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We present an equivalent linear complementarity problem (LCP) formulation of the noncooperative Nash game resulting from
the DSL power control problem. Based on this LCP reformulation, we establish the linear convergence of the popular distributed
iterative waterfilling algorithm (IWFA) for arbitrary symmetric interference environment and for certain asymmetric channel con-
ditions with any number of users. In the case of symmetric interference crosstalk coefficients, we show that the users of IWFA in
fact, unknowingly but willingly, cooperate to minimize a common quadratic cost function whose gradient measures the received
signal power from all users. This is surprising since the DSL users in the IWFA have no intention to cooperate as each maximizes
its own rate to reach a Nash equilibrium. In the case of asymmetric coefficients, the convergence of the IWFA is due to a con-
traction property of the iterates. In addition, the LCP reformulation enables us to solve the DSL power control problem under no
restrictions on the interference coefficients using existing LCP algorithms, for example, Lemke’s method. Indeed, we use the latter
method to benchmark the empirical performance of IWFA in the presence of strong crosstalk interference.
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1. INTRODUCTION

In modern DSL systems, all users share the same frequency
band and crosstalk is known to be the dominant source of
interference. Since the conventional interference cancellation
schemes require access to all users’ signals from different
vendors in a bundled cable, they are difficult to implement
in an unbundled service environment. An alternative strat-
egy for reducing crosstalk interference and increasing system
throughput is power control whereby interference is con-
trolled (rather than cancelled) through the judicious choice
of power allocations across frequency. This strategy does not
require vendor collaboration and can be easily implemented
to mitigate the effect of crosstalk interference and maximize
total throughput.

A typical measure of system throughput is the sum of all
users’ rates. Unfortunately the problem of maximizing the
sum rate subject to individual power constraints turns out
to be nonconvex with many local maxima [1]. To obtain a
global optimal power allocation solution, a simulated an-
nealing method was proposed in [2]; however, this method
suffers from slow convergence and lacks a rigorous analysis.
More recently, a dual decomposition approach [3] was de-
veloped to solve the nonconvex rate maximization problem,

whose complexity was claimed by the authors to be linear
in terms of the number of frequency tones but exponential
in the number of users. Notice that all of these approaches
require a centralized implementation whereby a spectrum
management center collects all the channel and noise infor-
mation, and calculates rate-maximizing power spectra vec-
tors and send them to individual users for implementation.
In a departure from this centralized framework, Yu et al.
[4] proposed a distributed game-theoretic approach for the
power control problem. The key observation is that each DSL
user’s data rate is a concave function of its own power spec-
tra vector when the interfering users’ power vectors are fixed.
Letting each user locally measure the interference plus noise
levels and greedily allocate its power to maximize its own
rate gives rise to a noncooperative Nash game (called DSL
game hereafter) [4, 5]. The resulting distributed power con-
trol scheme is known as the iterative waterfilling algorithm
(IWFA) and has become a popular candidate for the dynamic
spectrum management standard for future DSL systems.

Despite its popularity and its apparent convergent be-
havior in extensive computer simulations, IWFA has only
been theoretically shown to converge in limited cases where
the crosstalk interferences are weak [6] and/or the number
of users is two [4]. The goal of this paper is to present a
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convergence analysis of IWFA in more realistic channel set-
tings and for arbitrary number of users. Our approach is
based on a key new result that establishes a simple reformu-
lation of the noncooperative Nash game (resulting from the
distributed power control problem) as a linear complemen-
tarity problem (LCP) of the “copositive-plus” type [7]. Based
on this equivalent LCP reformulation, we establish the lin-
ear convergence of IWFA for arbitrary symmetric interfer-
ence environment as well as for diagonally dominant asym-
metric channel conditions with any number of users. More-
over, in the case of symmetric interference crosstalk coeffi-
cients, we show a surprising result that the users of IWFA
in fact, unknowingly but willingly, cooperate to minimize a
common quadratic cost function whose gradient measures
the total received signal power from all users, subject to the
constraints that each user must allocate all of its budgeted
power across the frequency tones. This “virtual collaborating
behavior” is unexpected since the DSL users in IWFA never
have any intention nor incentives to cooperate as each simply
maximizes its own rate to reach a Nash equilibrium. Another
major advantage of this LCP reformulation is that it opens up
the possibility to solve the DSL power control problem using
the existing well-developed algorithms for LCP, for example,
Lemke’s method [7, 8]. The latter method requires no restric-
tion on the interference coefficients and therefore can be used
to benchmark the performance of IWFA, especially in the
presence of strong crosstalk interference which leads to mul-
tiple Nash equilibrium solutions. In contrast, there has been
no theoretical proof of convergence (to an equilibrium solu-
tion) for the IWFA under general interference conditions.

Our current work was partly inspired by the recent work
of [9] which presented a nonlinear complementarity prob-
lem (NCP) formulation of the DSL game using the Karush-
Kuhn-Tucker (KKT) optimality condition for each user’s
own rate maximization problem. Such an NCP approach can
be implemented in a distributed manner despite the need for
some small amount of coordination among the DSL users
through a spectrum management center. It was shown [9]
that the resulting NCP belongs to the P0 class under certain
conditions on the crosstalk interference coefficients among
the users relative to the various frequency tones. It was fur-
ther shown that, under the same conditions, the solution to
the NCP is “B-regular” [10]; as a consequence, the NCP can
be solved in this case by a host of Newton-type methods as
described in the Chapter 9 of the latter monograph. In con-
trast to [9], our present work shows that the DSL game is
basically a linear problem. This simple result has important
consequences as we will see.

The rest of this paper is organized as follows. In Section 2,
we present the Nash game formulation of the DSL power
control problem and develop an equivalent mixed LCP for-
mulation, based on which we obtain a new uniqueness result
of the Nash equilibrium solution to the game. In Section 3,
we convert the mixed LCP formulation of the DSL game
into a standard LCP and show that the well-known Lemke
method will successfully compute a Nash equilibrium of the
DSL game, under essentially no conditions on the inter-
ference and noise coefficients. Section 4 is devoted to the

convergence analysis of the IWFA where we apply an exist-
ing convergence theory for a symmetric LCP and the con-
traction principle in the asymmetric case to show the lin-
ear convergence of IWFA under two sets of channel condi-
tions. These convergence results significantly enhance those
of [4, 6] by allowing arbitrary number of users and more re-
alistic channel conditions. Section 5 reports simulation re-
sults of Lemke’s algorithm and IWFA. It is observed that the
IWFA delivers robust convergent behavior under all simu-
lated channel conditions and achieves superior sum rate per-
formance. Section 6 gives some concluding remarks and sug-
gestions for future work. A brief summary of the LCP and
its extension to an affine variational inequality (AVI) is pre-
sented in an Appendix.

2. LCP FORMULATION

Let there be m DSL users who wish to communicate with
a central office in an uplink multiaccess channel. Let n de-
note the total number of frequency tones available to the DSL
users. Each user i has its own power budget described by the
feasible set

P i =
{
pi ∈ Rn | 0 ≤ pik ≤ CAPik

∀k = 1, . . . ,n,
n∑

k=1
pik ≤ Pi

max

} (1)

for some positive constants CAPik and Pi
max, where pi =

(pi1, p
i
2, . . . , p

i
n) denotes the power spectra vector of user i

with pik signifying the power allocated to frequency tone k.
In this model, we allow CAPik ≤ ∞. To avoid triviality, we
assume throughout the paper that

Pi
max <

n∑
k=1

CAPik, (2)

which ensures that the budget constraint
∑n

k=1 p
i
k ≤ Pi

max is
not redundant.

Taking p
j
k for j �= i as fixed, IWFA lets user i solve the

following concave maximization problem in the variables pik
for k = 1, . . . ,n:

maximize fi
(
p1, . . . , pm

) ≡ n∑
k=1

log

(
1 +

pik

σik +
∑

j �=i α
i j
k p

j
k

)

subject to pi ∈ P i,
(3)

where σik are positive scalars and α
i j
k are nonnegative scalars

for all i �= j and all k representing noise power spectra and
channel crosstalk coefficients, respectively. A Nash equilib-
rium of the DSL game is a tuple of strategies p∗ ≡ (p∗,i)mi=1
such that, for every i = 1, . . . ,m, p∗,i ∈ P i and

fi
(
p∗,1, . . . , p∗,i−1, p∗,i, p∗,i+1, . . . , p∗,m

)
≥ fi

(
p∗,1, . . . , p∗,i−1, pi, p∗,i+1, . . . , p∗,m

)
∀pi ∈ P i.

(4)
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The existence of such an equilibrium power vector p∗ is well
known. Subsequently, we will give some new sufficient con-
ditions for p∗ to be unique; see Proposition 2. Our main goal
in the paper pertains the computation of p∗. Throughout the
paper, we let αiik = 1 for all i and k.

Letting ui be the multiplier of the inequality
∑n

k=1 p
i
k ≤

Pi
max, and γik be the multiplier of the upper bound constraint
pik ≤ CAPik, we can write down the KKT conditions for user
i’s problem (3) as follows (where a ⊥ b means that the two
scalars (or vectors) a and b are orthogonal):

0 ≤ pik ⊥ −
1

σik +
∑m

j=1 α
i j
k p

j
k

+ ui + γik ≥ 0 ∀k = 1, . . . ,n,

0 ≤ ui ⊥ Pi
max −

n∑
k=1

pik ≥ 0,

0 ≤ γik ⊥ CAPik −pik ≥ 0 ∀k = 1, . . . ,n.
(5)

Although the above KKT system is nonlinear, Proposition 1
shows that, under the assumption (2), the system is equiva-
lent to a mixed linear complementarity system (see the Ap-
pendix for a discussion on the LCP).

Proposition 1. Suppose that (2) holds. The system (5) is
equivalent to

0 ≤ pik ⊥ σik +
m∑
j=1

α
i j
k p

j
k + vi + ϕi

k ≥ 0 ∀k = 1, . . . ,n,

vi free, Pi
max −

n∑
k=1

pik = 0,

0 ≤ ϕi
k ⊥ CAPik −pik ≥ 0 ∀k = 1, . . . ,n.

(6)

Proof. Let (pik,ui, γ
i
k) satisfy (5). We must have

σik +
m∑
j=1

α
i j
k p

j
k > 0 ∀k = 1, . . . ,n. (7)

We claim that ui > 0. Indeed, if ui = 0, then

γik ≥
1

σik +
∑m

j=1 α
i j
k p

j
k

> 0 ∀k = 1, . . . ,n, (8)

which implies pik = CAPik for all k = 1, . . . ,n. Thus

Pi
max ≥

n∑
k=1

pik =
n∑

k=1
CAPik, (9)

which contradicts (2). Hence to get a solution to (6), it suf-
fices to define

vi ≡ − 1
ui
, ϕi

k ≡
γik

(
σik +

∑m
j=1 α

i j
k p

j
k

)
ui

. (10)

Conversely, suppose that (pik, vi,ϕ
i
k) satisfies (6). We must

have vi < 0; otherwise, complementarity yields pik = 0 for

all k = 1, . . . ,n, which contradicts the equality constraint.
Consequently, letting

ui ≡ − 1
vi
, γik ≡ −

ϕi
k

vi

(
σik +

∑m
j=1 α

i j
k p

j
k

) , (11)

we easily see that (5) holds.

In turn, the mixed LCP (6) is the KKT condition of the
AVI defined by the affine mapping p ≡ (pi)mi=1 ∈ Rmn →
σ +Mp ∈ Rmn and the polyhedron X ≡∏m

i=1 P̂ i, where σ ≡
(σi)mi=1 with σi being the n-dimensional noise power vector
(σik)

n
k=1 for user i,M is the block partitionedmatrix (Mij)mi, j=1

with eachMij ≡ Diag(α
i j
k )

n
k=1 being the n×n diagonal matrix

of power interferences (note:Mii is an identity matrix), and

P̂ i ≡
{
pi ∈ Rn | 0 ≤ pik ≤ CAPik

∀k = 1, . . . ,n,
n∑

k=1
pik = Pi

max

}
.

(12)

(See the Appendix for a discussion on the AVI.) Conse-
quently, the tuple p is a Nash equilibrium to the DSL game if
and only if p ∈ X and

(p′ − p)T(σ +Mp) ≥ 0 ∀p′ ∈ X. (13)

We denote this AVI by the triple (X , σ ,M). Among its con-
sequences, the above AVI reformulation of the DSL game
enables us to obtain some new sufficient conditions for the
uniqueness of a Nash equilibrium solution. To present these
conditions, we define them×mmatrix B = [bi j] by

bi j ≡ max
1≤k≤n

α
i j
k ∀i, j = 1, . . . ,m. (14)

Note that bii = 1. In what follows, we review some back-
ground results in matrix theory, which can be found in [7].

Let Bdia, Blow, and Bupp be the diagonal, strictly lower,
and strictly upper triangular parts of B, respectively. Since

α
i j
k are all nonnegative, B is a nonnegative matrix. Hence

Bdia − Blow is a “Z-matrix”; that is, all its off-diagonal en-
tries are nonpositive. Since all principal minors of Bdia−Blow

are equal to one, Bdia − Blow is a “P-matrix,” and thus a
“Minkowski matrix” (also known as an “M-matrix”). It fol-
lows that (Bdia − Blow)−1 exists and is a nonnegative matrix.
Therefore, so is the matrix Υ ≡ (Bdia − Blow)−1Bupp. Let ρ(Υ)
denote the spectral radius of Υ, which is equal to its largest
eigenvalue, by the well-known Perron-Frobenius theorm for
nonnegative matrices. The matrix

B̄ ≡ Bdia − Blow − Bupp (15)

is the “comparison matrix” of B. Notice that B̄ is also a Z-
matrix. The matrix B is called an H-matrix if B̄ is also a P-
matrix. There are many characterizations for the latter con-
dition to hold; we mention two of these: (a) ρ(Υ) < 1 and (b)
for every nonzero vector x ∈ Rm, there exists an index i such
that xi(B̄x)i > 0.
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For each k = 1, . . . ,n, we call them×mmatrixMk, where

(
Mk

)
i j ≡ α

i j
k ∀i, j = 1, . . . ,m, (16)

a tone matrix. Notice that the matrixM in the AVI (X , σ ,M)
is a principal rearrangement of the block diagonal matrix
with Mk as its diagonal blocks for k = 1, . . . ,n. This rear-
rangement simply amounts to the alternative grouping of the
tuple p by tones, instead of users as done above.

Proposition 2. Suppose that

max
1≤i≤m

n∑
k=1

m∑
j=1

α
i j
k p

i
k p

j
k > 0 ∀p ≡ (pi)mi=1 �= 0. (17)

There exists a unique Nash equilibrium to the DSL game. In
particular, this holds if either one of the following two condi-
tions is satisfied:

(a) for every k = 1, . . . ,n, the tone matrix Mk is positive
definite;
(b) ρ(Υ) < 1.

Proof. As X is the Cartesian product of the sets P̂ i, it follows
that the AVI (X , σ ,M) has a unique solution if M has the
“uniform P property” relative to the Cartesian structure of
X ; see [10]. This property says that for any nonzero tuple
p ≡ (pi)mi=1,

max
1≤i≤m

(
pi
)T m∑

j=1
Mij p j > 0. (18)

Since Mij = Diag(α
i j
k )

n
k=1, the above condition is precisely

(17). Under condition (a), the matrix M is positive definite
because it is a principal rearrangement of Diag(Mk)nk=1. It is
easy to verify that

pTMp =
m∑
i=1

n∑
k=1

m∑
j=1

α
i j
k p

i
k p

j
k. (19)

Hence condition (a) implies (17). To show that condition (b)
also implies (17), write

m∑
j=1

n∑
k=1

α
i j
k p

i
k p

j
k

=
n∑

k=1

(
pik
)2

+
∑
j �=i

n∑
k=1

α
i j
k p

i
k p

j
k

≥
n∑

k=1

(
pik
)2 −∑

j �=i

n∑
k=1

α
i j
k

∣∣pik∣∣∣∣p j
k

∣∣

≥
n∑

k=1

(
pik
)2 −∑

j �=i

( n∑
k=1

(
pik
)2)1/2

×
( n∑

k=1

(
α
i j
k p

j
k

)2)1/2

≥
n∑

k=1

(
pik
)2 −∑

j �=i
max
1≤k≤n

α
i j
k

( n∑
k=1

(
pik
)2)1/2

×
( n∑

k=1

(
p
j
k

)2)1/2

=
( n∑

k=1

(
pik
)2)1/2 m∑

j=1
b̄i j

( n∑
k=1

(
p
j
k

)2)1/2
,

(20)

where the first and third inequality are obvious and the sec-
ond is due to the Cauchy-Schwarz inequality. Hence letting

qi ≡
( n∑

k=1

(
pik
)2)1/2

, (21)

we have

m∑
j=1

n∑
k=1

α
i j
k p

i
k p

j
k ≥ qi

m∑
j=1

b̄i jq j = qi
(
B̄q
)
i ∀i = 1, . . . ,m.

(22)

By what has been mentioned above, condition (b) implies

max
1≤i≤m

qi
(
B̄q
)
i > 0, (23)

because q is obviously a nonzero vector; thus (17) holds.

Proposition 2 significantly extends the current existence

and uniqueness result of [4–6] which required 0 ≤ α
i j
k ≤ 1/n

for all i �= j and all k. Under the latter condition, it can
be shown that the symmetric part of each tone matrix Mk,
(1/2)(Mk +MT

k ), is strictly diagonally dominant; hence each
Mk is positive definite. The condition ρ(Υ) < 1 is quite broad;
for instance, it includes the case where each matrix Mk is
“strictly quasi-diagonally dominant,” that is, where for each

k, there exist positive scalars d
j
k such that

dik >
m∑
j=1

α
i j
k d

j
k ∀i = 1, . . . ,m. (24)

In Section 4, we will see that the condition ρ(Υ) < 1 is re-
sponsible for the convergence of the IWFA with asymmetric
interference coefficients.

As another application of the AVI formulation of the
DSL game, we show that if each tone matrix Mk is positive
semidefinite (but not definite), it is still possible to say some-
thing about the uniqueness of certain quantities.

Proposition 3. Suppose that the tone matrices Mk, for k =
1, . . . ,n, are all positive semidefinite. Then the set of DSL Nash
equilibria is a convex polyhedron; moreover, the quantities

m∑
j=1

(
α
i j
k + α

ji
k

)
p
j
k, ∀i = 1, . . . ,m; k = 1, . . . ,n, (25)

are constants among all Nash equilibria.
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Proof. Under the given assumption, the matrixM is positive
semidefinite. As such, the polyhedrality of the set of Nash
equilibria follows from the well-known monotone AVI the-
ory [10]. Furthermore, in this case, the vector (M +MT)p is
a constant among all such equilibria p. By unwrapping the
structure of the matrix M, the desired constancy of the dis-
played quantities follows readily.

We can interpret (α
i j
k + α

ji
k )/2 as the “average interfer-

ence coefficient” between user i and user j at frequency k. In

this way, the invariant quantity (1/2)
∑m

j=1(α
i j
k + α

ji
k )p

j
k rep-

resents the average of signal and interference power received
and caused by user i across all frequency tones.

3. SOLUTION BY LEMKE’S METHOD

We next discuss the solution of the mixed LCP (6) by the
well-known Lemke method [7]. Since this method has a ro-
bust theory of convergence, its solution can be used as a
benchmark to evaluate the empirical performance of IWFA;
see Section 5. For convenience, let us first convert the prob-
lem (6) into a standard LCP. Let

wi
k ≡ σik +

m∑
j=1

α
i j
k p

j
k + vi + ϕi

k ∀k = 1, . . . ,n, (26)

from which we obtain, considering k = 1 and substituting

p
j
1 = P

j
max −∑n

k=2 p
j
k for all j = 1, . . . ,m,

vi = −σi1 +wi
1 −

m∑
j=1

α
i j
1 p

j
1 − ϕi

1

= −σi1 +wi
1 −

m∑
j=1

α
i j
1

(
P
j
max −

n∑
k=2

p
j
k

)
+ ϕi

1

= −σi1 −
m∑
j=1

α
i j
1 P

j
max +wi

1 +
m∑
j=1

n∑
k=2

α
i j
1 p

j
k − ϕi

1.

(27)

Substituting this into the expression of wi
k for k ≥ 2, we de-

duce

wi
k ≡ σik − σi1 −

m∑
j=1

α
i j
1 P

j
max +wi

1 +
m∑
j=1

α
i j
k p

j
k

+
m∑
j=1

n∑
�=2

α
i j
1 p

j
� + ϕi

k − ϕi
1

= σ̂ ii +wi
1 +

m∑
j=1

n∑
�=2

(
α
i j
1 + α

i j
� δk�

)
p
j
� + ϕi

k − ϕi
1,

(28)

where δk� is Kronecker delta, that is,

δk� ≡
⎧⎨
⎩1 if k = �,

0 otherwise,

σ̂ ik ≡ σik − σi1 −
m∑
j=1

α
i j
1 P

j
max ∀k = 2, . . . ,n.

(29)

Consequently, the concatenation of the system (6) for all i =
1, . . . ,m is equivalent to the following: for all i = 1, . . . ,m and
all k = 2, . . . ,n,

0 ≤ pik ⊥ wi
k = σ̂ ik +

m∑
j=1

n∑
�=2

(
α
i j
1 + α

i j
� δk�

)

× p
j
� +wi

1 + ϕi
k − ϕi

1 ≥ 0,

0 ≤ wi
1 ⊥ pi1 = Pi

max −
n∑

k=2
pik ≥ 0,

0 ≤ ϕi
k ⊥ CAPik −pik ≥ 0,

0 ≤ ϕi
1 ⊥ CAPi1−Pi

max +
n∑

k=2
pik ≥ 0.

(30)

The above is an LCP of the standard type

0 ≤ z ⊥ q +Mz ≥ 0, (31)

where the constant vector q is given by

q ≡

⎛
⎜⎜⎜⎜⎜⎝

σ̂ ik : i = 1, . . . ,m; k = 2, . . . ,n

Pi
max : i = 1, . . . ,m

CAPik : i = 1, . . . ,m; k = 2, . . . ,n

CAPi1−Pi
max : i = 1, . . . ,m

⎞
⎟⎟⎟⎟⎟⎠ , (32)

z is the vector of variables:

z ≡

⎛
⎜⎜⎜⎜⎜⎝

pik : i = 1, . . . ,m; k = 2, . . . ,n

wi
1 : i = 1, . . . ,m

ϕi
k : i = 1, . . . ,m; k = 2, . . . ,n

ϕi
1 : i = 1, . . . ,m

⎞
⎟⎟⎟⎟⎟⎠ , (33)

and the matrixM, partitioned in accordance with the vectors
q and z, is of the form

M ≡

⎡
⎢⎢⎢⎣

M̂ N I −N
−NT 0 0 0
−I 0 0 0
NT 0 0 0

⎤
⎥⎥⎥⎦ , (34)

where the leading principal submatrix M̂ is a nonnegative
(albeit asymmetric) matrix with positive diagonals and N is
a special nonnegative matrix. (The details of the matrices M̂
and N are not important except for the distinctive features
mentioned here.) Based on (34), it follows that the matrixM
is copositive-plus (i.e., zTMz ≥ 0 for all z ≥ 0, and [z ≥ 0,
zTMz = 0] implies (M +MT)z = 0). Consequently, Lemke’s
algorithm can successfully compute a solution to the LCP
(31) provided that this LCP is feasible; see [7]. But the lat-
ter feasibility condition trivially holds by the nonemptiness
of the sets P̂ i for i = 1, . . . ,m, which is a blanket assumption
that we have made. Summarizing this discussion, we obtain
the following result.

Theorem 1. Suppose that (2) holds and that P̂ i �= ∅ for all

i = 1, . . . ,m. For all nonnegative coefficients α
i j
k , i �= j, and all

positive σik, there exists a Nash equilibrium solution which can
be obtained by Lemke’s algorithm applied to the LCP (31) with
q andM given by (32) and (34), respectively.
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This existence result extends that of [4] which required
the condition that maxk{α21k α12k } < 1 and was only for the
two user case.

4. CONVERGENCE ANALYSIS OF THE IWFA

The LCP formulation (31) of the DSL game, where each
user’s variables associated with tone 1 are eliminated, facil-
itates the computation of a Nash equilibrium by Lemke’s
method (see Section 5 for numerical results). Nevertheless,
for the convergence analysis of the IWFA, it would be con-
venient to return to the AVI (X , q,M), where all variables
are left in the formulation. It is well known [10] that the
latter AVI is equivalent to the fixed-point equations: for all
i = 1, . . . ,m,

pi =
[
pi − σi −

m∑
j=1

Mij p j

]
P̂i

=
[
− σi −

∑
j �=i

Mi j p j

]
P̂ i

,

(35)

where [·]P̂ i denotes the Euclidean projection operator onto

P̂i, that is,

[x]P̂ i = argminpi∈P̂ i

∥∥x − pi
∥∥. (36)

As briefly described in Section 2, the IWFA [4–6] is a
distributed algorithm for solving the DSL game; it has the
attractive feature of not requiring the coordination of the
DSL users. In fact, each DSL user i simply maximizes its
rate fi(p1, . . . , pm) on the feasible set P i by adjusting its own
power vector pi while assuming other users’ powers are fixed
but unknown. In so doing, user i measures the aggregated
interference powers,

∑
j �=i

(
Mij pi

)
k =

∑
j �=i

α
i j
k p

j
k ∀k, (37)

locally without the specific knowledge of other users’ power

allocations p j or crosstalk coefficients α
i j
k , j �= i. Such aggre-

gated interference powers are sufficient for user i to carry out
its own rate maximization (3).

Specifically, the iterative waterfilling method can be de-
scribed as follows: at each iteration, user i measures the ag-
gregated interferences and updates the new iterate by
(
pi
)new

=

⎡
⎢⎢⎢⎢⎢⎢⎣
−σi −

⎛
⎜⎜⎜⎜⎜⎜⎝

i−1∑
j=1

Mij
(
p j
)new

+
m∑

j=i+1
Mij

(
p j
)old

︸ ︷︷ ︸
aggregated interferences

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
P̂ i

.

(38)

In other words, user i simply projects the negative of the ag-
gregated interferences plus the noise power vector onto the
polyhedral set P̂ i. This simple geometric interpretation of
the IWFA is key to its convergence analysis, which we sepa-
rate into two cases: symmetric and nonsymmetric interfer-
ences.

Symmetric interferences

When the DSL users are symmetrically located, the corre-

sponding interference coefficients are symmetric: α
i j
k = α

ji
k

for all i, j, k. In this case, it follows that Mij = Mji for all
i, j. Hence the matrix M is symmetric. Consequently, the
mixed LCP (6) is precisely the KKT condition for the follow-
ing quadratic program (QP):

minimize g(p) ≡ 1
2
pTMp +

m∑
i=1

(
σi
)T

pi

subject to p = (pi)mi=1 ∈
m∏
i=1

P̂ i.

(39)

Notice that the gradient of g(p) measures precisely the total
received signal power by every user at each frequency. More-
over, the set of Nash equilibrium points for the noncoopera-
tive rate maximization game (3) correspond exactly to the set
of stationary points of the quadratic minimization problem
(39), which is not necessarily convex because the matrix M
is not positive semidefinite in general. More importantly, the
IWFA (38) can be viewed as a block Gauss-Seidel coordinate
descent iteration to solve the QP (39). As such, its conver-
gence behavior can be established by appealing to the follow-
ing general convergence result for the Gauss-Seidel algorithm
[11, Proposition 3.4].

Proposition 4. Consider the following quadratic minimiza-
tion problem:

minimize θ(x1, x2, . . . , xn)

subject to xi ∈ Xi ∀i = 1, 2, . . . ,n,
(40)

with each Xi being a given polyhedral set. Suppose that X =
X1 × X2 × · · · × Xn is nonempty and that θ is strongly convex
in each variable xi. Let X̄ denote the set of stationary points of
(40) and let x0, x1, x2, . . . be a sequence of iterates generated by
the following fixed-point iteration:

xr+1i = [xr+1i −∇xiθ
(
xr+11 , xr+12 , . . . , xr+1i , xri+1, . . . , x

r
n

)]
Xi
.

(41)

Then {xr} converges linearly to an element of X̄ and {θ(xr)}
converges linearly and monotonically.

Under the following identifications:

xi ≡ pi, Xi ≡ P̂ i, θ(x) ≡ g(p), (42)

iteration (38) is precisely (41). Since Mii is the identity ma-
trix for each i, it follows that the quadratic function g(p)
is strongly convex in each variable pi. Thus, we can invoke
Proposition 4 to conclude the following.

Corollary 1. If the interference coefficients are symmetric, that

is, α
i j
k = α

ji
k for all i, j, k, then the iterates {pν ≡ (pν,i)mi=1} gen-

erated by the IWFA converges linearly to a Nash equilibrium
point of the noncooperative DSL game. Moreover, {g(pν)} con-
verges linearly and monotonically.
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Notice that in the original IWFA, each user acts greed-
ily to maximize its own rate without coordination. What is
surprising is that this seemingly totally distributed algorithm
can in fact be viewed equivalently as a coordinate descent al-
gorithm for the minimization of a single quadratic function.
In other words, the users actually collaborate, implicitly and
willingly, to minimize a common quadratic objective func-
tion g(p) whose gradient corresponds to precisely the total
received signal power by every user at each frequency. This
important insight is the key to the convergence of the IWFA
in the symmetric case.

If signal attenuation increases deterministically with the
propagation distance, then the symmetric interference as-
sumption used in the above analysis translates directly to the
situation that the DSL users are symmetrically located: they
are of the same distance to the central office (base station).
Such an assumption is obviously idealistic from a practical
standpoint. Nonetheless, our analysis of IWFA for this ideal-
ized situation may still shed some light on the general behav-
ior of IWFA under arbitrary interferences.

Asymmetric interferences

In general, the DSL users may not be symmetrically located.
In this case, the interference matrixM is not symmetric and
the aggregated interference power vectors cannot be viewed
as the gradient of a scalar function. Thus, Proposition 4 is
no longer applicable. More importantly, there is now a lack
of an obvious objective function which serves as a monitor
for the progress of the IWFA, making the convergence anal-
ysis of this algorithm less straightforward. Nevertheless, it is
still possible to establish the convergence of the IWFA by im-
posing the spectral radius condition ρ(Υ) < 1 introduced in
Proposition 2.

Theorem 2. Suppose that ρ(Υ) < 1. Then the iterates {pν ≡
(pν,i)mi=1} generated by the IWFA converge linearly to the
unique Nash equilibrium of the DSL game.

Proof. Our proof is by a vector contraction argument; see [7].
Let p∗ ≡ (p∗,i)mi=1 be the unique Nash equilibrium solution,
which satisfies

p∗,i =
[
p∗,i − σi −

m∑
j=1

Mij p∗, j
]
P̂ i

=
[
− σi −

∑
j �=i

Mi j p∗, j
]
P̂ i

∀i = 1, . . . ,m.

(43)

For each ν, we have

pν+1,i =
[
− σi −

( i−1∑
j=1

Mij pν+1, j +
m∑

j=i+1
Mij pν, j

)]
P̂ i

∀i = 1, . . . ,m.

(44)

Let ‖ · ‖ denote the Euclidean norm in Rm. By the nonex-
pansiveness property of projection operator (i.e., ‖[x]P̂ i −
[y]P̂ i‖ ≤ ‖x − y‖ for all x, y), we have, for all i = 1, . . . ,m,

∥∥pν+1,i − p∗,i
∥∥

=
∥∥∥∥∥
[
− σi −

( i−1∑
j=1

Mij pν+1, j +
m∑

j=i+1
Mij pν, j

)]
P̂ i

−
[
− σi −

( i−1∑
j=1

Mij p∗, j +
m∑

j=i+1
Mij p∗, j

)]
P̂ i

∥∥∥∥∥
≤
∥∥∥∥∥

i−1∑
j=1

Mij
(
pν+1, j − p∗, j

)
+

m∑
j=i+1

Mij
(
pν, j − p∗, j

)∥∥∥∥∥
≤

i−1∑
j=1

∥∥Mij
(
pν+1, j − p∗, j

)∥∥ + m∑
j=i+1

∥∥Mij
(
pν, j − p∗, j

)∥∥

≤
i−1∑
j=1

bi j
∥∥pν+1, j − p∗, j

∥∥ + m∑
j=i+1

bi j
∥∥pν, j − p∗, j

∥∥.

(45)

Hence,

i∑
j=1

b̄i j
∥∥pν+1, j − p∗, j

∥∥ ≤ m∑
j=i+1

bi j
∥∥pν, j − p∗, j

∥∥, (46)

where B̄ = [b̄i j] is defined by (15). Letting eν ≡ (eν
i )

m
i=1 with

eν
i ≡ ‖pν, j − p∗, j‖ and concatenating the above inequalities
for all i = 1, . . . ,m, we deduce

(
Bdia − Blow

)
eν+1 ≤ Buppeν, (47)

which implies

0 ≤ eν+1 ≤ (Bdia − Blow
)−1

Buppeν = Υeν ∀ν, (48)

where we have used the fact that (Bdia−Blow)−1 is nonnegative
entry-wise; see the discussion preceding Proposition 2. Since
ρ(Υ) < 1, the above inequality implies that the sequence of
error vectors {eν} contract according to a certain norm. Con-
sequently, the sequence converges to zero, implying that the
sequence of waterfilling iterates {pν} converges linearly to the
unique solution p∗ of the DSL game.

Theorem 2 strengthens the existing convergence results
[4, 6]. Specifically, the condition required for convergence is
weaker. In particular, it can be seen that the strong diagonal

dominance condition (α
i j
k ≤ 1/(m − 1)) required in [6] and

the respective condition for two user case [4] both imply the
condition ρ(Υ) < 1. Thus, Theorem 2 covers the convergence
for a broader class of DSL problems.

5. NUMERICAL SIMULATIONS

In this section, we present some computer simulation results
comparing the convergence behavior of IWFA with Lemke’s
algorithm under various channel conditions and system load
(i.e., number of users). In all simulated cases, the channel
background noise levels σik are chosen randomly from the
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Table 1: Average sum rate: two user case.

n
α12k ,α

21
k ∈ (0, 1) α12k ,α

21
k ∈ (0, 1.5)

Lemke IWFA Lemke IWFA

256 704 698 829.73 826.5787

512 1.402× 103 1.398× 103 1.6555× 103 1.6333× 103

1024 2.786× 103 2.811× 103 3.3028× 103 3.2968× 103

interval (0, 0.1/(m − 1)) with the uniform distribution, and
the total power budgets Pi

max are chosen uniformly from the
interval (n/2,n). All sum rates are averaged over 100 in-
dependent runs. The IWFA and Lemke’s method are both
implemented on a Pentium 4 (1.6GHz) PC using Matlab
6.5 running under Windows XP. For IWFA, we set a max-
imum of 400 iteration cycles (among all users), while the
maximum pivoting steps for Lemke’s method is set to be
min(1000, 25mn).

Table 1 reports the achieved sum rates (averaged over 100
independent runs) of Lemke’s method and IWFA for 2 users
and various numbers n of frequency tones. In this case we

have chosen crosstalk coefficients {αi jk } from the intervals
(0, 1) and (0, 1.5), respectively, for all k, and all i, j. This rep-
resents strong crosstalk interference scenarios. According to
the table, the average rates achieved by both algorithms are
comparable (within 2%), suggesting that the IWFA is capa-
ble of computing approximate Nash solutions with high sum
rates. Moreover, the results show that stronger interference
actually lead to Nash solutions with higher overall sum rates.
This seems to indicate that the well-known Braess paradox
[12] exist in DSL games. (In fact, using the QP characteriza-
tion of Nash game (cf. Section 4), it is possible to construct
simple examples whereby more transmission power for in-
dividual users do not necessarily lead to Nash solutions with
higher sum rate.)

For the case with more (m = 10) users, the situation is
similar, as shown in Table 2. Indeed, when α

i j
k ∈ (0, 1/(m −

1)), the condition for the uniqueness of Nash solution is sat-
isfied and the two methods have identical performance. The
results in both tables show that IWFA solutions are compa-
rable in quality to the respective solutions generated by the
Lemke method. The difference in the solution qualities are
due to the finite termination criteria we have used in both al-
gorithms which can cause either algorithm to stop before an
equilibrium solution is found.

6. CONCLUSIONS

In this paper we reformulate the DSL Nash game (resulting
from the distributed implementation of IWFA) as an equiv-
alent LCP, and apply the rich theory for LCP to analyze the
convergence behavior of IWFA. Our analysis not only signif-
icantly strengthens the existing convergence results, but also
yields surprising insight on IWFA. In particular, in the case
of symmetric interference, the users of IWFA in fact collab-
orate unknowingly to minimize a common quadratic cost,
even though their original intention is to maximize their in-
dividual rates. Moreover, the LCP reformulation makes it
possible to solve the DSL game with existing LCP solvers,

Table 2: Average sum rate:m = 10 user case.

n
α
ij
k ∈ (0, 1/(m− 1))

Lemke IWFA

256 2.8216× 103 2.824× 103

512 5.6464× 103 5.6457× 103

1024 1.1284× 104 1.1296× 104

such as Lemke’s method. With the latter as a benchmark, we
show via computer simulations that IWFA tends to converge
to good Nash solutions with high sum rates. Our theoret-
ical and simulation work affirms the potential of IWFA as a
promising candidate for the dynamic power spectra manage-
ment in DSL environment.

Several extensions of current work are possible. For ex-
ample, under either the diagonal dominance condition of
ρ(Υ) < 1 or the symmetric interference condition, one can
establish the linear convergence of a distributed (partially)
asynchronous implementation of IWFA. In particular, for
the diagonal dominance case, one can use a contraction ar-
gument similar to that in [13, page 493], while for the sym-
metric interference case, use an error bound technique [14]
to bound the distance from the iterates to the solution set of
the quadratic QP (39). Asynchronous implementation is in-
teresting from a practical standpoint since it does not require
the DSL users to coordinate the timing of their power spectra
updates.

As a future work, we are interested in further analyzing
the behavior of IWFA under no assumptions on the crosstalk
coefficients. Perhaps the compactness of the feasible set and
the nonnegativity of the crosstalk coefficients already ensure
the convergence of IWFA, or at least eliminate the possibility
of finite limit cycles. These issues and the design of an effi-
cient optimal power allocation algorithm for the nonconvex
sum rate maximization problem are interesting topics for fu-
ture research.

APPENDIX

BACKGROUNDON LCPs AND AVIs

In this appendix, we briefly summarize some technical back-
ground related to the linear complementarity problems and
affine variational inequalities. For a comprehensive treat-
ment of these problems, the readers are referred to the two
monographs [7, 10].

Unifying linear and quadratic programs and many re-
lated problems, the LCP is an inequality system with no ob-
jective function to be optimized. Specifically, letM be a given
squarematrix of order n×n and q a column vector inRn. The
LCP associated with (q,M) (denoted as LCP(q,M)) is to find
x ∈ Rn such that

x ≥ 0, Mx + q ≥ 0, xT(Mx + q) = 0. (A.1)

Let Sol(q,M) denote the solution set of LCP(q,M). It is
known that Sol(q,M) is in general equal to a finite union
of polyhedral sets. If M is positive semidefinite (not neces-
sarily symmetric), then we say that the corresponding LCP



Z.-Q. Luo and J.-S. Pang 9

is monotone; in this case, the solution set Sol(q,M) is convex
(and polyhedral). IfM is symmetric, it can be easily seen that
LCP(q,M) corresponds exactly to the KKT conditions for the
following QP:

minimize f (x) ≡ 1
2
xTMx + qTx

subject to x ≥ 0.
(A.2)

Therefore, the stationary points of above QP are precisely the
solutions of the LCP(q,M). Moreover, the gradient vector
∇ f (x) can be shown to be constant on each of the polyhedral
piece of Sol(q,M). (IfM is in addition positive semidefinite,
then Sol(q,M) consists of one polyhedral piece, so ∇ f (x)
is constant over Sol(q,M).) When M is not symmetric, the
above QP equivalence no longer holds. Instead, we can asso-
ciate with the LCP(q,M) the following alternate QP:

minimize xT(q +Mx)

subject to q +Mx ≥ 0, x ≥ 0.
(A.3)

In this case, a vector x is a global minimizer of (A.3) with a
zero objective value if and only if x ∈ Sol(q,M). Unlike the
symmetric case, the KKT points of (A.3) are not necessarily
the solutions of LCP(q,M).

The LCP can also be used to model a linear program (LP)
via duality. Indeed, the following LP:

minimize cTx

subject to Ax ≥ b, x ≥ 0
(A.4)

is equivalent to the LCP(q,M) with

q ≡
(

c

−b

)
, M ≡

[
0 −AT

A 0

]
, (A.5)

where the matrix M is skew-symmetric, thus positive
semidefinite.

There are many algorithms developed for solving an LCP.
Among them, Lemke’s method is perhaps the most versatile
due to its weak requirements for convergence. Algorithmi-
cally, Lemke’s method is a pivoting algorithm, much like the
celebrated simplex method for an LP. As such, it is a finite
method but suffers from exponential worst case complexity.
Nonetheless, its simplicity and superior average performance
have made it a popular choice in practice.

For monotone LCPs, we can also use interior point algo-
rithms which offer polynomial complexity [15]. These algo-
rithms exploit the positive semidefiniteness of M and typi-
cally require only a small number of iterations, albeit every
iteration requires the solution of a system of linear equations
of size n × n. In the absence of monotonicity, interior point
algorithms are not guaranteed to converge.

Another popular class of iterative algorithms for solving
LCPs consists of the matrix splitting algorithms, which are
based on the observation that a vector x ∈ Sol(q,M) if and
only if x satisfies the following fixed point equation:

x = [x − α(Mx + q)
]
+, (A.6)

where [·]+ denotes projection to Rn
+ and α > 0 is any con-

stant. This suggests the following simple iterative scheme to
compute a solution of LCP(q,M): for a given stepsize α > 0
and an initial iterate x0 ≥ 0,

xr+1 = [xr − α
(
Mxr + q

)]
+, r = 1, 2, . . . . (A.7)

This iterative scheme is called the gradient projection algo-
rithm. If {xr} converges, then the limit must be a solution
of LCP(q,M). More generally, we can split the matrix M as
M = B + C for some matrices B and C and generate a se-
quence according to

xr+1 = [xr+1 − α
(
Bxr+1 + Cxr + q

)]
+, r = 1, 2, . . . . (A.8)

Again, if the sequence {xr} converges, then its limit must be
an element of Sol(q,M). The aforementioned gradient pro-
jection is a special matrix splitting algorithm with B ≡ I/α
and C ≡M− I/α. If B is taken to be the lower triangular part
(including the diagonal) ofM while C is taken to be the strict
upper triangular part of M, then the resulting matrix split-
ting algorithm simply corresponds to the well-known Gauss-
Seidel method for LCP. In general, to ensure convergence, the
matrix splitting M = B + C must satisfy certain conditions.
For example, if M is symmetric, B and B − C are both posi-
tive definite, then the iterates generated by the resulting ma-
trix splitting algorithm converges linearly to an element of
Sol(q,M).

Much of the theory and algorithms for the LCP can be
extended to the AVI of the following form: given the polyhe-
dron,

P ≡ {x ∈ Rn : Ax ≥ b
}
, (A.9)

find x∗ ∈ P such that

(x − x∗)T(q +Mx∗) ≥ 0 ∀x ∈ P . (A.10)

Within this framework, LCP(q,M) simply corresponds to the
case where A = I and b = 0. The solution set of an AVI is
also the union of a finite number of polyhedral sets, which
becomes a single (convex) polyhedron when M is positive
semidefinite (themonotone case). In general, a vector x solves
the above AVI if and only if x satisfies the following fixed
point equation:

x = [x − α(Mx + q)
]
P , (A.11)

where [·]P denotes the orthogonal projection operator onto
P . Similar to the case of LCP, we can devise matrix splitting
algorithms for solving the above AVI:

xr+1 = [xr+1 − α
(
Bxr+1 + Cxr + q

)]
P , r = 1, 2, . . . ,

(A.12)

where M = B + C is a splitting of matrix M. Under condi-
tions similar to those for the LCP, we can also establish linear
convergence of the matrix splitting algorithms for solving a
symmetric AVI (i.e.,M =MT) provided a solution exists; see
[11].
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