norm constraint leads to a solution
that lives almost in the noise subspace (i.e., the part of v0 in
the final solution becomes very small). On the other hand, by
solving (14) subject to linear constraints (24) and (25), one
obtains a solution where the linear factor of v0 is more sig-
nificant (which is due to the fact that vector a in (24) belongs
to the range subspace of A).

This argument, eventhough not a rigorous proof of ro-
bustness, has been confirmed by our simulation results (see
simulation example given below where one can see that the
performance loss of the equalization due to the channel order
overestimation error remains relatively limited).

4. FAST ADAPTIVE IMPLEMENTATION

In tracking applications, we are interested in estimating the
equalizer vector recursively with low computational com-
plexity. We introduce here a fast adaptive implementation
of the proposed blind MMSE equalization algorithms. The
computational reduction is achieved by exploiting the idea of
the projection approximation [19] and the shift-invariance
property of the temporal data covariance matrices [20].

Matrix C is replaced by its recursive estimate

C(t) =
t∑

k=0
βt−kxN (k)xHN (k) = βC(t − 1) + xN (t)xHN (t),

(31)

where 0 < β < 1 is a forgetting factor. The weight matrix
W corresponding to the d dominant eigenvectors of C can be
estimated using a fast subspace estimation and tracking algo-
rithm. In this paper, we use the YAST algorithm (yet another
subspace tracker) [21]. The choice of YAST algorithm is mo-
tivated by its remarkable tracking performance compared to
other existing subspace tracking algorithms of similar com-
putational complexity (PAST [19], OPAST [22], etc.). The
YAST algorithm is summarized in Algorithm 4. Note that
only O(nd) operations are required at each time instant (in-
stead of O(n3) for a full EVD). Vector x′(t) = C(t − 1)xN (t)
in Algorithm 4 can be computed in O(n) operations, by us-
ing the shift-invariance property of the correlation matrix, as
seen in Appendix A.

Applying, to (12), the projection approximation

C(t)W(t) ≈ C(t)W(t − 1), (32)

which is valid if matrixW(t) is slowly varying with time [22],
yields

T(t) = βT(t − 1) + JTp,n−p,0xN (t)y
H(t), (33)

where vector JTp,n−p,0xN (t) is a subvector of xN (t) given by its
last (n − p) elements and vector y(t) = WH(t − 1)xN (t) is
computed by YAST (cf. Algorithm 4).

4.1. The SIMO case

In this case, our objective is to estimate recursively the d-
dimensional vector ṽ in (17) as the least eigenvector of matrix
Q or equivalently as the dominant eigenvector of its inverse.3

Using (18), (33) can be replaced by the following recursion:

Q(t) = β2Q(t − 1)−DQ(t)Γ−1Q (t)DH
Q (t), (34)

where DQ(t) is the d × 2 matrix

DQ(t) =
[
βTH(t − 1)JTp,n−p,0xN (t) y(t)

]
, (35)

and ΓQ(t) is the 2× 2 nonsingular matrix

ΓQ(t) =
[∥∥JTp,n−p,0xN (t)

∥∥2 −1
−1 0

]
. (36)

Consider the d × d Hermitian matrix F(t)
def= Q−1(t), using

the matrix (Schur) inversion lemma [1], we obtain

F(t) = 1
β2

F(t − 1) +DF(t)ΓF(t)DH
F (t), (37)

3 Q is a singular matrix when dealing with the exact statistics. However,
when considering the sample averaged estimate of C, due to the estima-
tion errors and the projection approximation, the estimate of Q is almost
surely a nonsingular matrix.
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y(t) =WH(t − 1)xN (t)

x′(t) = C(t − 1)xN (t)

y′(t) =WH(t − 1)x′(t)

σ(t) = (xHN (t)xN (t)− yH(t)y(t)
)1/2

h(t) = Z(t − 1)y(t)

γ(t) = (β + yH(t)h(t)
)−1

Z̃(t) = 1
β

(
Z(t − 1)− h(t)γ(t)hH(t)

)

α(t) = xHN (t)xN (t)

y′′(t) = βy′(t) + y(t)α(t)

cyy(t) = βxHN (t)x′(t) + α∗(t)α(t)

h′(t) = Z̃(t − 1)y′′(t)

γ′(t) =
(
cyy(t)−

[
y′′(t)

]H
h′(t)

)−1

h′′(t) = h′(t)− y(t)

Z̃′(t) = Z̃(t) + h′′(t)γ′(t)
[
h′′(t)

]H

g(t) = h′′(t)γ′(t)σ∗(t)

γ′′(t) = σ(t)γ′(t)σ∗(t)

Z′(t) = [Z̃′(t),−g(t);−gH(t), γ′′(t)]
(
φ(t), λ(t)

) = eigs
(
Z′(t), 1

)

ϕ(t) = φ(1:d)(t)

z(t) = φ(d+1)(t)

ρ(t) = ∣∣z(t)∣∣
θ(t) = e j arg(z(t)), (arg stands for the phase argument)

f(t) = ϕ(t)θ∗(t)

f ′(t) = f(t)
(
1 + ρ(t)

)−1

y′′′(t) = y(t)σ−1(t)− f ′(t)

e(t) = x(t)σ−1(t)−W(t − 1)y′′′(t)

W(t) =W(t − 1)− e(t)fH(t)

g′(t) = g(t) + f ′(t)
(
γ′′(t)− θ(t)λ(t)θ∗(t)

)

Z(t) = Z̃′(t) + g′(t)
[
f ′(t)

]H
+ f ′(t)gH(t)

Algorithm 4: YAST algorithm.

where DF(t) is the d × 2 matrix

DF(t) = 1
β2

F(t − 1)DQ(t), (38)

and ΓF(t) is the 2× 2 matrix

ΓF(t) =
(
ΓQ(t)−DH

F (t)DQ(t)
)−1

. (39)

The extraction of the dominant eigenvector of F(t) is ob-
tained by power iteration as

ṽ(t) = F(t)ṽ(t − 1)∥∥F(t)ṽ(t − 1)
∥∥ . (40)

The complete pseudocode for the SIMO adaptive blind
MMSE equalization algorithm is given in Algorithm 5. Note
that the whole processing requires only O(nd) flops per iter-
ation.

UpdateW(t) and y(t) using YAST (cf. Algorithm 4)

x(t) = xN (t)(p+1:n)

ΓQ(t) =
[∥∥x(t)

∥∥2 −1
−1 0

]

DQ(t) =
[
βTH(t − 1)x(t) y(t)

]

DF(t) = 1
β2

F(t − 1)DQ(t)

ΓF(t) =
(
ΓQ(t)−DH

F (t)DQ(t)
)−1

F(t) = 1
β2

F(t − 1) +DF(t)ΓF(t)DH
F (t)

ṽ(t) = F(t)ṽ(t − 1)∥∥F(t)ṽ(t − 1)
∥∥

v(t) =W(t)ṽ(t)

T(t) = βT(t − 1) + x(t)yH(t)

Algorithm 5: SIMO adaptive blind equalization algorithm.

4.2. TheMIMO case

Here, we introduce a fast adaptive version of theMIMOblind
MMSE equalization algorithm given in Algorithm 2. First
note that, due to the projection approximation and the fi-
nite sample size effect, matrix A is almost surely full column
rank and hence

A# = (AHA
)−1

AH. (41)

Therefore vector v in (24) can be expressed as

v(t) =
[
vT1 (t) vT2 (t) · · · vTq (t)

]T
, (42)

where vectors vk(t), for k = 1, . . . , q, are given by

vk(t) = −Fk(t)fk(t),
Fk(t) =

(
JTkQ(t)Jk

)−1
,

fk(t) = JTkQ(t)Jk−1,1,d−k.

(43)

Using (34) and the matrix (Schur) inversion lemma [1], ma-
trix Fk(t) can be updated by the following recursion:

Fk(t) = 1
β2

Fk(t − 1) +DFk (t)ΓFk (t)D
H
Fk (t),

DFk (t) =
1
β2

Fk(t − 1)JTkDQ(t),

ΓFk (t) =
(
ΓQ(t)−DH

Fk (t)J
T
kDQ(t)

)−1
,

(44)

where matrices DQ(t) and ΓQ(t) are given by (35) and (36).
Algorithm 6 summarizes the fast adaptive version of the

MIMO blind MMSE equalization algorithm. Note that the
whole processing requires only O(qnd) flops per iteration.

4.3. Two-step procedure

Let W ∈ Cn×d be an orthonormal basis of the signal sub-
space. Since Gτ belongs to the signal subspace, one can write
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UpdateW(t) and y(t) using YAST (cf. Algorithm 4)

x(t) = xN (t)(p+1:n)

ΓQ(t) =
[∥∥x(t)

∥∥2 −1
−1 0

]

DQ(t) =
[
βTH(t − 1)x(t) y(t)

]

Q(t) = β2Q(t − 1)−DQ(t)Γ−1Q (t)DH
Q (t)

For k = 1, . . . , q :
fk(t) = Q(t)(k+1:d,k)

DFk (t) =
1
β2

Fk(t − 1)DQ(t)(k+1:d,:)

ΓFk (t) =
(
ΓQ(t)−DH

Fk
(t)DQ(t)(k+1:d,:)

)−1

Fk(t) = 1
β2

Fk(t − 1) +DFk (t)ΓFk (t)D
H
Fk
(t)

Vk(t) = −Fk(t)fk(t)
end

V(t) =
[
V

T
1 (t) V

T
2 (t) · · · V

T
q (t)

]T

Ṽ(t) = vec−1
(
JV(t)

)
+ J0,q,d−q

V(t) =W(t)Ṽ(t)

T(t) = βT(t − 1) + x(t)yH(t)

Algorithm 6: MIMO adaptive blind MMSE equalization algo-
rithm.

(see [23])

Vτ =W
(
WHCW

)−1
WHGτ . (45)

This expression of Vτ is used for the fast adaptive implemen-
tation of the two-step algorithm since Z = (WHCW)−1 is
already computed by the YAST. The recursive expression of
vector Gτ is given by

Gτ(t) = βGτ(t − 1) + xN (t)ŝH(t − τ), (46)

where ŝ(t) is an estimate of s(t) given by applying a BSS to
s̃(t) in (28). In our simulation, we used the A-CMS algo-
rithm in [18]. Thus, (45) can be replaced by the following
recursion:

Vτ(t) = βVτ(t − 1) + z(t)ŝH(t − τ),

z(t) =W(t)Z(t)WH(t)xN (t).
(47)

Note that, by choosing a nonzero equalizer delay τ, we im-
prove the equalization performance as shown below. The
adaptive two-step blind MMSE equalization algorithm is
summarized in Algorithms 5, 6, and 7. The overall compu-
tational cost of this algorithm is (q+8)nd+O(qn+qd2) flops
per iteration.

5. PERFORMANCE ANALYSIS

As mentioned above, the extraction of the equalizer matrix
needs some blind source separation algorithms to solve the
indeterminacy problem which is inherent to second-order

Estimate ŝ(t), using V(t) given by Algorithm 5 or Algorithm 6

followed by BSS (e.g., A-CMS in [18]).

z(t) =W(t)Z(t)WH(t)xN (t)

Vτ(t) = βVτ(t − 1) + z(t)ŝH(t − τ)

Algorithm 7: Adaptive two-step equalization procedure.

MIMO blind identification methods. Thus, the performance
of our MIMO equalization algorithms depends, in part, on
the choice of the blind source separation algorithm which
leads to a very cumbersome asymptotic convergence analysis.
For simplicity, we study the asymptotic expression of the es-
timated zero-delay blind equalization MSE in the SIMO case
only, where, the equalizer vector is given up to an unknown
nonzero scalar constant. To evaluate the performance of our
algorithm, this constant is estimated according to

r = argmin
α

∥∥v0 − αv
∥∥2 = vHv0

‖v‖2 , (48)

where v0 represents the exact value of the zero-delay MMSE
equalizer and v the blind MMSE equalizer presented previ-
ously.

5.1. Asymptotic performance loss

Theoretically, the optimal MSE is given by

MSEopt = E
(∣∣s(t)− vH0 xN (t)

∣∣2
)
= 1− gH0 C

−1g0, (49)

where vector g0 is given by (6) (for q = 1, τ = 0). Let �MSEopt
denotes the MSE reached by v̂0 the estimate of v0:

�MSEopt
def= E

(∣∣s(t)− v̂H0 xN (t)
∣∣2
)
. (50)

In terms of MSE, the blind estimation leads to a performance
loss equal to

�MSEopt −MSEopt = trace
(
C
(
v̂0 − v0

)(
v̂0 − v0

)H)
. (51)

Asymptotically (i.e., for large sample sizes K), this perfor-
mance loss is given by

ε
def= lim

K→+∞
KE
(�MSEopt −MSEopt

) = trace
(
CΣv

)
, (52)

where Σv is the asymptotic covariance matrix of vector v̂0.
As v̂0 is a “function” of the sample covariance matrix of the
observed signal xN (t), denoted here by Ĉ and given, from K-
sample observation, by

Ĉ = 1
K

K−1∑

t=0
xN (t)xHN (t), (53)

it is clear that Σv depends on the asymptotic covariance ma-
trix of Ĉ. The following lemma gives the explicit expression
of the asymptotic covariance matrix of the random vector
Ĉ = vec(Ĉ).
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Lemma 1. Let Cτ be the τ-lag covariance matrix of the signal
xN (t) defined by

Cτ
def= E

(
xN (t + τ)xHN (t)

)
(54)

and let cum(x1, x2, . . . , xk) be the kth-order cumulant of the
random variables (x1, x2, . . . , xk).

Under the above data assumptions, the sequence of esti-
mates Ĉ = vec(Ĉ) is asymptotically normal with mean c =
vec(C) and covariance Σc. That is,

√
K(ĉ− c)

L−−→ N
(
0,Σc

)
. (55)

The covariance Σc is given by

Σc = κc̃ c̃H +
m−1∑

τ=−(m−1)
CT
τ ⊗ CH

τ ,

c̃ = vec
(
C− σ2b In

)
,

κ = cum
(
s(t), s∗(t), s(t), s∗(t)

)
,

(56)

where κ is the kurtosis of the input signal s(t).

Proof. see Appendix B.

Now, to establish the asymptotic normality of vector es-
timate v̂0, we use the so-called “continuity theorem,” which
states that an asymptotically normal statistic transmits its
asymptotic normality to any parameter vector estimated
from it, as long as the mapping linking the statistic to the
parameter vector is sufficiently regular in a neighborhood of
the true (asymptotic) value of the statistic. More specifically,
we have the following theorem [24].

Theorem 2. Let θK be an asymptotically normal sequence of
random vectors, with asymptotic mean θ and asymptotic co-
variance Σθ . Let ω = [ω1 · · · ωnω]T be a real-valued vector
function defined on a neighborhood of θ such that each com-
ponent function ωk has nonzero differential at point θ, that is,
Dωk(θ) �= 0, k = 1, . . . ,nω. Then, ω(θK ) is an asymptotically
normal sequence of nω-dimensional random vectors with mean
ω(θ) and covariance Σ = [Σi, j]1≤i, j≤nω given by

Σi, j = DωT
i (θ)ΣθDωj(θ). (57)

Applying the previous theorem to the estimate of v0 leads
to the following theorem.

Theorem 3. Under the above data assumptions and in the
SIMO case (q = 1), the random vector v̂0 is asymptotically
Gaussian distributed with mean v0 and covariance Σv, that is,

√
K
(
v̂0 − v0

) L−−→ N
(
0,Σv

)
. (58)

The expression of Σv is given by

Σv =MΣcMH , (59)

where Σc is the asymptotic covariance matrix of the sample es-
timate of vector c = vec(C) given in Lemma 1 and matrixM is
given by

M = r
(
In − vvH

‖v‖2
)[(

ṽT ⊗ In
)
Γ−WM2M1

]
,

Γ =

⎡
⎢⎢⎢⎢⎢⎣

WT(:, 1)⊗ (λ1In − C
)#

...

WT(:,d)⊗ (λdIn − C
)#

⎤
⎥⎥⎥⎥⎥⎦
,

M1 =
[(
CJp,n−p,0T

)T⊗Id
]
Un,dΓ

∗Un,n+
[
Id⊗

(
THJTp,n−p,0C

)]
Γ

+
(
Jp,n−p,0T

)T ⊗WH +WT ⊗ (THJTp,n−p,0
)
,

M2 = ṽT ⊗Q′,

Uα,β =
α∑

i=1

β∑

j=1

(
eαi
[
e
β
j

]T)⊗
(
e
β
j

[
eαi
]T)

,

Q′ =
⎧
⎪⎨
⎪⎩

Q#, in the quadratic constraint case

J1
(
JT1QJ1

)−1
JT1 , in the linear constraint case,

(60)

where Uα,β is a permutation matrix, elk denotes the kth column
vector of matrix Il and λ1 > λ2 ≥ · · · ≥ λd are the d princi-
pal eigenvalues of C associated to the eigenvectors W (:, 1), . . . ,
W(:,d), respectively.

Proof. see Appendix C.

5.2. Validation of the asymptotic covariance
expressions and performance evaluation

In this section, we assess the performance of the blind equal-
ization algorithm by Monte-Carlo experiments. We consider
a SIMO channel (q = 1, p = 3, and L = 4), chosen ran-
domly using Rayleigh distribution for each tap. The input
signal is an iid QAM4 sequence. The width of the temporal
window is N = 6. The theoretical expressions are compared
with empirical estimates, obtained by Monte-Carlo simula-
tions (100 independent Monte-Carlo simulations are per-
formed in each experiment). The performance criterion used
here is the relative mean square error (RMSE), defined as the
sample average, over the Monte-Carlo simulations, of the to-
tal estimation of MSE loss, that is, �MSEopt − MSEopt. This
quantity is compared with its exact asymptotic expression di-
vided by the sample size K , εK = (1/K)ε = (1/K)trace(CΣv).
The signal-to-noise ratio (SNR) is defined (in dB) by SNR =
−20 log(σb).

Figure 1(a) compares, in the quadratic constraint case,
the empirical RMSE (solid line) with the theoretical one εK
(dashed line) as a function of the sample size K . The SNR
is set to 15 dB. It is seen that the theoretical expression of
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Figure 1: Asymptotic loss of performance: quadratic constraint.

the RMSE is valid from snapshot length as short as 50 sam-
ples, this means that the asymptotic conditions are reached
for short sample size. In Figure 1(b) the empirical (solid line)
and the theoretical (dashed line) RMSEs are plotted against
the SNR. The sample size is set to K = 500 samples. This
figure demonstrates that there is a close agreement between
theoretical and experimental values. Similar results are ob-
tained when the linear constraint is used.

6. SIMULATION RESULTS ANDDISCUSSION

We provide in this section some simulation examples to illus-
trate the performance of the proposed blind equalizer. Our
tests are based on SIMO and MIMO channels. The chan-
nel coefficients are chosen randomly at each run according
to a complex Gaussian distribution. The input signals are iid
QAM4 sequences. As a performance measure, we estimate
the average MSE given by

MSE = 1
q
E
(∥∥s(t − τ)− V̂H

τ xN (t)
∥∥2
)
, (61)

over 100Monte-Carlo runs. The MSE is compared to the op-
timal MSE given by

MSEopt = 1
q
trace

(
Iq −GH

τ C
−1Gτ

)
. (62)

6.1. Performance evaluation

In this experiment, we investigate the performance of our
algorithm. In Figure 2(a) (SIMO case with quadratic con-

straint) and Figure 2(b) (MIMO case) we plot the MSE (in
dB) against SNR (in dB) for K = 500. One can observe the
performance loss of the zero-delay MMSE filter compared to
the optimal one, due (as shown above) to the blind estima-
tion procedure. Also, it illustrates the effectiveness of the two-
step approach, which allows us to compensate for the perfor-
mance loss and to choose a nonzero equalization delay, that
improves the overall performance.

Figure 3(a) (SIMO case with quadratic constraint) and
Figure 3(b) (MIMO case) represent the convergence rate of
the adaptive algorithm with SNR = 15 dB. Given the low
computational cost of the algorithm, a relatively fast conver-
gence rate is observed. Figure 4 compares, in fast time vary-
ing channel case, the tracking performance of the adaptive
algorithm using respectively, YAST and OPAST as a subspace
trackers. The channel variationmodel is the one given in [25]
and the SNR is set to 15 dB. As we can observe, the adap-
tive equalization algorithm using YAST succeeds to track the
channel variation, while it fails when using OPAST. Figure 5
compares the performance of our zero-delay MMSE equal-
izer with those given by the algorithms in [10, 11], respec-
tively. The plot represents the estimated signal MSE versus
the SNR for K = 500. As we can observe, our method out-
performs the methods in [10, 11] for low SNRs.

6.2. Robustness to channel orderoverestimationerrors

This experiment is dedicated to the study of the robust-
ness against channel order overestimation errors. Figure 6(a)
(resp., Figure 6(b)) represents the MSE versus the overesti-
mated channel order for SNR = 15 and K = 500 (resp.,
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Figure 2: Performance of the equalizer.
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Figure 3: Convergence of the adaptive equalizer.
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(q = 1, p = 3,L = 4,N = 6).

K = 1000). The plot compares, in the SIMO case, the MSE
obtained by our algorithm using linear constraint (l.c.) and
quadratic constraint (q.c.), respectively, to that obtained by
algorithm in [10] (identical results are obtained with al-
gorithm in [11]). Clearly, the use of linear constraint im-
proves significantly the robustness against channel order
overestimation errors of the blind MMSE filter. Note that, as
explained in Section 3.5, improved results are obtained with
the proposed algorithm using quadratic constraint, when the
sample size increases. This is observed by comparing the

results of the quadratic constraint method of Figure 6(b)
with those of Figure 6(a).

6.3. Robustness against small values ofH(0)

In general, the main weakness of a zero-delay equalizer is
its sensitivity to small values of the first channel coeffi-
cient H(0). In Figure 7, we illustrate the robustness of the
proposed algorithm, when H(0) takes small value. More
precisely, we plot the MSE versus the variance of H(0):

σ2H(0)
def= E(‖H(0)‖2), for q = 1, p = 3, K = 500, and

SNR = 15 in Figure 7(a) (resp., SNR = 30 in Figure 7(b)).
It is clear that for low and moderate SNRs a minimum vari-
ance ofH(0) is needed (in the plot σ2H(0) ≥ 0.2 is required) for
the algorithm to provide satisfactory results. However, this
threshold value can be quite small for high SNR as shown by
Figure 7(b).

6.4. Influence of the number of sensors

Figure 8 represents the evolution of theMSE versus the num-
ber of sensors for q = 1, K = 500, and SNR = 5 in
Figure 8(a) (resp., SNR = 15 in Figure 8(b)). One can ob-
serve that for low SNR, the algorithm requires a minimum
degree of freedom in terms of number of sensors (typically
p − q should be larger than 2 or 3), while at moderate and
large SNRs, p can be as small as q + 1. Eventhough not in-
cluded here, due to space limitation, similar results have been
observed in the MIMO case.

6.5. Discussion

These results highlight one of the main advantages of our
method which is the improved robustness against channel
order overestimation errors. Also, even when the channel or-
der is known, the proposed algorithm outperforms the algo-
rithms in [10, 11] for low SNR. Another strong advantages
of the proposed algorithm is its low computational cost and
higher convergence rate (in its adaptive version) compared to
those in [10–12]. However, the methods in [10–12] have the
advantages of allowing direct estimation (in one step) of the
nonzero-delay equalizer which is important in certain limit
cases, where the zero-delay equalizer fails to provide satisfac-
tory performance (see Figure 7).

7. CONCLUSION

In this contribution, we have presented an original method
for blind equalization of multichannel FIR filters. Batch
and fast adaptive implementation algorithms are developed.
A two-step version using the a priori knowledge of the
source signal finite alphabet has been proposed in order
to control the equalization delay and improve the estima-
tion performance. An asymptotic performance analysis of
the proposed algorithm has been carried out in the sin-
gle input case (SIMO case). Robustness against channel
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Figure 6: Robustness comparison (against channel order overestimation errors). The exact order is L = 4.
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Figure 7: Robustness against small values ofH(0).
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Figure 8: Mean square error versus the number of sensors.

order overestimation errors and performance of the pro-
posed equalization method are studied.

APPENDICES

A. O(n) COMPUTATIONOF x′(t) = C(t − 1)xN (t)

A technique to reduce the computation of the vector x′(t) =
C(t − 1)xN (t) from O(n2) to O(n) operations, is presented
herein. This technique was proposed in [20] for time series
data, and here we generalize it for multivariate data.

We begin by defining the (n + p)-dimensional vector

g(t)
def= C(t − 1)xN+1(t), (A.1)

where C(t) is the extended covariance matrix given by

C(t) =
t∑

k=1
βt−kxN+1(k)xHN+1(k). (A.2)

Taking into account the fact that

xN+1(t) =
[
xT(t) xTN (t − 1)

]T =
[
xTN (t) xT(t −N)

]T
,

(A.3)

one can write

C(t) =
[

C1(t) C2(t)
[
C2(t)

]H
C(t − 1)

]
=
[

C(t) C3(t)
[
C3(t)

]H
C1(t −N)

]
,

(A.4)

where

C1(t) =
t∑

k=1
βt−kx(k)xH(k),

C2(t) =
t∑

k=1
βt−kx(k)xHN (k − 1),

C3(t) =
t∑

k=1
βt−kxN (k)xH(k −N).

(A.5)

Using (A.3) and (A.4), we have

g(t) =
[
C1(t − 1)x(t) + C2(t − 1)xN (t − 1)
[
C2(t − 1)

]H
x(t) + x′(t − 1)

]
(A.6)

=
[

x′(t) + C3(t − 1)x(t −N)
[
C3(t − 1)

]H
xN (t) + C1(t −N − 1)x(t −N)

]
.

(A.7)

Equation (A.6) is used to compute g(t) and, from (A.7), x′(t)
is updated as follows:

x′(t) = g(t)(1:n) − C3(t − 1)x(t −N). (A.8)

The only other quantities that need updating are thematrices
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g(t)(1:p) = C1(t − 1)x(t) + C2(t − 1)xN (t − 1)

g(t)(p+1:n+p) =
[
C2(t − 1)

]H
x(t) + x′(t − 1)

x′(t) = g(t)(1:n) − C3(t)x(t −N)

C1(t) = βC1(t − 1) + x(t)xH(t)

C2(t) = βC2(t − 1) + x(t)xHN (t − 1)

C3(t) = βC3(t − 1) + xN (t)xH(t −N)

Algorithm 8: Algorithm for updating x′(t) = C(t − 1)xN (t) in
O(n) operations.

in (A.4), which can be efficiently computed as

C1(t) = βC1(t − 1) + x(t)xH(t),

C2(t) = βC2(t − 1) + x(t)xHN (t − 1),

C3(t) = βC3(t − 1) + xN (t)xH(t −N).

(A.9)

The algorithm listing is found in Algorithm 8.

B. PROOF OF LEMMA 1

Matrix Σc is defined by

Σc =
[
Σc,k,l

]
1≤k,l≤n2

def= lim
K→+∞

KE
(
(ĉ− c)(ĉ− c)H

)
, (B.1)

it follows that

Σc,k,l = lim
K→+∞

KE
((
ĉk − ck

)(
ĉl − cl

)∗)

= lim
K→+∞

KE
((
Ĉa,b − Ca,b

)(
Ĉc,d − Cc,d

)∗)
,

(B.2)

where ci (resp., Cα,β) and ĉi (resp., Ĉα,β) denote the ith (resp.,

the (α,β)th) entry of c (resp.,C) and ĉ (resp., Ĉ), respectively,
which are given by

ci = Cα,β = E
(
xN ,α(t)x∗N ,β(t)

)
,

ĉi = Ĉα,β = 1
K

K−1∑

t=0
xN ,α(t)x∗N ,β(t),

α = α′ + nδ(α′), β = β′ + 1− δ(α′), 1 ≤ α, β ≤ n,
(B.3)

where xN ,i(t) is the ith entry of vector xN (t), α′ and β′ de-
note, respectively, the rest and the quotient of the Euclidian
division of i by n, and δ is the Kronecker symbol. (a, b) and
(c,d) are obtained in a similar way for k and l, respectively.

Then, after some calculation (see [15] for more details)
and using the relationship between cumulants andmoments,
we obtain the following expression of Σc,k,l:

Σc,k,l = κk,l +
∑

τ∈Z
Cτ,a,cC−τ,d,b, (B.4)

where

κk,l
def=
∑

τ∈Z
cum

(
xN ,a(τ), x∗N ,b(τ), xN ,d(0), x∗N ,c(0)

)
, (B.5)

taking into account the particular structure of the datamodel
(2) and applying some standard properties of cumulants, the
fourth-order cumulant in (B.5) is then expressed as

cum
(
xN ,a(τ), x∗N ,b(τ), xN ,d(0), x∗N ,c(0)

)

= κ
∑

i∈Z
HN (a, i + τ)H∗

N (b, i + τ)HN (d, i)H∗
N (c, i),

(B.6)

where κ
def= cum(s(t), s∗(t), s(t), s∗(t)) is the kurtosis of the

input signal s(t), and HN (i, j) is the (i, j)th entry of HN .
Plugging this expression into (B.5) yields

κk,l = κ
∑

j

HN (a, j)H∗
N (b, j)

∑

i

HN (d, i)H∗
N (c, i)

= κ
(
Ca,b − σ2b δ(a− b)

)(
Cc,d − σ2b δ(c − d)

)∗
.

(B.7)

Finally, it is easy to verify from (B.4) and (B.7) that Σc is ex-
pressed by (56).

C. PROOF OF THEOREM 3

Before proceeding, we first need to recall some basic prop-
erties of column vectorizing operator and, matrices and vec-
tors differentiation (see [16] for more details). If A, B, and
C are given matrices, then vec(ABC) = (CT ⊗ A) vec(B) and
δ vec(A) = vec(δA) where δ denotes the differentiation op-
erator. If A is an α × β matrix, then vec(AT) = Uα,β vec(A)
where Uα,β is the permutation matrix defined in Theorem 3.
Let λ be an eigenvalue of an α× α matrix A, w the eigenvec-
tor corresponding to λ, the differential δw of w is given by
δw = (λIα − A)#δAw = [wT ⊗ (λIα − A)#]δ vec(A). If A is
invertible, then δA−1 = −A−1δAA−1.

Let v̂ be an estimate of the blind MMSE equalizer vector
given fromK-sample observations, then v̂0 is given according
to v̂0 = r̂v̂, where r̂ = v̂Hv0/‖v̂‖2. Replacing v̂0, v̂, and r̂ by
v0 + δv0, v + δv, and r + δr, respectively, we obtain

δv0 = r
(
In − vvH

‖v‖2
)
δv. (C.1)

As v =Wṽ, it follows that

δv = (ṽT ⊗ In
)
δ vec(W) +Wδṽ. (C.2)

Quadratic constraint case

In this case, ṽ is the least eigenvector (which correspond to
zero-eigenvalue) of matrixQ given by (12) and (18). The dif-
ferentiation of ṽ gives

δṽ = −(ṽT ⊗Q#)δ vec(Q) = −M2δ vec(Q). (C.3)
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From (12) and (18), matrix Q is written as

Q =WHCJp,n−p,0JTp,n−p,0CW. (C.4)

The differentiation of Q gives

δ vec(Q) = [(CJp,n−p,0T)T ⊗ Id
]
δ vec

(
WH

)

+
[
Id ⊗

(
THJTp,n−p,0C

)]
δ vec(W)

+
[(
Jp,n−p,0T

)T ⊗WH +WT ⊗ (THJTp,n−p,0
)]
δc.

(C.5)

As the columns of W correspond to the d dominant eigen-
vectors of C, thus δW = [δW(:, 1) · · · δW(:,d)], where
δW(:, i) = (WT(:, i)⊗(λIn−C)#)δc, i = 1, . . . ,d. This implies

δ vec(W) = Γδc, (C.6)

where Γ is defined in Theorem 3. It follows that δ vec(WH) =
Un,dδ vec(W∗) = Un,dΓ∗δ vec(C∗), as C∗ = CT , we obtain

δ vec
(
WH

) = Un,dΓ
∗Un,nδc. (C.7)

Plugging (C.6) and (C.7) in (C.5) yields

δ vec(Q) =M1δc, (C.8)

where M1 is given in Theorem 3. Finally, from (C.1), (C.2),
(C.3), (C.6), and (C.8), we obtain

δv0 =Mδc. (C.9)

Linear constraint case

In this case, we use the expression of ṽ given by (25)

ṽ = J1v + J0,1,d−1. (C.10)

From (23), (24), and (41), vector v is expressed as

v = −(JT1QJ1
)−1

JT1QJ0,1,d−1. (C.11)

Differentiating ṽ yields

δṽ = J1δv = J1
(
JT1QJ1

)−1
JT1 δQJ1

(
JT1QJ1

)−1
JT1QJ0,1,d−1

− J1
(
JT1QJ1

)−1
JT1 δQJ0,1,d−1

= −(ṽT ⊗Q′
)
δ vec(Q) = −M2M1δc,

(C.12)

where Q′ is given as in Theorem 3. From (C.1), (C.2), (C.6),
and (C.12), we obtain finally

δv0 =Mδc. (C.13)

Using (C.9) (resp., (C.13)) in the quadratic constraint case
(resp., in the linear constraint case) and Theorem 2 result
leads to the expression of Σv given in Theorem 3.
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the École Polytechnique, Paris, France, in
1990, as well as from École Nationale Supér-
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