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This paper presents a wavelet-based image encoding scheme with error resilience and error concealment suitable for transmission
over networks prone to packet losses. The scheme involves partitioning the data into independent descriptions of roughly equal
lengths, achieved by a combination of packetization and modifications to the wavelet tree structure without additional redun-
dancy. With a weighted-averaging-based interpolation method, our proposed encoding scheme attains an improvement of about
0.5–1.5 dB in PSNR over other similar methods. We also investigate the use of overcomplete wavelet transform coefficients as side
information for our encoding scheme to improve the error resilience when severe packet losses occur. Experiments show that we
are able to achieve a high coding performance along with a good perceptual quality for the reconstructed image.
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1. INTRODUCTION

Efficient delivery of images over data communication net-
works requires the maintenance of a balance between avail-
able bandwidth and perceptual quality of the received data,
with minimum transmission delays. With recent increase in
use of wireless communications and multimedia applica-
tions, error-resilient capabilities need to be incorporated into
image coders with good compression performances. Packet-
switched networks are very susceptible to transmission errors
since network congestions and other issues can cause tran-
sient channel shutdowns leading to packet delays and losses.
Even in situations when protocols such as TCP are used to
ensure the delivery of packets, large delays occur due to the
retransmission of lost packets.

The use of multiple description (MD) coding [1] for en-
coding and transmitting images across networks with packet
losses is being currently investigated in the literature. MD
coding involves the creation of different descriptions or pack-
ets of equal importance from the source data which are then
separately transmitted over the network. Each description
can be independently decoded so that the loss of some of the
descriptions does not affect the decoding of the properly re-
ceived ones. In the context of packet-based transmission,MD
coding can be described as encoding of the source data into
N ≥ 2 packets, such that the reconstruction obtained from
any 0 < k ≤ N packets is also good.

Various MD coding schemes have been used to provide
for robust transmission of images. The MD scalar quantizer
developed by Vaishampayan [2] was applied to wavelet im-
age coding in [3, 4]. An unequal forward error correction
technique to create multiple descriptions of images was sug-
gested in [5]. These MD coding schemes for images are of-
ten applied to wavelet zerotree-based encoders like the EZW
[6] and the SPIHT algorithm [7], which are fast, efficient,
have low complexity, and provide high-quality images at ex-
tremely low bit rates. However, the progressive nature of
these schemes results in an embedded data stream that can
be easily corrupted by bit errors and packet losses. Such
losses can cause severe distortions to the resulting output and
make image reconstruction almost impossible in the absence
of powerful channel codes or retransmission. Methods to
improve the error resilience of zerotree-based image coders
include the robust EZW (REZW) [8], packetized zerotree
wavelet (PZW) algorithm [9], and dispersive packetization
(DP) scheme [10]. Appropriate error concealment methods
[11] are used in these coding schemes to minimize the error
due to packet losses and recovery of the missing data.

In this paper, we present a new error-resilient, modi-
fied SPIHT wavelet image coding scheme that is suitable for
transmission schemes where packet losses occur. Next, we
incorporate certain overcomplete wavelet transform coeffi-
cients into our coding scheme to improve the robustness
and provide a better compensation for packet losses. The
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additional subbands obtained from the overcomplete repre-
sentation are considered as side information and add a vari-
able amount of redundancy to the encoded bit stream. The
error-resilient coder creates descriptions based on proper
packetization and partitioning of the wavelet coefficients.
The method by itself introduces no extra redundancy into
the signal. Error concealment is achieved by estimation of
lost wavelet coefficients using an interpolation scheme that
takes advantage of the data partitioning to minimize distor-
tion.

The rest of the paper is organized as follows. Section 2
summarizes main features of SPIHT, explains the new error-
resilient coding scheme along with the error concealment,
and compares results to related coding schemes from the lit-
erature. Section 3 shows how overcomplete representations
can be used to an advantage with our coding scheme when
higher packet loss rates are encountered. Finally, conclusions
are drawn in Section 4.

2. PACKETIZED SPIHT

2.1. SPIHT coder

The SPIHT algorithm [7] works by testing ordered wavelet
coefficients for significance in a decreasing bit plane order,
and quantizing only the significant coefficients. The high
coding efficiency obtained by this algorithm is due to group
testing the coefficients that belong to a wavelet tree, that is, a
set of wavelet coefficients across different scales with the same
spatial information. The set of detail coefficients of a tree at
each scale is referred to as a tile.

The trees are addressed based on the locations of the tree
roots, which in turn are the approximation coefficients at
the coarsest scale. The tree can be further classified as ei-
ther horizontal, vertical, or diagonal tree based on the spa-
tial orientation of the frequency information stored in the
tree. Approximation coefficients that are not tree roots are
called leaves. The combination of the three adjacent trees
along with their roots and the adjacent leaf is called a square
tree [12]. A square tree contains all the frequency informa-
tion corresponding to a square block of the image in the pixel
domain. The arrangement of wavelet trees, approximate co-
efficients, and the square tree is shown in Figure 1.

Group testing of the wavelet coefficients exploits the in-
terband correlation that exists between the coefficients be-
longing to a tree. Based on the zerotree concept [6], if a
wavelet coefficient at a given scale is found to be insignifi-
cant with respect to a given threshold, the 2 × 2 offspring of
that coefficient at the next finer scale is also assumed to be
insignificant. Thus, the encoding stops at the scale with the
last significant coefficient.

The initial listing that determines the order in which sig-
nificance tests are done is predetermined for both the ap-
proximation coefficients as well as the trees. Subsequent or-
dering of the coefficients is based on the partitioning of
the sets and is encoded in the algorithm such that it can
be reproduced at the decoder. At each bit plane signifi-
cant coefficients with respect to the threshold are found

Horizontal tree

Vertical tree Diagonal tree

Figure 1: Wavelet trees containing horizontal, vertical, and diag-
onal frequency information. The gray pixel in the approximation
band is a leaf. The three depicted trees and the leaf form a square
tree.

and coded. Then the precision of each significant coeffi-
cient is enhanced by sending the next bit from the binary
representation of the coefficient’s value. The refinement al-
lows for successive approximation quantization of the sig-
nificant coefficients. The synchronized ordering information
along with the refinement process leads to a progressive cod-
ing scheme, where even a truncated bit stream can be de-
coded to get a lower-rate image. It is this synchronization be-
tween the encoder and the decoder that makes images com-
pressed with SPIHT susceptible to data loss, see Figures 2(a)
and 2(b).

2.2. Packetization

To develop a robust implementation of the SPIHT algorithm,
we create N different descriptions from the source data that
are then transmitted separately. These descriptions are gen-
erated by a combination of packetization and partitioning of
the wavelet coefficients so that an effective error concealment
scheme can be obtained.

We employ a packetization scheme that allocates the bits
to each of the N packets such that they contain equally im-
portant information and can be independently decoded. To
remove the dependencies between bits that exist due to the
embedded nature of the coding algorithm, the packets are
created so that they contain quantization information per-
taining to only a certain subset of wavelet trees. Each packet is
assigned an equal number of approximation coefficients and
trees in a manner that they can be identified in the decoder
by the packet number. A simple interleaving process ensures
that neighboring approximation coefficients are assigned to
different packets, thus preserving more neighbors for inter-
polation in case of a packet loss. The horizontal, vertical, and
diagonal trees are each spread evenly among the different
packets. This ensures that each packet contains coefficients
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(a) (b)

(c) (d)

Figure 2: 512× 512 Lena image encoded at 0.21 bpp: (a) SPIHT, (b) SPIHT with 5% packet loss, (c) packetized SPIHT with shifted wavelet
trees and 5% packet loss, and (d) result from (c) after interpolation of lost approximation coefficients.

that are from across the spatial-frequency domain. Figure 3
shows the allocation process, where each gray level corre-
sponds to the underlying coefficients at those locations being
assigned to a particular packet. The figure shows the inter-
leaving of the approximate coefficients and the assignment
of tiles in the detail subbands (that are a part of the corre-
sponding tree) to different packets. It can be seen that the
three (horizontal, vertical and diagonal) trees belonging to
the same square tree are interleaved among themselves, so
that no two of them end up in the same packet. In the figure,
we observe 10 gray levels corresponding to N = 10 pack-
ets, with a zigzag interleaving scheme and an offset of one
between the packet numbers of the horizontal, vertical, and
diagonal trees of a square tree.

The encoded bits corresponding to the constituent ap-
proximation coefficients and the trees in a packet are trans-
mitted as a single independent description. The interleaving
process yields packets with nearly equal number of bits af-
ter the encoding process. Each of the packets can be decoded
separately irrespective of the order by which it is received
at the decoder. Thus the distortion due to a packet loss is
limited only to the data belonging to that packet and hence,
depending on the spatial-frequency location of the packet’s
constituent coefficients, only a few areas on the image are
damaged. However, since the packets contain whole wavelet
trees, all edge information present in the spatial direction of
the trees is lost for the corresponding area of the image. Fur-
ther partitioning is done to prevent the total loss of edge in-
formation, and is described in the following subsection.

2.3. Shifted wavelet trees

To prevent the loss of all horizontal, vertical, or diagonal edge
information for a spatial block in the image due to packet
loss, we propose a modified way to build wavelet trees. The
new wavelet trees are obtained by a process of directional
shifting from scale to scale. The shifting modifies the tree
structure such that each tile of detail coefficients becomes as-
sociated with the offspring of its neighboring tile along the
corresponding orientation. Thus a tile belonging to a hori-
zontal, vertical, or diagonal tree would be associated with a
set that is shifted from its offspring, to the right, down, or
right and down, respectively. By linking the tiles at each scale
to a set of coefficients that are shifted from its offspring, we
obtain a shifted tree structure. The linking process is shown
in Figure 4, where tiles with the same gray level along the
horizontal, vertical, and diagonal directions form the corre-
sponding shifted wavelet trees.

The shifting is done in a cyclic manner so that tiles of co-
efficients at the edge of a subband are rolled over to the other
end when the shift is applied to them. At the coarsest scale we
do not perform any shift since the coefficients in those sub-
bands are already interleaved during the packetization pro-
cess described in Figure 3. The packetization is performed
as described in the previous section with the new shifted
wavelet trees replacing the corresponding traditional trees.
This results in all the coefficients of a shifted wavelet tree be-
ing assigned to the same packet, Figure 4. All of the shifted
wavelet tree coefficients are grouped, and tested together for
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Figure 3: Coarsest scale of decomposition. Each of the 10 gray lev-
els denotes a different packet. The starting packet number for the
horizontal, vertical, and diagonal trees (without the root) is offset
by one, such that the three trees belonging to a square tree are dis-
tributed to three packets.

Appr.
coeff.

Figure 4: Shifted wavelet trees; all tiles with the same gray level are
assigned to the same packet.

significance during the subsequent SPIHT encoding process.
Note that the tiles in our new, shifted wavelet trees do not
contain the same spatial information any longer. Thus, cod-
ing efficiency that is usually gained by exploiting the corre-
lation of detail coefficients across scales is lost to a certain
extent. However, the intraband correlation between neigh-
boring tiles in the direction of the frequency information
stored in that subband is usually high and therefore, by re-
placing a tile by its neighbor, the loss in coding efficiency is
contained to a minimum.

Similar partitioning schemes of the wavelet coefficients
have been proposed in [8, 10]. However, in our method the
partitioning is applied to tiles of detail coefficients rather
than individual coefficients. Since the coefficients of each
tile are encoded in the same packet as a group, such an

arrangement minimizes the loss in coding efficiency due to
partitioning. Further, by our method we are able to effec-
tively partition both the square tree as well as the individual
trees. The partitioning can be seen in Figures 3 and 4, by con-
sidering that all coefficients belonging to a packet are denoted
by the same gray level, in both figures. The frequency infor-
mation of a square wavelet tree from Figure 1 is dispersed
throughout the packets. In case of a packet loss, neighboring
information for lost approximate coefficients as well as sig-
nificant edge information for a tree are still available in the
other packets. This allows us to interpolate for missing co-
efficients based on the available information from the other
correctly received packets.

2.4. Interpolation and recovery of lost data

The loss of a packet during transmission implies the loss of all
the quantization information of its constituent coefficients.
The interpolation scheme for the recovery of those missing
coefficients is done in a two step manner: first, the lost detail
coefficients are estimated. Then the lost approximation coef-
ficients are interpolated.

(1) Detail coefficients: the number of detail coefficients
lost in a wavelet tree depends on the size of the tile. Due to the
shifted wavelet tree partitioning, a missing tile implies that
detail coefficients in other scales belonging to the same spa-
tial region of the image are generally available; see Figure 4.
This allows us to exploit interband correlation in addition to
intraband correlation for estimation of missing detail coef-
ficients. We investigate three different approaches to recover
lost detail coefficients.

(i) Set to zero: the simplest approach is to set all
lost detail coefficients equal to zero. While we
lose edge information in one scale, we still have
edge information with the same spatial direction
available from the remaining scales which reduces
blurring.

(ii) Intraband interpolation: this is applicable for the
tiles lost in the coarsest scale. To estimate the
lost 2 × 2 tiles, the least squares estimation with
smoothness constraints on neighboring vertical
(horizontal) coefficients proposed in [13] is ap-
plied to the subbands with vertical (horizontal)
frequency information; see [13, Section B.1] for
details.

(iii) Interband interpolation: for all but the finest scale,
the lost detail coefficients can be approximated by
averaging the entries of the 2× 2 offspring coeffi-
cients in the next finer scale.

(2) Approximation coefficients: estimation of the lost co-
efficients in the approximation band is usually done by aver-
aging the available neighboring coefficients. This works fairly
well for most cases, since the approximation coefficients are
more correlated compared to the other bands. To further im-
prove accuracy, we here propose an interpolation based on a
weighted average of the neighboring coefficients. The weights
for the neighboring coefficients are assigned based on the
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values of the significant detail coefficients in the square tree
to which the lost coefficient belongs. The horizontal, verti-
cal, and the diagonal available neighbors of the lost coeffi-
cient are assigned weights that are proportional to the sum
of absolute values of the coefficients of the tiles in the respec-
tive directions. The detail coefficients contain edge informa-
tion pertaining to a specific orientation. We therefore inter-
polate for a lost coefficient by assigning more weight to those
neighboring coefficients that lie along an edge than the other
neighbors.

Let Ix,y denote the missing approximation coefficient at
position (x, y) and H , V , and D denote the sets of detail co-
efficients that belong to the coarsest scale tiles along the hor-
izontal, vertical, and diagonal directions, respectively. Then,

hsum =
4∑

i=1

∣∣Hi

∣∣, vsum =
4∑

i=1

∣∣Vi

∣∣, dsum =
4∑

i=1

∣∣Di

∣∣.

(1)

The weights along each direction are

hwt = hsum + 1
hsum + vsum + dsum + 3

,

vwt = vsum + 1
hsum + vsum + dsum + 3

,

dwt = dsum + 1
hsum + vsum + dsum + 3

,

Ix,y = 0.5hwt
(
Ix,y−1 + Ix,y+1

)
+ 0.5vwt

(
Ix−1,y + Ix+1,y

)

+ 0.25dwt
(
Ix−1,y−1 + Ix+1,y−1 + Ix−1,y+1 + Ix+1,y+1

)
.
(2)

2.5. Experimental results

A four-level wavelet decomposition with the Daubechie’s 9/7
biorthogonal wavelet was applied to the 512×512, 8 bpp gray
scale images used for the experiments. The images were en-
coded into 20 packets at different bit rates. To obtain the rate-
distortion plots for the images with different packet loss and
burst error scenarios, we consider a loss model where ran-
dom packets are dropped independently. A number of pack-
ets are dropped out of a total of 20, based on the packet loss
rates. Significant wavelet coefficients from the lost packets are
estimated using the interpolation schemes described earlier.
Several Monte Carlo runs were performed to obtain average
PSNR values.

Table 1 shows the PSNRs’ obtained for the Lena image
compressed at 0.21 bpp at different packet loss rates for our
shifted wavelet tree packetization scheme with the different
interpolation schemes. It is observed that exploiting intra-
band or interband correlation to estimate lost detail coeffi-
cients at the coarsest level does not show any consistent ad-
vantage over just setting the lost detail coefficients to zero.
However, applying the weighted averaging scheme as com-
pared to simple nondirectional averaging for the approxima-
tion coefficients consistently improves the PSNR in all cases.

For the Y-component of the Lena image encoded at
0.21 bpp without any packet loss, a PSNR of 32.2 dB and a

Table 1: PSNRs for different interpolation schemes and packet loss
rates for 512× 512 Lena image encoded at 0.21 bpp.

Packet Approximation Detail coefficients

loss coefficients Zero Intraband Interband

5%
Avg. 30.17 30.18 30.10

Weighted avg. 30.70 30.80 30.70

10%
Avg. 27.57 27.60 27.43

Weighted avg. 28.44 28.46 28.45

15%
Avg. 26.35 25.71 26.17

Weighted avg. 26.50 26.57 26.63

20%
Avg. 24.98 25.00 24.92

Weighted avg. 25.16 25.17 25.31

25%
Avg. 22.91 23.07 22.90

Weighted avg. 23.90 23.95 24.01
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Figure 5: PSNR of Lena image encoded at 0.21 bpp using disper-
sive packetization (DP) [10], packetized zerotree wavelet algorithm
(PZW) [9], and our encoding scheme.

loss of 1.2 dB in coding efficiency compared to SPIHT were
reported in [9, 10]. With our encoding scheme we obtain a
PSNR of 33.0 dB, a gain of about 0.8 dB over their methods.
Figure 5 shows the PSNR improvements we obtain compared
to the results reported in [9, 10]. Figure 2(d) shows the de-
coded Lena image for our encoding scheme with 5% packet
loss after interpolation of the lost approximation coefficients.

3. ROBUST CODINGWITH OVERCOMPLETE
WAVELET TRANSFORM

While our packetization scheme for SPIHT based on shifted
wavelet trees combined with weighted averaging to esti-
mate lost approximation coefficients performs well at low
and moderate packet loss rates, performance deteriorates as
packet losses increase; see Table 1. To further improve error
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resilience, we perform overcomplete discrete wavelet trans-
form (DWT) at the coarsest scale and encode the additional
data in a parallel SPIHT encoder as redundancy. As opposed
to those cases where error correction codes would be used,
the redundancy yields a certain PSNR gain even when no
losses occur and all the packets are received.

3.1. Overcomplete discrete wavelet transform

In general, 1D DWT is performed by passing an input data
sequence x(n) through FIR lowpass and highpass filters with
impulse responses h0(n) and h1(n), respectively, which de-
pend on the choice of the wavelet [14, 15]. Each filter is fol-
lowed by a factor-of-two downsampling operation to yield
critical subsampling. The downsampling is performed by re-
taining either the even-indexed coefficients, or zeroth type-1
polyphase component [16] denoted by y00(m) and y10(m)
in Figure 6, or the odd-indexed coefficients, or first type-
1 polyphase component denoted by y01(m) and y11(m) in
Figure 6.

The odd- and the even-indexed coefficients have a differ-
ent set of values since the DWT is shift variant. However, they
are redundant in the sense that an inverse DWT (IDWT) can
be applied to any one of them to recover the original input se-
quence. In fact, each set of coefficients can be calculated from
the other one [17]. Alternatively, one can also use both sets
of coefficients for the IDWT, and rescale the reconstructed
signal by dividing it by two. The original indexing however
needs to be known during the IDWT process so that the co-
efficients can be placed at the proper locations after the up-
sampling; see Figure 7.

The perfect reconstruction property of the DWT is based
on the fact that aliasing that occurs at the decomposition
cancels during reconstruction of the signal. However, this
only holds true if no signal processing is applied to the sub-
bands, that is, ŷi, j(m), in Figure 7, equals yi, j(m), i, j = 0, 1,
in Figure 6. Once the wavelet coefficients are quantized, alias-
ing of the quantization error does not cancel out any longer.
By eliminating the subsampling, and keeping both polyphase
components, we can prevent aliasing at the cost of doubling
the data rate. It thus reduces the reconstruction error to
quantization noise and improves the quality of the recon-
structed signal.

3.2. Overcomplete coefficients as side information

In our implementation, we make use of the redundancy ob-
tained by the overcomplete DWT in the following manner.
At each level of decomposition of the 2D DWT, we choose
the even-indexed coefficients both along the rows and the
columns to obtain a regular DWT pyramid. At the highest
level of decomposition an additional set of detail and approx-
imation coefficients is also generated by keeping the odd-
indexed coefficients along the rows and columns. This odd-
indexed set of wavelet coefficients is encoded and transmitted
as redundancy along with the original bitstream.

The number of bits for encoding the odd-indexed coef-
ficients is allotted such that both the odd-indexed set and
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2

2

2
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Encoder 1
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Encoder 1

Encoder 2

x(n)

Figure 6: Overcomplete discrete wavelet transform.
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Decoder 1
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2

2

z−1

z−1

x̂(n)

Figure 7: Overcomplete inverse discrete wavelet transform. F0(z)
and F1(z) denote the reconstruction lowpass and highpass filters.

the 4 corresponding subbands in the even-indexed set are
quantized to the same bit plane. Since the odd-indexed set
is obtained at the coarsest scale of the wavelet decompo-
sition, where most of the signal energy is usually concen-
trated, it consumes a high percentage of the total bit bud-
get for quantization. This percentage increases when images
are encoded at low bit rates, where most of the bits are spent
in encoding the coarse-scale subbands. Table 2 lists the re-
dundancy required for different 512× 512 images at various
bit rates/compression ratios (CR). The Lena image requires a
higher percentage of bits because the image has a significant
amount of low frequency information compared to other im-
ages.

The odd-indexed coefficients are encoded into N packets
using the same packetization scheme described earlier; see
Figure 3. Since the four subbands represent a single level of
wavelet decomposition, the partitioning that is applied to the
finer scales is not required in this case. Packets from both
sets which contain encoded information corresponding to
the same spatial regions obtain the same number. Each of
the N packets from the odd-indexed set is then appended to
a packet, which is obtained by the encoding of the original
wavelet decomposition subbands, but numbered differently.
In case of packet losses, the same interpolation procedure as
in the previous section is followed for both sets of subbands.
Since the packets belonging to both sets are combined with
an offset, the coefficients corresponding to the same spatial
location in the wavelet subbands are lost in just one of the
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Table 2: Amount of redundancy needed to encode odd-indexed set
of coefficients at coarsest scale.

CR bpp Lena Boat Mandrill

8:1 1 11.2% 9.1% 8.2%

16:1 1/2 19.1% 15.1% 14.6%

32:1 1/4 31.4% 26.1% 21.9%

48:1 1/6 37.5% 36.1% 32.9%

64:1 1/8 50.1% 39.7% 38.6%

80:1 1/10 51.9% 49.6% 36.3%

96:1 1/12 56.9% 53.9% 43.6%

128:1 1/16 69.3% 57.4% 58.1%

sets. Thus the other set always has a signal that is not in-
terpolated. Using both sets of coefficients for the IDWT and
combining the subbands as described earlier, and shown in
Figure 7, leads to a reconstructed image that has a reduced
distortion when compared with similar scenarios where the
overcomplete representation is not used.

3.3. Results

We perform our experiments with the same number of
wavelet decomposition steps and the same loss model as
described in the previous section. The loss of a packet in
this case, however, means that packet number ko from the
odd-indexed set is lost along with packet number ke of the
even-indexed set where, ko = ke + m, and m is the offset
in numbering. Since adding the redundancy effectively in-
creases the bit rate of the encoded image, we compare our
results with the case when the image is being coded using
our coding scheme without redundancy, but at an increased
bit rate. Figure 8 shows the rate distortion curves for two im-
ages with the overcomplete information for different packet
loss rates. As can be seen, at lower bit rates and low packet
loss cases, preventing aliasing by using the overcomplete in-
formation is not enough to equal the gain obtained by us-
ing more bits for a finer quantization. However, when packet
losses increase, using the overcomplete information as re-
dundancy provides a definite improvement in performance
over the case where only the packetization and interpolation
are used for error concealment. The comparison with MD
coding schemes such as in [3, 18] is difficult due the different
transforms used, and higher redundancy involved in those
MD schemes. However, we expect to achieve a superior per-
formance by using the overcomplete coefficients in an MD
scenario, where different overcomplete sets of coefficients can
be considered for constructing the different descriptions.

4. CONCLUSIONS

An error-resilient wavelet zerotree-based image coding
method has been presented. Themethod is based on effective
packetization obtained by partitioning and modifying the
wavelet trees and a weighted averaging scheme for recovery of
lost approximation coefficients. A high coding efficiency and
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Figure 8: PSNR for (a) Lena and (b) Boat images at different bit
rates; solid line: with overcomplete wavelet coefficients; dashed line:
packetized SPIHT.

low distortion for moderate packet loss rates are obtained
without introducing any form of extra redundancy.

Redundancy in the form of overcomplete wavelet coef-
ficients has been introduced to improve the robustness of
the coding method for higher packet loss rates. While main-
taining the coding efficiency for low and moderate packet
losses, the use of overcomplete coefficients as redundant
information greatly improves the performance when higher
packet loss rates are encountered.
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Experimental results indicate an improvement of 0.5–
1.5 dB in PSNR with respect to other coding schemes over
a range of packet loss rates. The perceptual quality of the
reconstructed image is also suitably maintained suggesting
that our method is suited for image transmission over lossy
packet-switched networks.
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