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In this paper, a new biologically motivated method is proposed to effectively detect perceptually homogenous region boundaries.
This method integrates the measure of spatial variations in texture with the intensity gradients. In the first stage, texture repre-
sentation is calculated using the nondecimated complex wavelet transform. In the second stage, gradient images are computed
for each of the texture features, as well as for grey scale intensity. These gradients are efficiently estimated using a new proposed
algorithm based on a hypothesis model of the human visual system. After that, combining these gradient images, a region gradient
which highlights the region boundaries is obtained. Nonmaximum suppression and then thresholding with hysteresis is used to
detect contour map from the region gradients. Natural and textured images with associated ground truth contour maps are used
to evaluate the operation of the proposed method. Experimental results demonstrate that the proposed contour detection method
presents more effective performance than conventional approaches.
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1. INTRODUCTION

The ideal step function subject to white Gaussian noise is a
frequently used edge model in many conventional edge de-
tectors such as those mentioned by Canny [1], Shen and
Castan [2], and Rakesh [3]. Using this model, any signifi-
cant change in intensity values may be detected as an edge.
Therefore conventional approaches may detect many spuri-
ous edges in textured regions where there is no boundary. As
a result, they are not suitable for contour detection.

There is evidence that human visual system is able to dis-
tinguish between contour of objects and edges originating
from textured regions in its early stages of visual informa-
tion processing [4—6]. The goal of our work is to develop a
computational model of HVS that identifies perceptually ho-
mogenous region boundaries.

It is not possible to build a computational HVS model
for image processing applications directly from physiology of
the HVS due to its tremendous complexity. Computational
models introduced for different aspects of HVS were devel-
oped aiming observations from psychovisual experiments or
sequential processing of the visual information in different
layers of the HVS [7-9]. Models introduced for the nonclas-
sical receptive field inhibition are examples developed in such
a way [8]. Studies have shown that once a cell is activated by
an optimal stimulus in its classical receptive field, simultane-
ously presented stimulus outside that field can have an effect

on the cell response. This mostly inhibitive effect is referred
to as nonclassical receptive field (non-CRF) inhibition [9].

The non-CRF mechanism is a common property of ori-
entation selective cells in primary visual cortex and proves
to play a significant role in our perception of contours [7].
It is shown that an edge detection algorithm which em-
ploys the model of non-CRF mechanism primarily detects
object boundaries in clattered scene images [9]. The non-
CRF mechanism models are based on a simple hypothesis:
isolated edges may be object boundaries while edges in a
group may originate from textured regions. Therefore differ-
ent classes of edges are treated in different ways: single edges,
on one hand, being considered as contours, are not affected
by the inhibition, while groups of edges, on the other hand,
assumed as edges originating from textured regions, are sup-
pressed [9].

With these considerations, in textured regions, non-CRF
models do no make any distinction between object bound-
aries and edges originating from texture. For this reason,
some texture boundaries may be missed due to suppression.
Additionally, there are no necessarily abrupt changes in in-
tensity values at the texture boundaries. Therefore, contour
detection algorithms which employ the non-CRF models are
not able to completely extract such region boundaries.

These two disadvantages motivate us to introduce a new
contour detection method based on HVS ability of detecting
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FIGURE 1: Block diagram of texture-gradient-based contour detection algorithm.

the breakdown of homogeneity in the visual input patterns.
Considering nearly constant values of texture features in any
perceptually homogeneous region, the proposed method is
developed based on detecting significant changes in texture
features. The gradient of each texture feature clearly high-
lights the edge of the textured regions. These gradients are
suited to the detection of texture boundaries. In order to pre-
serve the ability of the model to detect intensity changes,
these gradients are also combined with an intensity gra-
dient. The gradients of texture features and intensity val-
ues are combined into a region gradient which highlights
the object boundaries. Nonmaximum suppression and then
thresholding with hysteresis is applied on the region gra-
dients to extract the contour map. Figure 1 illustrates the
block diagram of texture gradient contour detection algo-
rithm.

This paper is organized as follows: in Section 2 the idea
behind gradient estimation is briefly outlined, the biologi-
cally motivated gradient estimation methods are reviewed,
and the innovations added by the current methods are de-
scribed. Section 3 describes the feature extraction stage we
use to obtain local texture features which will be subjected
to the gradient estimation method described in Section 2 in
order to calculate the texture gradients. Here existing work
on texture representation is reviewed and the magnitude of

the non-decimated complex wavelet transform (NDCWT)
is selected for calculating the texture features. Finally the
texture and intensity gradients are properly combined into
the region gradients such that region boundaries are high-
lighted. Section 4 demonstrates the practical utility of pro-
posed method comparing contemporary approaches.

2. GRADIENT ESTIMATION

Since an edge is defined by an abrupt change in intensity
value, an operator that is sensitive to this change can be con-
sidered as an edge detector. The rate of change of the intensity
values in an image is large near an edge and small in constant
areas. Therefore, a gradient operator may be used in order to
highlight the edge pixels.

In two-dimensional images, it is important to consider
level changes in many directions. For this reason, the direc-
tional sensitive gradient operators are used. The output of
any directional sensitive gradient operator contains informa-
tion about how strong the edge is at that pixel in the same
direction of the operator sensitivity. Up to now, several al-
gorithms were introduced for gradient estimation [1, 2, 9].
In this section, biologically motivated gradient estimation
methods are reviewed and some innovations are added by
these methods.
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2.1. Biologically motivated gradient
estimation methods

The majority of neurons in the primary visual cortex will
respond vigorously to an edge or a line of a given orienta-
tion and position in the visual field. The computational mod-
els for these orientation selective cells assumed that the only
condition for a cell to elicit a vigorous response is that the ap-
propriate stimulus be present within a specific region of the
visual field. This region is previously referred to as classical
receptive field.

John Canny defined a set of goals for an edge operator
and described an optimal method for achieving them [1].
He specified three issues that an edge operator must address:
good detection, good localization, and only one response
to a single edge. Canny shows that the first derivative of a
Gaussian function optimizes these criteria for a step edge
subject to white Gaussian noise. The edge operator was as-
sumed to be a convolution filter that would smooth the noise
and enhance the edge. With these considerations, Canny op-
erator for gradient estimation can be considered as com-
putational model of orientation selective cells that special-
ized to detect an ideal step edge subject to white Gaussian
noise.

Grigorescu et al. agree with Canny about the general
form of the edge detector: a convolution with a smooth-
ing kernel following by a search for edge pixels. They used
computational models for two types of orientation selec-
tive cells, called the simple cell and the complex cell, as
edge operators. A family of two-dimensional Gabor func-
tions was proposed as a model of the receptive field of sim-
ple cells. The response of a simple cell with preferred ori-
entation 6, and spatial frequency 1/ to an input image
with luminance distribution i(x, y) is computed by convo-
lution:

SU,/\,Ok,(p(x> )/) = hU,/\,Gk,(p(-x) )/) * i(-x) )/),

242 27T
hop (% y) = e~ F 520 g (—x + (p),

A
X cos O sin O |:x:| (1)
y —sin6; cosby| |y ’
9k=(k_71)n, k=1,2,...,Ny.

Ny

By hg 1,6, (%, y) we denote the receptive field function (im-
pulse response) of a simple cell which is centered on
the origin. The number of total preferred orientations as-
sumed to be Ng. The ellipticity of the receptive field and
its symmetry with respect to the origin are controlled
by constant parameter A and angle parameter ¢, respec-
tively.

The responses of a pair of symmetric and antisymmetric
simple cells are combined, yielding the complex cell response

as follows:

Copg (x,y) = \/Si,l,gk,o(x, P+ 6%y (2)

According to the Grigorescu et al. approach, each pixel can
be assigned a gradient estimation obtained from the maxi-
mum values of complex cell responses and the orientation
for which this maximum response is achieved,

|IG0(x:y)| = maX{Ca,U/O.SG,ek(x)y) | k= 1)2>~~~>N9}>

ZIG4(x, y) = argmax {Cy0/056,6, (%, ¥) | k = 1,2,..., Ng}.
(3)

Without addressing any criterion, Grigorescu et al. fixed the
value of A to A = ¢/0.56, and as a result it is possible that their
method will create spurious responses to noisy and blurred
edges (see Figure 2). In the next section we obtain a suit-
able value of A and ¢ for which one-dimensional simple cell
model will be able to efficiently estimate the gradients for an
ideal step edge subject to white Gaussian noise.

2.2. Proposed method for gradient estimation

In one dimension, the first derivative of Gaussian function
is nearly optimal operator for achieving previously men-
tioned edge detection criteria. Recall that the first derivatives
of Gaussian function with respect to x has the form

G, (x) = —%e*x%z. (4)

Also one-dimensional impulse response of a simple cell in
x direction (direction of 6; = 0) is given by hs 1,6,,(x, y) at
y=0andk = 1:

o) 6,,0(x,0) = e™¥/29" cos (%Tx + go). (5)

Comparing (4) and (5), we attempt to obtain A and ¢ so that
there is no reasonably difference between h; )4, »(x,0) and
G, (x). To do this, we replace cos((27/1)x + ¢) with its corre-
sponding Taylor series approximation. In this approximation
only two terms are considered. After that, comparing the re-
sultant equation with (4) yields

2 .
- %e’xz/z"z = ( cos ¢ + % sin go) e ¥, (6)

With ¢ = —n/2 and A = 2702, G,(x) will be the first or-
der approximation of hy 762,69, —/2(x,0). Therefore it might
be expected that simple cell model provide better gradient
estimation than derivative of Gaussian.
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FIGURE 2: The output magnitudes of a first derivative of Gaussian function (b), simple cell model (c), and complex cell model (d) with

A = 0/0.56 to an ideal step edge subject to white Gaussian noise (a).

Having two different preferred orientations in (3), only
horizontal or vertical orientation is likely for the gradient
orientation. Also nonmaximum response does not have an
effect on gradient magnitude. Therefore, the formulation
presented in (3) may be imprecise.

In each pixel of the image, the response of a simple cell
operator contains information about how strong the edge
is at that pixel in the same direction of the operator sensi-
tivity. Therefore, simple cell responses may be considered as
the gradient components. It is expected that vector summa-
tion of these gradient components provides better estima-
tion of the gradients than (3). As a replacement for non-
linear max operator in (3), we utilize the linear sum op-
erator to estimate the gradients. Combining simple cell re-
sponses over all orientations, intensity gradient is computed

as follows:
Ny .
1G4 (x, y) = Z eJOkSJ,ZHUZ,Bl,fn/Z(x) 0). (7)
k=1
We denote j = +/—1 as a complex number. Instead of

simple cell responses in (7), also complex cell responses may
be used to estimate the intensity gradients. Figure 3 illus-
trates the block diagram of proposed method for gradient
estimation.

3. PROPOSED METHOD FOR CONTOUR DETECTION

The proposed method for contour detection consists of sev-
eral conceptual stages. These stages are separately described
in this section.
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3.1. Texture representation

The performance of various texture algorithms is evaluated
against the performance of the human visual system doing
the same task. Therefore, it is reasonable to use biologically
motivated texture representation methods.

Human visual system decomposes the image in its ori-
ented spatial frequencies [10]. Here, it is important to apply
a decomposition structure that best approximates the pro-
cessing in the HVS. Directional bandpass Gabor filters repre-
sent a very good compromise in terms of HVS resemblance
and efficient data representation. They are scale and direc-
tionally selective whilst being frequency and spatially local-
ized [11]. Gabor filters are not spatially limited. Also a com-
plete Gabor filter bank decomposition is computationally
complex. In order to prevent these disadvantages we can use
the magnitude of the coefficients of non-decimated complex
wavelet transform (NDCWT). This is because the basis func-
tions of each subband (very closely) resemble Gabor filters
[12].

In this paper only the first level of NDCWT decom-
position is used. The magnitude of the coefficients of each
complex subband can be used to characterize the texture
content. Each pixel can therefore be assigned a feature vec-
tor according to the magnitudes of the NDCWT coeffi-
cients. A feature vector T'(x, y) is therefore associated with
each pixel at spatial position (x, y) characterizing the tex-
ture content at that position. Each NDCWT subband co-
efficient magnitude at spatial position (x, y) is shown by
Tim(x, y).

All the complex subbands have the same size as the origi-
nal image. This of course leads to one-to-one mapping of the
filter results in each subband with the original pixels.

3.2. Computing the texture gradient

In order to obtain the texture gradient we calculate the gra-
dient of each subband magnitude and then sum them. The

gradient estimation method proposed in Section 2.2 would
be used to calculate the gradient of T,(x, y) as follows:

Ny

TGa,m(x: y) = Z ef0 (h0,2n02,9k,—n/2(xy y) * Tp(x, )’)) (8)
k=1

Simple cell model hg,2762,6,,—7/2(x, ¥) smooth the texture fea-
ture T, (x, y) and highlights its changes in direction of 6. In
this paper, only two preferred orientations are considered for
gradient estimation method (Ng = 2).

A possible approach for the fusion of gradient informa-
tion from different subbands into a single texture gradient
function is a simple sum of TGy, (x, y) as follows:

6
TGe(x,y) = D TGom(x, y). )

m=1

Texture gradient makes use of a single parameter ¢ which
controls spatial extent of the receptive field. Selecting high
values of ¢ we have more smoothing for texture features.
Therefore, small changes in texture features may not be de-
tected. On the other hand, small values of ¢ highlight any
small changes in texture features.

3.3. Computing the region gradient

In textured regions there are many abrupt changes in inten-
sity values while there is not any object boundary in these
regions. Clearly the texture gradients do not respond to in-
tensity changes while it highlights the texture boundaries.
Therefore this gradient is suited to the detection of texture
boundaries.

In nontextured regions, where there is no texture, any
abrupt change in intensity values may be considered as
contour. In order to make a distinction between intensity
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(b)

FIGURE 4: A natural image (a) and its corresponding y(x, y) (b).

changes in textured and nontextured regions we introduce
the following index:

6
ux, y) = > | Tu(xy)|. (10)

m=1

This formulation leads to partly high values of u(x,y) in
textured regions. The value of u(x, y) for a natural image
is shown in Figure 4. This shows relatively higher intensity
values in textured regions. Making use of a simple adaptive
threshold on p(x, y), textured and nontextured regions may
be marked as follows:

1 ifulx,y) = %n(ﬂ),
pal(x, y) = (11)
0 ifulx,y) < %n(‘u).

Constant parameter « controls the extent of total textured re-
gions. It is clear that more pixels are labeled as texture region
when a large value is selected for a.

The texture gradient defined by (9) clearly highlights the
edge of the texture regions in the artificial texture images to-
gether with the natural image. In order to detect intensity
boundaries in regions where there is no texture, this gradient
is combined with an intensity gradient as follows:

RGa,tx,ﬁ(x: }/) = [’ltx(x> )’)TGﬁxo(x) y)
(12)
+ (1 = pal, ) IGo(x, ¥).

By RGy ap(x, y) we denote the region gradient at spatial po-
sition (x, y). The region gradients are complex values and
contour map can be detected using their magnitudes and
orientations.

The relative spatial extent of receptive field for simple
cells used to estimate the gradients of texture features and
intensity value is controlled by constant parameter .

4. EXPERIMENTAL RESULTS

We use the numerical performance measure introduced by
Grigorescu et al. to compare our method with non-CRF inhi-
bition operators. This performance measure is a scalar taking
value in the interval (0,1). A contour pixel is considered to be
correctly detected if its corresponding ground truth contour
pixel is present in a 5 X 5 square neighborhood centered at
the respective pixel coordinates. If all true contour pixels are
correctly detected and no background pixels are falsely de-
tected as contour pixels, then performance measure takes its
maximum value.

Contour maps for some test images are shown in Fig-
ure 5. The first and second columns show the input images
and ground truth contour maps, respectively. The third
and fourth columns also show the best contour maps with
respect to performance measure obtained using the isotropic
non-CRF inhibition operator and proposed method. For
the isotropic contour operator we used four scales {1.2, 1.6,
2,2.4} and two texture attenuation factors {1,1.2} as in
[9]. For proposed method we used the same scales as in
isotropic contour operator and value of {2} for each constant
parameter « and .

It is seeing that texture-gradient-based contour detection
method is able to detect boundary of objects more effectively
than non-CRF inhibition operators. This method delivers re-
sults matched by perception. Also the performance measures
are consistently higher for the texture-gradient-based con-
tour detection method results (see Table 1).

5. CONCLUSION

This work has used the concept of region gradients to pro-
duce an effective contour detection technique for natural and
textured images. In this work we have shown that the re-
gion gradient is a useful computational method that consid-
erably improves contour detection performance. It is shown
in Figure 5 that our method is able to give a good contour
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TaBLE 1: Performance for the images presented in Figure 5.
Texture gradient Non-CRF
Parameters Parameters
Performance Performance
Sigma Threshold Sigma Threshold
Goat 1.2 0.9 0.43 2.0 0.1 0.35
Hyena 1.2 0.9 0.64 2.0 0.1 0.56
Gnu 1.2 0.9 0.47 2.4 0.1 0.36
Zebra 1.2 0.4 0.43 1.6 0.1 0.19
Tiger 1.2 0.9 0.46 1.6 0.1 0.23
Texture 2.4 0.9 0.51 1.2 0.1 0.19

map for natural and textured images. Therefore, for an en-
tirely automatic contour detection system, the current imple-
mentation gives good results compared to other comparable
techniques.
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