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A system that resorts to multiple experts for dealing with the problem of predicting secondary structures is described, whose per-
formances are comparable to those obtained by other state-of-the-art predictors. The system performs an overall processing based
on two main steps: first, a “sequence-to-structure” prediction is performed, by resorting to a population of hybrid genetic-neural
experts, and then a “structure-to-structure” prediction is performed, by resorting to a feedforward artificial neural networks. To
investigate the performance of the proposed approach, the system has been tested on the RS126 set of proteins. Experimental
results (about 76% of accuracy) point to the validity of the approach.
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1. INTRODUCTION

Due to the strict relation between protein function and
structure, the prediction of protein 3D structure has dur-
ing recent years become one of the most important tasks
in bioinformatics. In fact, notwithstanding the increase of
experimental data on protein structures available in pub-
lic databases, the gap between known sequences (165,000
entries in Swiss-Prot [1] in December 2004) and known
tertiary structures (28,000 entries in PDB [2] in Decem-
ber 2004) is constantly increasing. The need for automatic
methods has brought the development of several predic-
tion and modeling tools, but despite the increase of accu-
racy a general methodology to solve the problem has not
been yet devised. Building complete protein tertiary struc-
ture is still not a tractable task, and most methodologies
concentrate on the simplified task of predicting their sec-
ondary structure. In fact, the knowledge of secondary struc-
ture is a useful starting point for further investigating the
problem of finding protein tertiary structures and func-
tionalities. In this paper, we concentrate on the problem
of predicting secondary structures using a system that per-
forms an overall processing based on two main steps: first, a
“sequence-to-structure” prediction is performed, by resort-
ing to a population of hybrid genetic-neural experts, and
then a “structure-to-structure” prediction is performed, by
resorting to a feedforward artificial neural network (ANN).
Multiple experts are the underlying technology of the for-
mer subsystem, also rooted in two powerful soft-computing
techniques, that is, genetic and neural. It is worth pointing
out that here the term “expert” denotes a software mod-
ule entrusted with the task of predicting protein secondary

structure in combination with other experts of the same
kind.

The remainder of this paper is organized as follows. In
Section 2, some relevant work is briefly recalled. Section 3 in-
troduces the architecture of the system that has been devised
to perform secondary structure prediction. Section 4 reports
experimental results. Section 5 draws conclusions and future
work.

2. RELATED WORK

In this section, some relevant related work is briefly recalled,
according to both an applicative and a technological perspec-
tive. The former is mainly focused on the task of secondary
structure prediction, whereas the latter concerns the subfield
of multiple experts, which the proposed system stems from.

2.1. Protein structure prediction

The secondary structure of protein is the local spatial ar-
rangement of its main-chain atoms without regard to the
conformation of its side chains or to its relationship with
other segments. In practice, the problem of predicting the
secondary structure of a protein basically consists of finding
a linear labeling representing the conformation to which each
residue belongs. Each residue is mapped into a secondary al-
phabet composed—in the simplest case—of three symbols:
alpha helix («), beta sheet (f8), and random coil (c). Assess-
ing the secondary structure can help in building the complete
protein structure, and can be useful information for mak-
ing hypotheses on the protein functionality. In fact, very of-
ten, active sites are associated with a particular conformation
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or combination (motifs) of secondary structures conserved
during the evolution.

There are a variety of secondary structure prediction
methods proposed in the literature. Early prediction meth-
ods were based on statistics headed at evaluating, for each
amino acid, the likelihood of belonging to a given secondary
structure [3]. A second generation of methods exhibits bet-
ter performance by exploiting protein databases, as well as
statistic information about amino acid subsequences. Sev-
eral methods exist in this category, which may be classified
according to (i) the underlying approach including statis-
tical information [4], graph theory [5], multivariate statis-
tics [6], and linear discriminant analysis [7], (ii) the kind of
information actually taken into account including physico-
chemical properties [8] and sequence patterns [9], or (iii) the
adopted technique, including k-nearest neighbors [10] and
ANNGs [11].

The most significant innovation introduced in this field
was the exploitation of evolutionary information contained
in multiple alignments. The underlying motivation is that ac-
tive regions of homologous sequences will typically adopt the
same local structure, irrespective of local sequence variations.
PHD [11] is one of the first successful methods based on
ANNSs that make use of evolutionary information to perform
secondary structure prediction. In particular, after search-
ing similar sequences using BLASTP [12], ClustalW [13] is
invoked to identify which residues can actually be substi-
tuted without compromising the functionality of the target
sequence. To predict secondary structure, the multiple align-
ment produced by ClustalW is given as input to a multi-
layer ANN. The first layer outputs a sequence-to-structure
prediction, which is sent to a further ANN layer that per-
forms a structure-to-structure prediction aimed at refining
it.

Further improvements are obtained with both more
accurate multiple alignment strategies and more powerful
neural network architectures. For instance, PSI-PRED [14]
exploits the position-specific scoring matrix (called “pro-
file”) built during a preprocessing performed by PSI-BLAST
(see also [15]). This approach outperforms PHD thanks
to the PSI-BLAST ability of detecting distant homologies.
Other relevant works include DSC [7], PREDATOR [16, 17],
NNSSP [10], and JPred [18, 19]. DSC combines the compo-
sitional features of multiple alignments with empirical rules
that are found important for secondary structure prediction.
The information is processed using linear statistics. PREDA-
TOR owes its accuracy mostly to the incorporation of long-
range interactions for f-strand prediction. NNSSP is the
actual system that resorts to the k-nearest neighbors tech-
nique to perform prediction. JPred predicts secondary struc-
ture by combining a number of modern, high quality pre-
diction methods to form a consensus. In more recent work
[20, 21], recurrent ANNs (RANNs) are exploited to cap-
ture long-range interactions. The actual system that embod-
ies such capabilities, that is, SSPRO [22], is characterized by
(i) PSI-BLAST profiles for encoding inputs, (ii) bidirectional
RANNS, and (iii) a predictor based on ensembles of RANNS.

2.2, Multiple experts

Divide and conquer is one of the most popular strategies
aimed at recursively partitioning the input space until re-
gions of roughly constant class membership are obtained.
Several machine learning approaches, for example, decision
lists (DL) [23, 24], decision trees (DT) [25], counterfactuals
(CFs) [26], classification and regression trees (CART) [27]
apply this strategy to control the search, thus yielding mono-
lithic solutions. Nevertheless, a partitioning procedure can
also be considered as a “tool” for generating multiple experts.
Although with a different focus, this multiple experts’ per-
spective has been adopted by the evolutionary computation
and by the connectionist communities. In the former case,
the focus was on devising suitable architectures and tech-
niques able to enforce an adaptive behavior on a population
of individuals (see, e.g., [28, 29]). Genetic algorithms (GAs)
[30-33], learning classifier systems (LCSs) [34, 35], and ex-
tended classifier systems (XCSs) [36] fall in this specific cate-
gory of metaheuristics (see also [37] for a description about
evolutionary computation applied to bioinformatics). In the
latter case, the focus was mainly on training techniques and
output combination mechanisms; in particular, let us recall
Jordan’s mixtures of experts [38, 39] and Weigend’s gated ex-
perts [40].

Further investigations are focused on comparing the be-
havior of a population of experts with respect to a single ex-
pert. Theoretical studies and empirical results, rooted in the
computational and/or statistical learning theory (see, e.g.,
[41, 42]), have shown that the overall performance of a sys-
tem can be significatively improved by adopting an approach
based on multiple experts. Relevant studies in this subfield
include ANN ensembles [43, 44| and DT ensembles [45, 46].
There has also been a great interest in combining evolution-
ary and connectionist approaches, giving rise to evolution-
ary ANNs (EANNs) [47]. In recent years, the focus of inter-
est moved from single ANNSs to ensembles of ANN, yielding
hybrid learning systems in which—typically—a population
of ANNGs is designed by exploiting the characteristics of an
evolutionary process [48].

3. THE ARCHITECTURE OF MASSP3

This section introduces the two-tiered approach devised to
perform protein secondary structure prediction. The corre-
sponding system has been called MASSP3, standing for mul-
tiagent secondary structure predictor with postprocessing.
As shown in Figure 1, the information flows according to a
pipeline in which the first and the second modules are en-
trusted with performing a sequence-to-structure (P2S) and a
structure-to-structure (S2S) predictions, respectively.

3.1. Sequence-to-structure prediction

In this subsection, the module that has been devised to per-
form the first step, which stems from the one proposed in
[49, 50], is briefly described—focusing on the internal details
that characterize an expert (microarchitecture) and on the
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FIGURE 2: The microarchitecture of an expert.

behavior of the overall population of experts (macroarchi-
tecture). Due to its impact on the overall accuracy of the sys-
tem, the solution adopted to deal with the problem of how to
encode inputs for embedded experts is briefly outlined in a
separate section.

Microarchitecture

In its current formulation, the general structure of a single
expert I' is a quadruple (/, g, h, w), where [ is a class label, g
is a “guard”, that is, a function devised to accept or discard
inputs according to the value of some relevant features,  is
an embedded expert whose activation depends on g, and w
is a weighting function, used to perform output combination
(see Figure 2). Hence, I'(x) coincides with h(x) for any input
x that matches g(x), otherwise it is not defined. An expert
I' contributes to the final prediction according to the value
w(x) of its weighting function, which represents the expert
strength in the voting mechanism.

As for the structure of guards, in the simplest case, the
main responsibility of g is to split the input space into match-
ing/nonmatching regions, with the goal of facilitating the
training of h. In a typical evolutionary setting, each guard
performs a “hard-matching” activity, implemented by re-
sorting to an embedded pattern in {0, 1, #}*, where “#” de-
notes the usual “don’t care” symbol and L denotes the length
of the pattern. Given an input x, consisting of a string in the
alphabet {0, 1}, the matching between x and g returns true if
and only if all non-# values coincide (otherwise, the match-
ing returns false). It is trivial to extend this definition by de-
vising guards that map inputs to [0, 1]. Though very simple
from a conceptual perspective, this relaxed interpretation re-
quires the adoption of a flexible matching mechanism, which

has been devised according to the following semantics: given
an input x, a guard g evaluates the overall matching score
g(x), and activates the corresponding embedded expert h if
and only if g(x) = 0 (the threshold 6 is a system parameter).

Let us assume that ¢ embeds a pattern e, represented by
a string in {0, 1,#} of length L, used to evaluate the distance
between an input x and the guard. To improve the general-
ity of the system, one may assume that a vector of relevant,
domain-dependent features is provided, able to implement
a functional transformation from x to [0, 1]*. In so doing,
the ith feature, denoted by m;(x), can be associated with the
ith value, say e;, of the embedded pattern e. Under these as-
sumptions, the function g(x) can be defined as (d denotes a
suitable distance metrics)

g(x) =1-d(e,m(x)). (1)

In our opinion the most natural choice for implement-
ing the distance metrics should extend the hard-matching
mechanism used in a typical evolutionary setting. In prac-
tice, the ith component of e controls the evaluation of the
corresponding input features, so that only non-“#” features
are actually taken into account. Hence, Hy # @ being the
set of all non-“#” indexes in e, g(x) can be defined, according
to the Minkowski’s Lo, distance metrics, as

g0x) = 1 —max{[e; = mi(x)|}. )

Let us stress that the result should be interpreted as a “de-
gree of expertise” of an expert over the given input x.

As for embedded experts, a simple multilayer perceptron
(MLP) architecture has been adopted—equipped with a sin-
gle hidden layer. The issue of the dependence between the
number of inputs and the number of neurons in the hid-
den layer has also been taken into account. Several experi-
ments addressed the problem of finding a good tradeoff be-
tween the need of limiting the number of hidden neurons
and the need of augmenting it (to prevent overfitting and
underfitting, resp.). Let us stress in advance that overfitting
has been greatly reduced by experimenting a novel type of
encoding which performs a kind of multiple alignment by re-
sorting to the substitution matrix [51] (e.g., Blosum80 [52]).
As a consequence, the underfitting problem has also become
more tractable, due to the fact that the range of “reasonable”
choices for ANN architectures has increased. In particular, an
embedded expert with a complete visibility of the input space
is equipped with 35 hidden neurons, whereas experts enabled
by 10%, 20%, and 30% of the input space are equipped with
10, 15, and 20 neurons, respectively.

Macroarchitecture

Experts are trained in two steps, which consist of (1) discov-
ering a population of guards aimed at soft partitioning the
input space, and (2) training the embedded experts of the
resulting population.

In the first step, experts are generated concentrating only
on the “partitioning” capability of their guards (let us recall
that a guard is aimed at identifying a context able to facilitate
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the prediction performed by the corresponding embedded
expert). In particular, the system starts with an initial popu-
lation of experts equipped with randomly generated guards,
and then further experts are created according to covering,
crossover, or mutation mechanisms. In this phase, embedded
experts play a secondary role, their training being deferred to
the second step. Until then, their output is steadily “1,” mean-
ing that the class label [ is asserted with the highest strength.
It is worth pointing out that, at the end of the first step, for
each class label a globally scoped expert (i.e., equipped with a
guard whose embedded pattern contains only “#”) is inserted
in the population, to guarantee that the input space is com-
pletely covered in any case.! From this point on, no further
creation of experts is performed.

In the second step the focus moves to embedded experts,
which, turned into MLPs, are trained using the backpropa-
gation algorithm on the subset of inputs acknowledged by
their corresponding guard. Let us note that each embed-
ded predictor h is actually equipped with a “complemen-
tary” output, independently trained and denoted by h(x).
This choice allows to easily evaluate the reliability r(x) of
the prediction (see below), estimated by |hr(x) — hr(x)| (see
also [11]). In the current implementation of the system, all
MLPs are trained in parallel, until a convergence criterion
is satisfied or the maximum number of epochs has been
reached. The training of MLPs follows a special technique,
explicitly devised for this specific application. In particular,
given an expert consisting of a guard g and its embedded
expert h, h is trained on the whole training set in the first
five epochs, whereas the visibility of the training set is re-
stricted to the inputs matched by the corresponding guard
in the subsequent epochs. In this way, a mixed training strat-
egy has been adopted, whose rationale lies in the fact that
experts must find a suitable tradeoff between the need of
enforcing diversity (by specializing themselves on a relevant
subset of the input space) and the need of preventing overfit-
ting.

As for the output combination policy, let us recall that—
by hypothesis—experts do not have complete visibility of the
input space (i.e., they typically operate on different regions).
In the implementation designed for predicting protein sec-
ondary structures, regions exhibit a particular kind of “soft”
boundaries, in accordance with the selected flexible match-
ing mechanism. Given an input x, all selected experts form
the match set, denoted by M(x), which in turn can be parti-
tioned into three separate subsets: M (x), Mg(x), and M. (x).
Each subset contains only experts that support a, 8, and c,
respectively.

Given an input x, for each expert I' € M(x), let us denote
with gr(x) its degree of expertise over x, with hr(x) its pre-
diction, and with wr(x) its strength. It is worth noting that,
in the current implementation, wr(x) depends (i) on the de-
gree of expertise, (ii) on the fitness, and (iii) on the reliability
of the prediction. Under these hypotheses, the P2S module

! The weighting function of such kind of experts always returns a constant
and negligible value, to prevent them from affecting the result of output
combination in presence of locally scoped experts.

“annotates” each input x with a triple of values (one for each
class label) according to the following policy:

2reMy(x) hr(x) - Wr(x), ke {a,p,c},

Ok(x) =
) 2remy(x) Wr(x) (3)

wr(x) = fr - gr(x) - rr(x),

where My (x) < M(x) contains only experts that assert k, and
frand rr(x) = lhr(x) — hr(x)| denote the fitness and the re-
liability of the expert I'. In so doing, the P2S module outputs
three separate “signals,” which estimate, along the given se-
quence, the likelihood of each amino acid to be labeled as «,
B,orc.

Input encoding

The list of features handled by guards (adopted for soft par-
titioning the input space) is reported in Table 1, which rep-
resents a first attempt to inject into the system useful domain
knowledge.

As for embedded predictors, we propose a solution based
on the Blosum80 substitution matrix, which enforces a sort
of “low-pass” filtering with respect to the typical encoding
based on multiple alignment. Some preliminary definition
follows.

(i) Each amino acid is represented by an index in [1-3, 12,
15, 18-21, 24, 27-31, 44, 49-51, 53] (i.e., 1/Alanine,
2/Arginine, 3/Asparagine, ..., 19/Tyrosine, 20/Valine).
The index 0 is reserved for representing the gap.

(ii)) P = (P,i = 0,1,...,n) is a list of sequences where
(i) Py is the protein to be predicted (i.e., the pri-
mary input sequence), containing L amino acids, and
(i) P;, i = 1,...,n, is the list of sequences related
with Py by means of similarity-based metrics, retrieved
using BLAST. Being multialigned with Py, these se-
quences usually contain gaps, so that their length still
amounts to L. Furthermore, let us denote with P(j),
j=12,...,L, the jth column of the multialignment,
and with Pi(j),j = 1,2,...,L, the jth residue of the
sequence P;.

(iii) B is a 21 X 21 matrix obtained by normalizing the
Blosum80 matrix in the range [0,1]. Thus, B denotes
the row of B that encodes the amino acid k (k =
1,2,...,20), whereas Bi(r) represents the degree of
substitability of the rth amino acid with the kth amino
acid. The row and the column identified by the Oth
index represent the gap, set to a null vector in both
cases—except for the element By(0) which is set to 1.

(iv) Q is a matrix of 21 X L positions, representing the
final encoding of the primary input sequence Pj.
Thus, Q(j) denotes the jth column of the matrix,
which is intended to encode the jth amino acid (i.e.,
Py(j)) of the primary input sequence (i.e., Py), whereas
Q:(j),r = 0,1,...,20, represents the contribution of
the rth amino acid in the encoding of Py(j) (the index
r = 0 is reserved for the gap).

The normalization of the Blosum80 matrix in the range
[0,1], yielding the B matrix, is performed according to the
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TABLE 1: Features used for “soft” partitioning the input space: each feature is evaluated on a window of length r and centered around the

residue to be predicted.

Feature

Conjecture

Check whether hydrophobic amino acids occur in the
1 current window (r = 15) according to a clear
periodicity (i.e., one every 3-4 residues)

Check whether the current window (r = 13) contains
2 numerous residues in {A,E,L, M} and few residues in
{PG,Y,S}

Check whether the left side of the current window
3 (r = 13) is mostly hydrophobic and the right part is
mostly hydrophilic (or vice-versa)

Check whether, on the average, the current window

4 (r = 11) is positively charged or not

5 Check whether, on the average, the current window
(r = 11) is negatively charged or not

6 Check whether, on the average, the current window
(r = 11) is neutral

7 Check whether the current window (r = 11) mostly
contains “small” residues

3 Check whether the current window (r = 11) mostly

contains polar residues

Alpha helices may sometimes fulfil this pattern

Alpha helices are often evidenced by {A,E,L M}
residues, whereas {P,G,Y,S} residues account for their
absence

Transmembrane alpha helices may fulfil this feature

A positive charge might account for alpha helices or
beta sheets

A negative charge might account for alpha helices or
beta sheets

A neutral charge might account for coils

Small residues might account for alpha helices or beta
sheets

Polar residues might account for alpha helices or beta
sheets

following guidelines:

(1) pand o being the mean and the standard deviations of
the Blosum80 matrix, respectively, calculate the “equal-
ized matrix” E by applying a suitable sigmoid function,
whose zero crossing is set to ¢ and with a range in [0,
d]; in symbols,

Vk=1,2,...,20:Vj=1,2,...,20 : Ex(j)
(4)
— ¢ - tanh (Blosum80x(j) — u),

(2) E™and EM being the minimum and the maximum val-
ues of the equalized matrix E, respectively, build the
normalized matrix B; in symbols (the Oth row and col-
umn of B are used to encode gaps),

By — (1,0,...,0), B(0) — (1,0,...,0)T
. ) Ex(j) —E"
Vk = 1,2,...,202 V_] = 1,2,...,2OZBk(]) — W
(5)

The algorithm used for encoding the primary input se-
quence Py is the following.

(1) Initialize Q with the Blosum80-like encoding of the
primary sequence Py (B! represents the vector B
transposed); in symbols,

Vj=12,...,L:s — Py(j),

Q(j) —B{.  (6)

(2) Update Q according to the Blosum80-like encoding of
the remaining sequences Py, P,, ..., Py; in symbols,
.on:Vji=1,2,...,L:s— P(j),

7
Q(j) — Q(j) +BL. 7

(3) Normalize the elements of Q, column by column, in
[0,1]; in symbols,

Vi=1,2..,L:y — > Qlj),
N

Q(j)
-

(8)
Vr=0,1,2,...,20: Q.(j) —

According to our experimental results, the encoding de-
fined above greatly contributes to reduce overfitting and pro-
duces an improvement of about 1.5% in the prediction per-
formance. It is worth noting that also in this case a mixed
strategy—in a sense similar to the one adopted for training
ANNs—has been enforced, where the information contained
in the Blosum80 matrix and in multiple alignment represent
the “global” and the “local” parts, respectively. As a final re-
mark, let us stress that a comparison between Blosum80 and
PSI-BLAST encoding exhibited only negligible differences.

3.2. Structure-to-structure prediction

It is well known that protein sequences have a high correla-
tion in their secondary structure, which may be taken into
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FiGuUre 3: The second step of the training activity of the population of experts that characterize the P2S module. Its overall performance,
obtained while training embedded MLP predictors, is reported at different epochs. The plot highlights that a limited amount of overfitting
occurred—also due to the specific encoding, based on the Blosum80 matrix that has been devised and adopted.

account to improve the prediction accuracy. Technologies
that adopt a simple residue-centric approach, in which sec-
ondary structures are predicted independently, often gener-
ate inconsistent and unrealistic secondary structure assign-
ment, for example, isolated alpha helices. To deal with this
problem, a suitable postprocessing is usually performed. The
postprocessing module can be either hand coded or automat-
ically generated. In the former case, it follows the guidelines
of suitable empirical rules, whereas in the latter an architec-
ture typically based on ANNs is devised and trained on the
inputs generated by the subsystem responsible for the P2S
prediction. In the implementation of MASSP3, we adhered
to the latter type of postprocessing techniques, and a prelim-
inary “low-pass” filtering is also performed on the prediction
produced by the population of experts. For each class label,
it calculates a value averaged over windows of three residues,
according to the profile of a suitable Gaussian shape. The ac-
tual postprocessing is performed by an MLP, trained on the
signals obtained for «, 3, and c after running the aforemen-
tioned “low-pass” filtering. For each position of the sequence
the MLP takes as input the resulting three-dimensional sig-
nal on a window of 21 residues (i.e., 63 inputs) and gen-
erates three outputs in [0, 1]—to be considered as pseudo-
probabilities. Each amino acid of the given sequence is then
labeled with a, f3, or ¢ according to a criterion of maximum
likelihood.

4. EXPERIMENTAL RESULTS

To assess the performance of the predictor, also facilitating a
comparison with other systems, we adopted the TRAIN and
the R126 datasets, for training and testing, as described in
[22]. The TRAIN dataset has been derived from a PDB se-
lection obtained by removing short proteins (less than 30
amino acids) and by keeping proteins with a resolution of
at least 2.5 A. This dataset underwent a homology reduc-
tion, aimed at excluding sequences with more than 50% of
similarity. Furthermore, proteins in this set have less than
25% identity with the sequences in the set R126. The result-
ing training set consists of 1180 sequences, corresponding to
282,303 amino acids. The distribution of a, 8, ¢ in the train-
ing set is 35.41%, 22.75%, 41.84%. The R126 test dataset is
derived from the historical Rost and Sander’s protein dataset
(RS126) [11], and corresponds to a total of 23,363 amino
acids (the overall number has slightly varied over the years,
due to changes and corrections in the PDB). The distribution
of a, 3, ¢ in the test set is 31.78%, 23.14%, 45.08%.

In the experiments carried out on the P2S subsystem,
the population was composed of 600 experts, with about 20
experts (on average) involved in the match set. The thresh-
old 6 has been set to 0.4. As for MLPs, the learning rate has
been set to 0.07 and the number of epochs to 80. Results ob-
tained by the P2S module allow to reach a performance of
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TaBLE 2: Experimental results, obtained from the RS126 dataset.

System Qs
SSPRO 76.6
MASSP3 76.1
JPred 74.8
PHD 73.5
NNSSP 72.7
DSC 71.1
PREDATOR 70.3

TABLE 3: Detailed results obtained by using MASSP3 on the RS126
test set using the Blosum80 encoding and postprocessing.

o B c overall
Qs 78.2 63.1 81.3 76.1
SOV 77.8 73.2 70.3 71.8

about 75%. Figure 3 illustrates the second step of the training
process, which occurred after generating a suitable popula-
tion of guards able to “soft” partitioning the input space. The
S2S module allowed to improve the alignment of about 1%,
so that the overall accuracy of more than 76% has been ob-
tained. To facilitate the comparison with other relevant sys-
tems, MASSP3 has also been assessed according to the guide-
lines described in [19]. In particular, the programs NNSSP,
PHD, DSC, PREDATOR, and JPred have been considered
concerning performance against the commonly used RS126
dataset.

Having trained MASSP3 using the same dataset (i.e.,
TRAIN), we reported also the performance of SSPRO [22].
Experimental results are summarized in Table 2.

To give a better insight on the characteristics of MASSP3.
Table 3 reports the accuracy of the system and the SOV scores
[54] for the three secondary structure labels, as well as the
overall Q; and SOV score (let us recall that SOV measures the
accuracy of the prediction in terms of secondary structure
segments rather than on individual residues).

As a final remark on experimental results, let us point out
that the fact that SSPRO obtains better results is not surpris-
ing, this system being based on a technology (i.e., recurrent
ANNs—see, e.g., [53]) which is deemed more adequate than
MLPs for processing sequences. Nevertheless, in our opinion,
the proposed system has still great potentiality to improve its
performances, due to its ability of taking into account suit-
able domain knowledge and to the possibility of adopting
more powerful techniques (e.g., RANNs, HMMs) for imple-
menting embedded experts.

5. CONCLUSIONS AND FUTURE WORK

In this paper, an approach for predicting protein secondary
structures has been presented, which relies on two-tiered ar-
chitecture, consisting of a sequence-to-structure predictor,
followed by a structure-to-structure predictor. The former

resorts to a multiple-expert architecture, in which a popu-
lation of hybrid experts—embodying a genetic and a neural
part—has been suitably devised to perform the given appli-
cation task. The latter consists of an MLP, fed with the first-
stage prediction suitably encoded by a “low-pass” filter. Ex-
perimental results, performed on sequences taken from well-
known protein databases, improve those obtained with most
state-of-the-art predictors. As for the future work, in collabo-
ration with a biologist, we are trying to devise more “biolog-
ically based” features—to be embedded in genetic guards—
able to improve their ability of performing context identifica-
tion. The adoption of RANNs is also being investigated as the
underlying technology for implementing embedded experts.
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