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This paper presents prototyping of a recurrent type neural network (RNN) convolutional decoder using system-level design spec-
ification and design flow that enables easy mapping to the target FPGA architecture. Implementation and the performance mea-
surement results have shown that an RNN decoder for hard-decision decoding coupled with a simple hard-limiting neuron acti-
vation function results in a very low complexity, which easily fits into standard Altera FPGA. Moreover, the design methodology
allowed modeling of complete testbed for prototyping RNN decoders in simulation and real-time environment (same FPGA), thus
enabling evaluation of BER performance characteristics of the decoder for various conditions of communication channel in real

time.
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1. INTRODUCTION

Recurrent type neural networks (RNN) have been success-
fully used in various fields of digital communications pri-
marily due to their nonlinear processing, possible parallel
processing that could accommodate recent requirements for
high-speed signal transmission and, also, expected efficient
hardware implementations [1]. In the past several years sub-
stantial efforts have been made to apply RNNs in error con-
trol coding theory. Initially, these networks were applied for
block codes decoding [2, 3] and then for convolutional [4-7]
and turbo codes decoding [8]. In [5-7], it was shown that the
decoding problem could be formulated as a function min-
imization problem and the gradient descent algorithm was
applied to decode convolutional codes of a small code rate,
and the developed recurrent artificial neural network (ANN)
algorithm did not need any supervision. That algorithm was
later implemented in hardware using floating-gate MOSFET
circuits [9].

Theoretical base for the decoding of generalized convo-
lutional codes of rate 1/n was developed and reported in
[1, 10]. Simulation results have shown that the RNN decoder
can in fact match the performance of the Viterbi decoder
when certain operating parameters are adopted. Simulations
have also revealed that the RNN decoder performs very well
for some convolutional codes without using the complicated
simulated annealing (SA) technique required by other codes.
However, for the RNN decoder to be of any real practical use,
it must have a hardware realization that offers some benefits

in terms of decoding speed, ease of implementation, or hard-
ware complexity. The hardware implementation of artificial
neural networks has been an active area of research. As tech-
niques for implementing neural networks evolve, the RNN
decoder, which has already shown to be competitive at an al-
gorithmic level, may become a viable option in practical im-
plementations. This motivated us to investigate possibilities
of the practical HW implementation of the decoding algo-
rithm based on RNN application using FPGA technology.

In this paper we investigate hardware implementation of
the RNN decoder using readily available hardware design
methods and target technologies. An obvious choice of target
technology is FPGAs, due to being capable of exploiting the
parallelism inherent to the RNN decoder, but also for rapid
prototyping and analysis of implementation options.

1.1. FPGA implementation of ANNs

The biologically inspired neural models generally rely on
massive parallel computation. Thus the high-speed opera-
tion in real-time applications can be achieved only if the net-
works are implemented using parallel hardware architectures
[11].

FPGAs have been used for ANN implementation due to
accessibility, ease of fast reprogramming, and low cost, per-
mitting the fast and nonexpensive implementation of the
whole system [12]. In addition, FPGA-based ANNs can be
tailored to specific ANN configurations; there is no need
for worst-case fully interconnected designs as in full-custom
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VLSI [13]. For hardware implementation it is considered im-
portant to separate the learning and retrieval phase of an
ANN. However, this technique is not directly applicable to
the RNN decoder, as it in fact does not require training as
such. However, its implementation is essentially an imple-
mentation of a learning algorithm (gradient descent).

In general, all ANN architectures consist of a set of in-
puts and interconnected neurons with the neuron’s structure
as in Figure 1. The neuron can be considered the basic pro-
cessing element, and its design determines the complexity of
the network. The neuron consists of three main elements: the
synaptic connections, the adder, and the activation function.
The fundamental problem limiting the size of FPGA-based
ANN s is the cost of implementing the multiplications asso-
ciated with the synaptic connections because fully parallel
ANNGs require a large number of multipliers. Although pro-
totyping itself can be accomplished using FPGAs which of-
fer high number of multipliers, the overall goal of the RNN
decoder design is to use as few resources as possible as the
decoder is usually only a part of a bigger system. Practical
ANN implementations are accomplished either by reducing
the number of multipliers or by reducing the complexity of
the multiplier. One way of reducing the number of multi-
pliers is to share a single multiplier across all neuron inputs
[14]. In [13, 15] another method of reducing the circuitry
necessary for multiplication is proposed which is based on
bit-serial stochastic computing techniques. A successful pro-
totyping of a neuro-adaptive smart antenna beam-forming
algorithm using combined hardware-software implemented
radial basis function (RBF) neural network has been reported
in [16].

In the neuron from Figure 1, the complexity of the adder
depends on the precision of the inputs from the synapses and
on the number of inputs to each neuron. The adders may be
shared across inputs with intermediate results being stored
in an accumulator. Of particular importance is the hardware
implementation of the neuron activation function. The sig-
moid function, traditionally used in ANNS, is not suitable for
direct digital implementation as it consists of an infinite ex-
ponential series [8, 17]. Thus most implementations resort
to various methods of approximating the sigmoid function
in hardware typically by using lookup tables (LUTs) to store
samples of the sigmoid function for approximation, with
some examples of this technique reported in [11, 13]. How-
ever, the amount of hardware required for these tables can be
quite large, especially if one requires a reasonable approxima-
tion. Other implementations use adders, shift registers, and

multipliers to realise a digital approximation of the sigmoid
function. In [17] a second-order nonlinear function was used
to approximate the sigmoid and was implemented directly
using digital components. Also in [18] a piecewise linear ap-
proximation of the fanh function was implemented for the
neuron activation function. A coarse approximation of the
sigmoid function is the threshold (hard-limiting) function,
as used in [19, 20].

1.2. RNN decoder design objectives and methodology

Our approach to RNN decoder implementation, based on its
model presented in [10], was to evaluate the design on an
example case decoder in order to identify the issues involved
with a hardware implementation of the decoders of any com-
plexity with the following main goals:

(i) to investigate how decoder functionality can be simpli-
fied and practically implemented on an FPGA device;

(ii) to evaluate decoder performance degradation imposed
by the limited bit resolution and fixed-point arith-
metic, compared to original model implemented in
MatLab [10];

(iii) to evaluate the complexity and decoding speed of the
simple case hardware realised RNN decoder and sub-
sequently estimate the complexity of more powerful
RNN decoders suitable for industrial use.

An additional goal was to evaluate the suitability of a
high-level FPGA design methodology for use with ANN-
type prototyping. The FPGA design flow used Altera’s DSP
Builder software integrated into Mathwork’s “Simulink-to-
Algorithm” development environment [21, 22] as the start-
ing specification. This also enabled design of a testbed in the
form of the whole communication system model to evaluate
decoder performance in realistic conditions at Simulink level
first and then, after synthesis, at a very high speed where the
decoder was implemented in FPGA.

2. SYSTEM OVERVIEW

The design of an RNN decoder [10] first requires the specifi-
cation of a number of system characteristics. Of most impor-
tance was the choice of convolutional code, as this affects the
physical bitrate of the system and determines the structure
and required operation of the RNN decoder. In accordance
with the simple case design philosophy, the code of choice is
specified by the generator matrix

101
e[301] 0

Matrix G specifies the feedbacks in the encoder structure and
is related to theoretical derivative of the noise energy func-
tion as explained later. The choice of this code is based on
the resulting structure of the RNN decoder. Firstly, simula-
tions showed that this simple code does not require SA to
perform very close to the equivalent Viterbi decoder [23].
This eliminates the need for the implementation of an in-
dependent noise source to each neuron with decreasing noise
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FIGURE 2: Testbed system model.

variance (for codes that require SA, some VLSI-efficient tech-
niques for generating multiple uncorrelated noise sources are
provided in [24, 25]). Secondly, the resulting neuron struc-
ture for this code is very simple with the expression for the
gradient update term consisting of a minimal number of
arithmetic operations. This particular code provides a cod-
ing gain of approximately 3 dB at the BPSK theoretical prob-
ability of error of 107*. Hard-decision decoding is also cho-
sen to minimise the precision required by the RNN decoder.
Thus the decoder inputs are of two-level (binary) precision.
This also permits the use of pseudorandom binary sequence
(PRBS) generators for the hardware implementation of a
channel simulator.

In order to verify the correct operation of the designed
RNN decoder throughout the design process, a number of
additional components were implemented which collectively
make up a testbed effectively representing the basic com-
munication system. The system-level model is shown in
Figure 2.

3. DECODER AND TESTBED DESIGN

In this section we first describe selected RNN decoder imple-
mentation, including some design tradeoffs, and then the re-
maining components of the testbed as described in Figure 2.

3.1. RNN decoder

A communication system that contains a rate 1/n convolu-
tional encoder, which generates a set of encoded n bits for
each message bit at the input to encoder at the discrete time
instant s, is shown, analyzed, and theoretically described in
[26]. The encoder is defined by its constraint length L and a
logic circuit that defines the mapping of the input bits into
the code word at the output.

The noise energy function f(B) is expressed as a function
of the received and message bits and the decoding problem is
defined as a noise energy function f(B) minimization prob-
lem [10]. The update rule is expressed as

af (B)
ob(s+a)l, 2)

fora=0,1,...,T,

b(s+a)Pt) =b(s+a)? -«

where « is a gradient update factor or a learning rate fac-
tor and can be chosen to eliminate self-feedback in the RNN
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[10], or in the form
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Applying this rule, the neuron update expression for the con-
volutional code specified by (1) is given by

b(s+a)Pth

= fa<;[r1(s+a)b(s+a —2)P

+r(s+a+ 1)+r1(s+a+2)b(s+a+2)1’]>,
(4)

where term 1/3 comes out from the fact that the gradient
update factor is chosen to eliminate the self-feedback of the
neural network.

The learning rate, a, is chosen to eliminate self-feedback
in the network, and the f, term represents the neuron activa-
tion function. The structure of the corresponding neuron is
shown in Figure 3. In this case the multiplication by the 1/3
term simplifies the neuron model because the previous value
has no influence estimating the current value of the informa-
tion bit. The RNN decoder, which is constructed as an array
of T + 1 neurons (16 for this code), is shown in Figure 4.

To simplify the hardware implementation, a hard-
limiting (HL) activation function is used and the final im-
plemented neuron model is shown in Figure 5. The multipli-
cation by the 1/3 term is removed since this gain factor has
no effect when the HL activation function is used.

Implementation of the neuron requires two multipliers,
an adder, and a realization of the HL activation function. Pre-
vious derivations involving the RNN decoder structure have
been based on the assumption that signal levels in the net-
work are bipolar (b(s) € {+1,—1}). However for the hard-
ware implementation we simply map the bipolar logic back
to binary signal levels using the mapping of (3):

b(s) = 1“1 - 5)
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All the inputs to the neuron are binary signals, due to the
hard-decision channel outputs and the HL activation func-
tion. Thus, according to Table 1, the multiplication can be
performed using simple XOR logic gates.

The 3-way adder can be combined with the HL activa-
tion into a single logic truth-table, which is shown in Table 2
for the bipolar signal case and subsequently converted to the
hardware binary case. It is implemented using simple logic
gates and the resulting digital neuron design is shown in
Figure 6.

The Simulink model of the RNN decoder incorporates
an array of 16 neurons each connected to each other accord-
ing to (4) for a = {0,1,2,...,15}. The received 2-bit sym-
bols (channel output) are shifted into the array of 2-bit shift
registers. The operation of the RNN decoder begins with the
initialization of the receive bit registers and neuron registers
to zero. A clock signal is provided by the control unit to each

TaBLE 1: Mapping from bioplar to binary for neuron multiplication.

a b aeb a b a®b
+1 +1 +1 0 0 0
-1 +1 -1 = 1 0 1
+1 -1 -1 0 1 1
-1 -1 +1 1 1 0

neuron register for the update of the neuron states on each
iteration. The neurons are actually updated on only nine of
the ten available clock cycles. On the tenth clock the neuron
states are cleared for the next set of iterations and the chains
of receive bit registers are clocked in order to shift the next 2-
bit noisy code word into the network. At this same time a bit
is shifted out of the RNN decoder, which represents the de-
coded bit estimate. Two single bit registers are used to store
the two most recent past bit decisions, which are required as
inputs to the upper neurons in the network.

3.2. Other system components
3.2.1. Source generator

The requirement at the transmitter is to have informa-
tion bits generated with equal probability that are suitably
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TaBLE 2: Mapping from bioplar to binary for neuron adder+HL.

a b c a-b-c HL
+1 +1 +1 3 +1
+1 +1 -1 +1 +1
+1 -1 +1 +1 +1
+1 -1 -1 -1 -1
-1 +1 +1 +1 +1
-1 -1 -1 -1 -1
-1 +1 +1 -1 -1
-1 -1 -1 -3 -1
a b c HL
0 0 0 0
0 0 1 0
0 1 0 0
= 0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

uncorrelated and have a random statistical nature. A PRBS is
a semirandom sequence in that it appears random within the
sequence length, providing an adequate level of “random-
ness,” but the entire sequence repeats indefinitely. A PRBS
can be generated using a linear feedback shift register (LESR).
As the shift-register length m is increased, the statistical prop-
erties of the maximal length sequence becomes increasingly
similar to a truly random binary sequence [27]. An LSFR
with 18 stages was chosen which generates a suitably long
m-sequence of length 2!8 — 1 = 262143 and only requires a
single XOR gate for implementation. The LFSR can be repre-
sented by the generator polynomial:

GX)=1+X"+X, (6)

3.2.2. Convolutional encoder

The Simulink implementation of convolutional encoder,
which subsequently was synthesized into FPGA, specified by
(1) is shown in Figure 7. The encoder comprises two single
bit shift registers and an XOR gate performing modulo-2 ad-
dition. The two encoder outputs are multiplexed onto a sin-
gle bit bus which is clocked at twice the rate of the shift regis-
ters. The multiplexer select signal is provided by the control
unit.

3.2.3.  Binary symmetric channel

The binary symmetric channel (BSC) model requires gen-
eration of a PRBS with a specified probability of error, P,
corresponding to a channel Eb/No. Such a PRBS generator
will be hereon referred to as a PRBS-PE generator, which is
illustrated in Figure 8. The LFSR used in the source generator
model described in section generates a PRBS with probability
of error of 0.5. It is possible to generate sequences of varying

error probability by comparing the state value of the LFSR at
each shift with a register holding a fixed value (correspond-
ing to the desired P,), and generating a 1 if the LFSR is less
than or equal to the compare register value, or a 0 if not.

The LFSR and compare register lengths must be chosen
large enough to allow sufficient P, resolution

PI’CS: 1
¢ oam-1

(7)

The LFSR of length m = 18 gives a P, resolution of 3.814 e
107, which is considered sufficient for the channel environ-
ments considered here. For this resolution the highest chan-
nel Eb/N, we can simulate for (excluding the zero-noise case)
is calculated to have a maximum Eb/N, ~ 10dB which is
sufficient for our testing purposes. In [28] it was shown that
the output of the PRBS-PE generator described is correlated
since each output sample is based on m-1 bits of the LFSR
from the previous shift. It was found by simulation that 11
shifts of the LFSR per clock were sufficient to reduce the au-
tocorrelation statistics of the PRBS-PE sequence in order to
make the output more random [26].

3.2.4. BER counter

To complete the system model, a module for calculating
the transmission bit-error-rate is included. The BER counter
model uses two 25-bit counters. The first counts the total
number of bits and runs at the information bitrate (1/20
times the system clock rate). The second counter counts the
number of bit errors and is clocked each time an assertion
signal is given from the output of a comparator, which com-
pares the output of the source generator with the output
of the RNN decoder. The source generator signal is delayed
by 18 clock cycles for synchronisation with the decoded bit
stream, due to the delays introduced by the transmission.

3.2.5. Control unit

The control unit, which is not shown in Figure 2, provides
the necessary clock signals to the registered devices within the
design. Three different clock rates are required within the de-
sign, all derived from the same system clock. The fastest rate
clock signal is required by the neurons within the RNN de-
coder. On each of these clocks the neuron states are updated,
which correspond to one iteration of the network. These can
be clocked at the system clock rate, however a more conserva-
tive approach was taken which clocks the neurons at half the
system clock rate. Ten iterations of the network are used for
decoding each message bit, making the information bitrate
of the system 1/20 times the system clock rate. The source
generator, the convolutional encoder and the BER calculator
modules are all clocked at this rate. Since the convolutional
encoder is of rate 1/2, the symbol rate is twice that of the in-
formation bitrate. Thus a clock signal of one tenth the system
clock rate is used to clock the convolutional encoder output,
the BSC channel module, and parts of the RNN decoder cir-
cuitry.
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4. PERFORMANCE ANALYSIS

In this section we show that the performance of the hardware
RNN decoder matches that predicted by the software simu-
lator for the specific network configuration. Functional sim-
ulation results of the RNN decoder are also analysed, along
with postsynthesis simulation results.

The described Simulink model was tested for a number
of channel Eb/N, levels, as shown in Table 3. The table shows
the theoretical no-coding probability of error, and the value
of the channel compare register used in each case.

Figure 9 shows the BER performance of the MATLAB
software model versus the Simulink-implemented hardware
model for the given code and RNN configuration. The hard-
ware RNN uses parallel update with nine iterations per
bit and hard-limited activation function. The performance
of the hardware model is equivalent to that predicted by
the MATLAB software simulator, which verifies that the

TasBLE 3: Simulated BERs for the Simulink RNN decoder implemen-
tation.

Ey /Ny P, CMA-REG Simulink BER
0 0.0786 20617 0.0631
1 0.0563 14574 0.0333
2 0.0375 9832 0.0175
3 0.0229 5997 0.0083
4 0.0125 3277 0.0037

hardware implementation works correctly. The performance
difference between the Viterbi decoder and the RNN decoder
is due to the type of activation function employed. In this
case the HL activation function was used to reduce the im-
plementation complexity considerably.

Following the functional system verification, the postsyn-
thesis timing verification was performed to prove the RNN
decoder still operates correctly when register-to-register
propagation delays are imposed. The Altera EP20K30-
EQC208-1 device was targeted for synthesis, which is the
smallest device in the APEX 20K family. The RNN decoder
uses only 63 logic elements and can run at the maximum op-
erating clock frequency of 107.1 MHz. With 20 system clock
cycles required for decoding each information bit, the max-
imum data throughput of the RNN decoder is 5.36 Mbps. If
a less conservative clocking approach was taken, where the
neurons are updated on every clock cycle (rather than every
second), then the data throughput is doubled.
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5. EVALUATION OF THE RNN DECODER
HARDWARE COMPLEXITY

The regular structure of the RNN decoder is very benefi-
cial when considering the time requirements for the devel-
opment, and the operation of the decoder is also relatively
straightforward. Furthermore, the neurons are only locally
connected in the sense that each neuron is physically con-
nected to several neurons within its vicinity, and not to all
neurons in the network. This is likely to reduce routing prob-
lems often encountered in ANN hardware implementations.
The specific RNN decoder implemented here is unlikely to
be used in an industrial channel coding application except in
the case when a simple algorithm and small power consump-
tion of the circuits are strongly required. For this reason we
investigated the complexity requirements of a more powerful
RNN decoder implementation.

Industrial applications of convolutional coding currently
employ codes of constraint length up to 7 or 9. These codes
offer superior error correcting capacity over shorter codes,
however generally result in complex decoder structures. The
complexity of the RNN decoder for these longer codes can be
estimated based on the computational requirements of the
neuron update equation. The number of multiplications re-
quired per neuron update is calculated as

L n I
Nmul/neuron =1+ Z Z |:(g],k) Z (g],l):| (8)
k=1j=1 i=1i#k

and the number of additions as

L n
Nadd/neuron = I: Z Z (g],k):| - 1L (9)

k=1j=1

An industry standard convolutional code of constraint length
L = 7, as defined by the IEEE 802.11a wireless LAN standard
[29], is shown in (10),
1011011

G[1111001] (10)
In this case a fully parallel implementation of the neuron
would require 41 multipliers and a 10-way adder. Note that if
hard-decision decoding is used with an HL neuron activation
function, these multipliers can be implemented with XOR
gate structures. The simple RNN decoder implementation
previously showed that the HL activation function decreased
the performance of the decoder. To overcome this, an 8-level
(3-bit) approximation of the sigmoid activation function can
be implemented using an LUT in the FPGA device. For signal
width consistency this strategy could be coupled with a 3-bit
soft-decision decoding strategy, thus all the multipliers in the
decoder would need to multiply 3-bit operands.

The L = 7 code described above requires 35 neurons for
adequate decoding performance. In this case the total num-
ber of multipliers required equates to 41 * 35 = 1435, which
is likely to consume a very large amount of logic resources,
especially if the multipliers have operand widths of greater
than 1bit. The amount of logic could be reduced consider-
ably if a fewer number of neurons are implemented and a
sequential neuron update strategy is adopted where a smaller
number of neurons are time-division-multiplexed across the
network. In fact, simulation results show [16] that the se-
quential update variation offers improved decoding perfor-
mance over the fully parallel decoding strategy.

It was found that for a fixed number of encoder outputs,
n, both the number of addition and multiplication opera-
tions required per iteration can at worst increase polynomi-
ally with the encoder constraint length, L, [10]. Also, with a
fixed value of L, the number of addition and multiplication
operations required per iteration can at worst increase lin-
early with n. However the Viterbi decoder complexity (for
both memory requirements and computations) increases ex-
ponentially with the constraint length of the code L. Thus,
the improved complexity trend of the RNN decoder over the
Viterbi decoder might make it more practical for decoding
large constraint length convolutional codes.

RNN decoders of this complexity are also likely to re-
quire the SA technique due to the highly nonlinear cost
functions involved. This requires a noise input to each neu-
ron with decreasing noise variance during decoding. In [25]
a VLSI-efficient technique for generating multiple uncorre-
lated noise sources is described, which uses only a single
LESR. If this technique is adopted, then the logic resources
required to do this are likely to be less significant compared
to the demands of the multiplier circuitry.

An alternative strategy may be to employ a simpler con-
volutional code such as that shown below

101
G=|[110 (11)
001
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and couple this with a high-resolution soft-decision decod-
ing strategy. This code belongs to a special class of codes that
performs well for the gradient descent algorithm without SA
techniques [10]. If a mixed signal hardware implementation
was adopted, then the neurons could be implemented using
analog components to give high signal resolution. The per-
formance of this code is shown in [26]. The RNN decoder
requires few network iterations per bit as well as no neuron
noise inputs. The number of multiplications and additions
required per neuron update and calculated for this case is
Ninul/neuron = 5 and Nadd/neuron = 4.

This paper presents the case when a convolutional en-
coder has one input. However, a more complex encoder hav-
ing k inputs and » outputs is analysed in [30]. It is shown
that the neuron structure of these complex decoders includes
a number of multipliers and adders as well as the activation
functions.

6. CONCLUSIONS

An RNN decoder hardware design has been described, which
has been developed under Simulink using the Altera DSP
Builder FPGA design tools. An efficient testbed has also been
developed which resembles a basic communication system,
and allows testing of the RNN decoder hardware model for
various AWGN channel conditions.

The RNN decoder consumes very little device resources.
It has also been shown that if neurons are iterated at the sys-
tem clock rate, the result is a very fast parallel convolutional
decoder. The hardware RNN decoder for industry standard
convolutional codes suffers from a high number of multipli-
ers and may limit the practicality of the RNN decoder as a
channel decoding solution. For the RNN decoder to be of
practical use, it seems that decoding speed must be sacrificed
by using time-division multiplexing in order to reduce the
amount of logic resources used.

The sequential update strategy is another option for neu-
rons updating in order to estimate message bits. According to
this strategy the cost function is updated through each neu-
ron update, and not necessarily in the steepest direction, but
in the steepest direction relative to the current variable being
updated [26]. Thus, the number of neurons is reduced and
the multiplexers have to be added to apply the incoming bits
to the inputs of the neurons. The sequential update strategy
is possible to the identical structure of all neurons in the de-
coder network. Generally, the parallel update strategy accom-
modates a higher speed decoding while the sequential update
strategy is slower but requires lower number of neurons. In
practice, it would be advisable to investigate a pipelined ver-
sion of the sequential update strategy which may result in a
significant speedup.

The RNN does offer some advantages over Viterbi de-
coder implementations. The RNN decoder, being an iterative
decoding technique, demands very little memory resources,
which otherwise can be a bottleneck in Viterbi decoder im-
plementations [31]. The regular structure of the RNN de-
coder is also an advantage which is likely to reduce de-
sign time for applications that use specific and nonstandard

convolutional codes. The DSP Builder design flow has proven
to be a useful and fast method of design prototyping. An ad-
vantage of this method is the ability to easily integrate non-
synthesizable Simulink modules into the hardware model for
system testing and verification purposes throughout the de-
velopment cycle.
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