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With this survey on the Hermite transformation we want to pursue the following two goals. First, we want to provide a compre-
hensive and up-to-date description of the Hermite transformation, its underlying philosophy, and its most important properties
and their implications for applications. As so often when publications and development go hand-in-hand, new insights have led to
changes in or generalizations of already published results, and not all of these changes have been considered sufficiently substantial
to be published separately. As a consequence, the existing publications on the Hermite transformation do not fully reflect our most
recent insights, and the current paper intends to remedy this. Second, we also want to share some new results. Two specific new
results, that is, partial signal decompositions and intersection curvatures, are therefore treated in more detail than other aspects.
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1. INTRODUCTION

The Hermite transformation was introduced about 15 years
agothrough two related publications [1, 2]. It was originally
developed to provide a mathematical model for interpreting
receptive fields in the early stages of (human) spatial vision
[2, 3]. It was however also one of the first instances where an
overcomplete signal representation was considered for appli-
cations. This early belief in the potential benefits of overcom-
plete representations, which was motivated by our belief in
the superior characteristics of the human visual system, has
since been shared by an increasing number of researchers.
The acceptance of the Hermite transformation has grown
due to demonstrated applications in diverse areas such as
image coding [4–6], image fusion [7, 8], motion estimation
(optic flow) [9, 10], image processing [11–15], image param-
eter estimation with applications in image quality prediction
[16–19], image analysis [20], image indexing [21, 22], and
modelling of the human visual system [23–25]. The Her-
mite transformation has recently also been extended to more
than two dimensions using the framework of Clifford analy-
sis [26].

The Hermite transformation is an example of an over-
complete signal representation, or signal decomposition. It is
an invertible mapping of the original signal (specified by its
sample values) to an alternative representation. The potential
benefit of such alternative representations is that they make
different characteristics of the signal explicit and hence acces-
sible for processing or coding. The interest in a specific sig-
nal representation is therefore determined by its usefulness

in applications. The recent signal-processing literature shows
a fast growth, under the impulse of wavelet transformation
[27, 28] and frame [29] theories, of available signal decom-
positions. It seems that there are endless alternatives for ana-
lyzing and resynthesizing a signal, and indeed there are. Ob-
viously, the demand of global correspondence, that is, that
analysis followed by synthesis results in the original signal,
is not very restrictive. There is therefore ample room for im-
posing additional demands on signal decompositions. In this
paper, we specifically consider signal decompositions from
the point of view of applications in adaptive image process-
ing (and coding). We argue that these applications are greatly
simplified if signal decompositions have the additional prop-
erty of local correspondence, that is, if signals can be locally re-
covered from the decomposition, using only the coefficients
at the position where processing is required. The Hermite
transformation is a specific example of such a local signal de-
composition, but one with some very useful extra features.

The adaptive processing (or coding) of images with the
help of local image decompositions will be a three-stage pro-
cess, as shown in Figure 1 [20]. In the analysis stage A the
image is decomposed into a sum of a priori selected (ba-
sic) functions. We assume that these functions span the sig-
nal space. They may comprise either a basis, in case they are
linearly independent, or a frame, in case they are linearly de-
pendent. The analysis stage is equivalent to a transformation
from an image to a set of coefficients, that is, the weights that
need to be assigned to the basic functions in order to recon-
struct the image. We assume here that all these basic func-
tions are displaced versions of a limited set of templates of



2 EURASIP Journal on Applied Signal Processing

Cp

l(x) A [ln(p)] T(Cp) [l̂n(p)] S l̂(x)

Figure 1: Algorithmic structure for adaptive image processing with local image decompositions. In the analysis step A, the input image
l(x) is transformed into a set of coefficients [ln(p)], where n indexes the different templates and p the different positions. The coefficients
[l]p = [ln(p), ∀n] at a given position p undergo a transformation T(Cp). The control variables Cp at position p are derived from [l]p and are

used to select the desired transformation T . The transformed coefficients [l̂n(p)] are combined in the synthesis step S to obtain the processed

image l̂(x).

approximately the same size. The extension to basic func-
tions of substantially different sizes can be accomplished
by extending the signal decomposition to a multiresolution
scheme, that is, by incorporating it in a pyramid structure
[1, 11, 28, 30] or in a scale-space setting [31–34]. The weights
of the basic functions can be assembled according to tem-
plate (i.e., the weights for all positions of a given template)
or according to position (i.e., the weights for all templates
at a given position). In the second stage of the adaptive al-
gorithm of Figure 1, the coefficients are assembled according
to position. The original coefficients at a given position are
interpreted and mapped (by T) into processed coefficients.
Since only coefficients at the same position are combined,
this mapping can easily be made to vary across positions.
To implement this adaptivity, we derive at each position one
or more control variables Cp that determine which (possibly
nonlinear) transformation T has to be applied to the coeffi-
cients at that position. These control variables are intended
to measure changes in the image itself (e.g., uniform versus
edge region, or variable orientation), or changes in the degra-
dation (e.g., level-dependent noise such as Poisson noise), so
that an adequate transformation can be selected. An image
decomposition that allows the image to be reconstructed lo-
cally obviously allows any desired local property to be de-
rived. Some important local features that will be introduced
later are the local average, the local energy (or contrast), the
local dimensionality, and the local orientation. In the syn-
thesis stage S of the adaptive processing algorithm, the pro-
cessed coefficients are applied to their respective basic func-
tions. The weighted sum is the processed output image.

In Section 2, we formalize the concept of local signal de-
compositions. We show how the idea of performing identi-
cal measurements at regular intervals leads to the definition
of filters and filter banks. Next, in Section 3, we introduce
partial signal decompositions as a specific case of local signal
decompositions where the number of required filter opera-
tions can be substantially reduced. It is shown in Section 4
how the simplest instance of such a partial signal decom-
position, called residue-image processing [15], can be ap-
plied for noise reduction and contrast enhancement. Start-
ing from Section 5, we focus on one specific case of local de-
compositions, that is, the Hermite transformation for two-
dimensional signals [1, 2, 13]. We define the Hermite trans-
formation and show how the mapping between the image
and the Hermite coefficients can be implemented. We also

discuss some important properties of the Hermite transfor-
mation. Next, in Section 6, we show how local coordinate
axes that are oriented along an image-dependent direction
can be created. Many geometric image features, such as the
isophote and flow-line curvatures and the newly-introduced
intersection curvatures, are most easily expressed in a coor-
dinate system, that is, oriented along the gradient direction.
These geometric features are discussed in Section 7, and it is
shown how they can be used to identify conspicuous details
(such as corners, junctions, extrema, etc.) in images. Such de-
tails are for instance well suited for performing image match-
ing, such as that required for stereo vision and motion esti-
mation. In Section 8 we apply the concept of partial signal
decompositions to the Hermite transformation in order to
devise an anisotropic noise-reduction algorithm.

2. LOCAL SIGNAL DECOMPOSITIONS

We assume that the input signals l(x) are defined for a (com-
pact) subset F of the D-dimensional Euclidean space RD.
This subset F can be either continuous or discrete. In the case
of image processing, the dimension D = 2, for static images,
or D = 3, for image sequences. We assume that the image
analysis is linear and hence consists of bounded linear func-
tionals [24], that is, linear mappings from the input signal
l(x) to the finite real/complex numbers that can be expressed
as the inproduct between a test function φ(x) and the input
function l(x). We moreover assume that this inproduct can
be expressed as an integral〈

φ(x), l(x)
〉 = ∫

F
φ(x) · l(x)dx, (1)

in case of continuous signals, or as a sum〈
φ(x), l(x)

〉 =∑
F

φ(x) · l(x), (2)

in case of discrete signals. The space of test functions that
we consider for analyzing the image is denoted by V . Test
functions are very often Schwartz functions (smooth local-
ized functions) [35]. The signal space contains those signals
that result in finite measurements for all test functions in V ,
and is hence equal to the dual space V ′ of bounded linear
functionals on V .

In a local signal decomposition, we decompose a D-
dimensional input signal l(x), for x ∈ F, into windowed sig-
nals l(x) · w(x − p), for p ∈ P . The windowing function
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[l(x), x ∈ F] ∗an(−x) ↓ P [l̂n(p),p ∈ P ]

Figure 2: Mapping from the input image [l(x), x ∈ F] to the coefficients [l̂n(p), p ∈ P ] of order n, depicted as a two-stage process. The
standard notations ∗ and ↓ are used to denote the convolution and (down-)sampling operations, respectively.

w(x) has limited support, so that w(x − p) is zero except in
the neighbourhood of sampling position p ∈ P . The win-
dowed signal l(x) · w(x − p) is therefore localized around
position p ∈ P . The set P contains all positions p on a reg-
ular lattice Λ [36] for which w(x−p) overlaps with F, that is,
w(x− p) �= 0 for at least one coordinate x ∈ F.

Each of the windowed signals l(x) · w(x − p) can be de-
composed into a sum of orthonormal basis functions ϕn(x−
p) ·w(x− p), n ∈ N , such that

w(x− p)

[
l(x)−

∑
n∈N

ln(p) · ϕn(x − p)

]
= 0, (3)

where the coefficients are obtained via

ln(p) =
〈
an(x − p), l(x)

〉 = ∫
F
an(x − p) · l(x)dx, (4)

for n ∈ N and p ∈ P (equality in (3) actually means con-
vergence in the mean-square sense) [20, 24]. The (discrete)
setN indexes the basis functions. The function

an(x) = ϕn(x) ·w2(x) (5)

is referred to as the analysis function of order n. The mapping
between the original signal l(x) and the coefficients [ln(p)]
for all orders n and positions p specifies the analysis stage A
of Figure 1.

If measurements are performed at all positions, then (4),
taken over all positions p ∈ RD, defines a D-dimensional
convolution or filtering between the input signal l(x) and the
filter with impulse response an(−x), or equivalently, a cor-
relation between the input signal l(x) and the analysis func-
tion an(x). Only a limited number of these output values are
however required, since P ⊂ RD. This operation of selecting
a subset of values is called (down-)sampling. The combined
operation is depicted in Figure 2. The complete signal analy-
sis A contains several of these filter/sampling combinations,
that is, one for each index n ∈ N , and is called a multirate
filter bank. The term multirate refers to the fact that the do-
main F on which the original signal is defined is usually dif-
ferent from the domainP on which the filter coefficients are
required.

There is no unique way of reconstructing the signal
l(x) from the coefficients [ln(p); n ∈ N , p ∈ P ] since any
weighted summation

l(x) =
∑
p∈P

∑
n∈N

ln(p) · rn(x − p), (6)

with

rn(x− p) = ϕn(x − p)
w(x − p)u(x− p)∑

q∈P w(x− q)u(x− q)
, (7)

for which ∑
p∈P

w(x− p)u(x− p) �= 0, (8)

for all argument values x ∈ F, is for instance valid. The rea-
son why there is no unique reconstruction is that the coeffi-
cients of the local signal decomposition are not independent
if the window functions w(x− p) at neighboring positions p
are overlapping. This means that, although there is a unique
set of coefficients [ln(p); n ∈ N , p ∈ P ] for any signal l(x),
there are many sets of coefficients that do not correspond to
a signal. Hence, the set of physically realizable coefficients is
a subspace of the space of all coefficients.

To arrive at a unique solution for u(x), we have to in-
troduce an additional condition for the reconstruction. One
obvious condition is described in the mathematical theory
of frames [29]. If we reconstruct a signal from a set of co-
efficients that are not physically realizable, and subsequently
analyze this signal, then we require the output coefficients to
be the closest realizable set of coefficients. In mathematical
terms, we impose that synthesis S followed by analysis A is
equivalent to an orthogonal projection P = A · S onto the
set of realizable coefficients. This is a useful property in our
application since the processed coefficients in adaptive signal
processing cannot be guaranteed to be realizable; it is there-
fore important to design the synthesis stage such that the co-
efficients of the output signal are automatically mapped onto
the closest realizable coefficients.

To find the unique reconstruction (synthesis) satisfying
the above condition for the given set of analysis functions,
we have to determine the frame operator Fa which maps any
signal l(x) to the corresponding signal

Fal(x) =
∑
p∈P

∑
n∈N

ln(p) · an(x − p), (9)

for x ∈ F, that arises by also using the analysis functions
to perform the signal reconstruction [29]. In the case under
consideration, the frame operator reduces to amultiplication
by a fixed function, namely,

Fal(x) = l(x) ·
∑
p∈P

w2(x− p), (10)

for x ∈ F. The inverse frame operator exists if

h2(x) =
∑
p∈P

w2(x− p) �= 0, (11)

for all x ∈ F. Mapping the analysis functions through this
inverse frame operator provides the required synthesis func-
tions

sn(x) = ϕn(x) · v2(x), (12)
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[ln(p),p ∈ P ] ↑ P ∗sn(x) l̂n(x)

Figure 3: Mapping from the coefficients [ln(p), p ∈ P ] to the interpolated image l̂n(x) of order n, depicted as a two-stage process. The
standard notations ∗ and ↑ are used to denote the convolution and upsampling operations, respectively.

l(x)

∗aN (−x)

∗a2(−x)

∗a1(−x)

↓ P

↓ P

↓ P

[lN (p),p ∈ P ]

...

[l2(p),p ∈ P ]

[l1(p),p ∈ P ]

↑ P

↑ P

↑ P

∗sN (x)

∗s2(x)

∗s1(x)

+ l̂(x)

Figure 4: Local signal analysis and synthesis, where N denotes the number of different templates (N may be infinite).

for n ∈ N , where

v2(x) = w2(x)
h2(x)

= w2(x)∑
p∈P w2(x− p)

(13)

is a modified window. This latter window has the property
that the sum of displaced copies v2(x − p) for all positions
p on the sampling lattice P is equal to one for all positions
x ∈ F.

The resulting synthesis stage S is specified by

l(x) =
∑
p∈P

∑
n∈N

ln(p) · sn(x− p)

=
∑

p∈P
[∑

n∈N ln(p) · an(x− p)
]∑

p∈P w2(x− p)
,

(14)

for x ∈ F. This optimal synthesis corresponds to u(x) = w(x)
in our earlier notation.

If an impulse signal with unit weight at position p is input
into a filter with impulse response sn(x), then the output is,
by definition, equal to sn(x− p). This implies that the signal

ln(x) =
∑
p∈P

ln(p) · sn(x− p) (15)

is the output of this filter in case the input is an array of im-
pulses, where the weight of the impulse at position p ∈ P
is equal to the coefficient ln(p). This operation of creating an
array of impulses from a set of coefficients is called upsam-
pling. The combined operation of upsampling and filtering
is called interpolation and is depicted in Figure 3. The com-
plete signal synthesis S contains several of these interpola-
tions, that is, one for each index n ∈ N , and is hence a mul-
tirate filter bank. The synthesized signal arises by combining
all outputs of this multirate filter bank.

The overall image analysis and synthesis is depicted in
Figure 4. In case of Figure 4, the coefficients [ln(p)] that are
derived from the original image are not modified, so that the

output signal satisfies l̂(x) = l(x), for x ∈ F. If F is discrete,
then the local signal decomposition can be used to interpo-

late the input signal, that is, to construct signal values l̂(x), for
x �∈ F [13]. In case of image processing or coding, the orig-

inal coefficients are mapped to modified coefficients [l̂n(p)]
before entering the synthesis stage [1], so that l̂(x) �= l(x), for
x ∈ F.

Note that a local signal decomposition satisfies not only
the global correspondence of (14), that is, synthesis after
analysis results in the original signal, but also the local corre-
spondences of (3). The latter correspondences imply that the
local description [l]p = [ln(p), n ∈ N ] completely specifies
the signal l(x) within the local window w(x − p) at position
p. The windowed signal

lw(x − p) = w2(x − p) · l(x) =
∑
n∈N

ln(p) · an(x− p) (16)

also expresses the contribution of the coefficients [l]p =
[ln(p), n ∈ N ] at position p ∈ P to the overall synthesized
signal, in a way that is specified in (14).

3. PARTIAL SIGNAL DECOMPOSITIONS

One obvious disadvantage of local signal decompositions is
that a large number of filter operations (i.e., equal to the car-
dinality of the index setN ) may be required in the most gen-
eral case in order to create the processed signal

l̂(x) =
∑
p∈P

∑
n∈N

l̂n(p) · sn(x− p)

=
∑

p∈P
[∑

n∈N l̂n(p) · an(x− p)
]∑

p∈P w2(x − p)
.

(17)

The specific dependency of the output coefficients [l̂]p =
[l̂n(p), n ∈ N ] at position p on the corresponding coeffi-
cients [l]p = [ln(p), n ∈ N ] of the input signal may however
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allow for substantial simplifications. We discuss an impor-
tant special case.

We assume that the index set can be subdivided in two
subsets, that is,N = No ∪Nr , in such a way that the output

coefficients [l̂n(p), n ∈ No] at position p only depend on the
corresponding input coefficients [ln(p), n ∈ No], and the
remaining coefficients at position p are all transformed in an
identical way, that is,

l̂n(p) = κ(p) · ln(p), (18)

for n ∈ Nr . We moreover assume that the adaptive weight-
ing factor κ(p) on the coefficients in the index set Nr can be
derived from [ln(p), n ∈ No] and the local energy

E(p) =
∫
F
w2(x− p) · l2(x)dx. (19)

Because the local basis {ϕn(x − p), n ∈ N } was assumed to
be orthonormal, this local energy can be split into

Eo(p) =
∑
n∈No

∣∣ln(p)∣∣2, (20)

the local energy in the signal component∑
n∈No

ln(p) · ϕn(x − p)w(x− p) (21)

described by the first index set No, and the residue energy
Er(p) = E(p) − Eo(p), that is, the local energy in the residue
signal∑

n∈Nr

ln(p) · ϕn(x − p)w(x− p)

=
[
l(x)−

∑
n∈No

ln(p) · ϕn(x− p)

]
w(x− p)

(22)

that is described by the second index setNr .
Using the above assumptions, it is easily verified that the

processed signal can be expressed as

l̂(x)=
∑
p∈P

∑
n∈No

[
l̂n(p)− κ(p) · ln(p)

] · sn(x− p)+l(x) · κ(x).

(23)

This so-called partial signal decomposition leads to the mod-
ified algorithm depicted in Figure 5. Only a partial transfor-
mation involving the indices n ∈ No is hence required in this
case to determine the processed signal. The missing informa-
tion for the other indices n ∈ Nr can be recovered from the
original signal. The weighting function

κ(x) =
∑
p∈P

κ(p) · v2(x− p) (24)

that must be applied to the original signal in order to accom-
plish this correction is obtained by interpolating the adap-
tive factors [κ(p), p ∈ P ] with a filter with impulse response
equal to the modified window function v2(x). In case of im-
age coding, where the original signal is not available at the re-
ceiver side, we obviously need to choose κ(p) = 0, ∀p ∈ P .
Nonzero values of κ(p) are however useful in case of image
processing.

4. RESIDUE-IMAGE PROCESSING

4.1. Algorithm

The simplest case of a partial signal decomposition arises
when the index setNo contains only a single component, that
is, the local average signal value

lo(p) =
∫
F
w2(x− p) · l(x)dx, (25)

and the residue signal l(x)− lo(p) is the local deviation from
this average value. If we assume that the window function is
normalized, that is, if

∫
Fw

2(x)dx = 1, then this corresponds
to a single orthonormal basis vector ϕo(x) = 1 in the index
setNo. If we impose that the local average signal value lo(p) is
not altered by the processing, then the partial signal decom-
position can be expressed as

l̂(x) =
∑
p∈P

v2(x− p) · {lo(p) + κ(p) · [l(x)− lo(p)
]}

=
∑
p∈P

v2(x− p) · [1− κ(p)
]
lo(p) + l(x) · κ(x),

(26)

where κ(p) denotes the residue amplification factor at posi-
tion p ∈ P , and κ(x) is the corresponding interpolated func-
tion.

In uniform regions of the image, the residue energy

Er(p) =
∫
F
w2(x− p) · [l(x)− lo(p)

]2
dx

=
∫
F
w2(x− p) · l2(x)dx − l2o(p)

(27)

will be small, while in transition regions (i.e., near edges)
Er(p) will be large. This residue energy can hence be used
as a control variable in an adaptive processing algorithm that
requires different processing for uniform and transition re-
gions. This residue energy can be derived quite efficiently,
since it involves only two filter operations, one on the origi-
nal signal l(x), and one on the squared signal l2(x).

Both noise reduction and contrast enhancement can be
achieved using residue-image processing [15]. The relation-
ship between the residue amplification factor κ(p) and the

residue energy Er(p), or residue amplitude Ar(p) =
√
Er(p),

makes the adopted strategy explicit. Many different ap-
proaches can be imagined, but we discuss only one possibil-
ity.

If the residue amplitude is large, say Ar(p) > Av, then we
can assume that the contrast is sufficiently high to guarantee
clear visibility, and that no enhancement is required, that is,
κ(p) = 1 for Ar(p) > Av. If, on the contrary, the residue am-
plitude is small, say Ar(p) < At , then the residue signal may
be assumed to be noise on a uniform background, and this
noise can be removed by setting κ(p) = 0 for Ar(p) < At.
For At ≤ Ar(p) ≤ Av, the residue signal is judged to contain
significant information, but needs to be amplified to become
clearly visible. An obvious condition for the processing is that
the output amplitude κ(p) · Ar(p) should be an increasing
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l(x)

(·)2

∗w2(−x)

Ao

↓ P

[ln(p)]n∈No

[κ(p),p ∈ P ]

Cp, κ(p)

T̃o(Cp)

↑ P

[l̃n(p)]n∈No

∗v2(x)

So + l̂(x)

×

Figure 5: Algorithmic structure for partial image decompositions. In the analysis step Ao, the input image l(x) is transformed into a limited
set of coefficients. These coefficients [ln(p), n ∈ No] at a given position p undergo the transformation T̃o(Cp) = To(Cp) − κ(p) · Io, where
To(Cp) is the intended transformation and Io denotes the identity transformation. The control variables Cp at position p, which are used to
select the desired transformation To(Cp) and the weighting factor κ(p) on the missing coefficients, can be derived from [ln(p), n ∈ No] and

the local energy E(p). The transformed coefficients [l̃n(p) = l̂n(p)−κ(p)· ln(p), n ∈ No], where [l̂n(p), n ∈ No] are the intended coefficients

for the processed image l̂(x), are combined in the synthesis step So to obtain part of the output image. The missing part of the processed
image is extracted from the original image l(x) by a weighting function κ(x) that interpolates the factors [κ(p), p ∈ P ] to all positions x ∈ F.

function of the input amplitude Ar(p). Many functions sat-
isfy this condition, and a simple example is

κ
(
Ar(p)

) · Ar(p) = s · Ar(p) + (1− s) · Av (28)

for At ≤ Ar(p) ≤ Av, where 0 ≤ s ≤ 1 denotes the slope of
the input-output amplitude characteristic. In this case, the
maximum value of the amplification factor is

κ
(
At
) = s + (1− s) · Av

At
(29)

for Ar(p) = At, and decreases to 1 for Ar(p) = Av. Alterna-
tive expressions for κ(Ar(p)) that avoid the discontinuity at
Ar(p) = At may also be considered.

In Figure 6, we illustrate residue-image processing on an
8-bit subtractive angiography image (values between 0 and
255). The threshold value At = 3 was derived from the
residue amplitude histogram (i.e., At = 2 · Am, where Am

is the mode of the residue amplitude histogram, see next
section), and the remaining parameters were Av = 15 and
s = 0.1. A separable binomial window function [2] of size 7
(i.e., with coefficientsw2 = [1 6 15 20 15 6 1]/64 in one
dimension) was used as the window function.

4.2. Energy histograms and noise estimation

Since images usually contain noise, the residue energy Er(p)
will not most often be exactly zero, not even for regions
that we consider to be uniform. We hence have to decide
on a threshold value Et = A2

t for the residue energy mea-
sure Er(p), below which image positions are classified as be-
longing to uniform regions. As part of this process, we need
to estimate noise characteristics. This noise estimation may
also be interesting in its own right, for example, to objectively
characterize the quality of the image acquisition [17, 19, 24].

It has been demonstrated [15, 24] that the first-order
statistic, that is, the histogram or probability density function
(PDF), of Er(p), at least in uniform regions of the image, can

Figure 6: Residue-image processing applied to a subtractive an-
giography image. The top row shows the images, while the bot-
tom row shows the corresponding residue amplitudes (Ar). The left
and right columns correspond to the original and the processed
image, respectively. The displayed residue amplitude images show
log(1 + Ar) instead of Ar in order to allow better discrimination.

be approximated by a χ2-distribution

P
(
Er
) = 1

Eo(q − 1)!

(
Er
Eo

)q−1
exp

(
− Er

Eo

)
, (30)

with 2q degrees of freedom. The corresponding PDF for the
residue amplitude is

P
(
Ar) = 2

Ao(q − 1)!

(
Ar

Ao

)2q−1
exp

[
−
(
Ar

Ao

)2]
, (31)

where Eo = A2
o. The average value and the variance in the

energy PDF are equal to μe = q · Eo and σ2e = q · E2
o , re-

spectively. The maximum values for the energy and ampli-
tude PDFs occur at energy Em = Eo(q − 1) and amplitude
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Figure 7: The drawn curve shows the histogram of the residue am-
plitude for the image and processing used in Figure 6. The dotted
curve corresponds to optimal fitting of the χ2-distribution (q = 3.83
and Ao = 0.71, resulting in a peak value at Am = 1.49).

Am = Ao
√
q − 0.5, respectively. Energy or amplitude his-

tograms for an actual image can be compared against the
above theoretical PDFs in order to find the PDF parame-
ters Eo (or Ao) and q. Actual images of course also con-
tain nonuniform regions. The corresponding responses for
these image features will influence the shape of the energy
histogram, especially for large energy (or amplitude) values.
This implies that only the part of the histogram at low energy
(or amplitude) values should be used for noise estimation
and curve fitting against the theoretical PDF [24], as shown
in Figure 7.

A parametrized PDF such as the χ2-distribution can be
used to perform K-means clustering on the residue ampli-
tude or energy. For example, if the observed residue ampli-
tude histogram h(Ar) can be approximated by a sum of two
components, that is,

h
(
Ar
) = Po · P

(
Ar
)
+
[
h
(
Ar
)− Po · P

(
Ar
)]
, (32)

where P(Ar) satisfies (31) and is associated with uniform
regions, then maximum a posteriori classification will clas-
sify all positions p for which the residue amplitude satisfies
Ar(p) < At , with

Po · P
(
At
) = h

(
At
)− Po · P

(
At
)
, (33)

as belonging to uniform regions. This provides us with an
automated means of selecting the threshold At.

5. THE HERMITE TRANSFORMATION

5.1. Definition

We will now apply the theory of local signal decompositions
to the specific case of a two-dimensional Gaussian window

w(x, y; σ) = 1
σ
√
π
exp

[
− x2 + y2

2σ2

]
(34)

with standard deviation equal to σ . Note that this window
function is both separable, that is, can be written as the prod-
uct of two Gaussian functions in x- and y-directions, and cir-
cularly symmetric, that is, its value only depends on the dis-

tance r =
√
x2 + y2 from the origin. Especially the circular

symmetry will turn out to be essential for the discussion that
follows.

We select the basis functions of the signal decomposi-
tion (which were denoted by ϕn in Section 2) to be orthonor-
mal polynomials for the Gaussian window [2]. Because this
window is separable, these orthonormal polynomials are also
separable, that is,

pn−m,m(x, y; σ) = gn−m
(
x

σ

)
· gm

(
y

σ

)
, (35)

with

gn(x) = 1√
2nn!

Hn(x), (36)

where the standard notation is used to denote the Hermite
polynomialHn(x) of order n, for n = 0, 1, . . . . For the discus-
sion in this paper, we will especially need the polynomials up
to degree 2, that is,

g0(x) = 1, g1(x) =
√
2x, g2(x) = 2x2 − 1√

2
. (37)

The resulting image decomposition at the generic1 lattice po-
sition (0, 0) satisfies

w(x, y; σ)

[
l(x, y)−

∞∑
n=0

n∑
m=0

ln−m,m · pn−m,m(x, y)

]
= 0,

(38)

where equality means convergence in the mean-square sense.
The Hermite coefficients [ln−m,m; n = 0, . . . ,∞; m = 0,

. . . ,n] are derived by filtering the spatial image representa-
tion l(x, y) with derivative-of-Gaussian filters with impulse
responses

dn−m,m(x, y; σ)

= gn−m
(
− x

σ

)
gm

(
− y

σ

)
·w2(x, y; σ)

= 1√
2n(n−m)!m!

∂n

∂(x/σ)n−m∂(y/σ)m
w2(x, y; σ),

(39)

1 In order to simplify the notation we discuss only the contribution at lattice
position (0, 0); the generalization to contributionsw(x−p, y−q; σ)·l(x, y)
at arbitrary lattice positions (p, q) ∈ P is straightforward.
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or filter kernels dn−m,m(−x,−y; σ), and selecting the filtered
outputs at the lattice positions. For the generic lattice posi-
tion (0, 0) this results in

ln−m,m =
∫ +∞

−∞
dx
∫ +∞

−∞
dy l(x, y) · dn−m,m(−x,−y; σ). (40)

The fact that the filter functions in (39) can be expressed as
derivatives of Gaussians is a consequence of a well-known
property of Hermite polynomials, that is,

e−x
2
Hn(x) = (−1)n dn

dxn
e−x

2
. (41)

This property implies that the Hermite coefficients them-
selves can also be interpreted as partial derivatives

ln−m,m= 1√
2n(n−m)!m!

[
∂n

∂(x/σ)n−m∂(y/σ)m
l(x, y; σ)

]
x=y=0
(42)

to the smoothed image

l(x, y; σ) = l(x, y)�w2(x, y; σ) (43)

that is obtained by applying a Gaussian filter w2(x, y; σ)
with standard deviation equal to σ/

√
2 to the original image

l(x, y).
Note that the contribution at the generic lattice position

(0, 0) to the overall synthesized image is

lw(x, y) = w2(x, y; σ) · l(x, y)

=
∞∑
n=0

n∑
m=0

ln−m,m · dn−m,m(−x,−y; σ),
(44)

while the local energy at this position is equal to

E =
∫∫

w2(x, y) · l2(x, y)dx dy =
∞∑
n=0

n∑
m=0

l2n−m,m. (45)

The residue energy Er = E − l200 or residue amplitude Ar =√
Er can again be used to differentiate between uniform and

nonuniform regions in the image.
In Figure 8 we show an artificial image containing sev-

eral interesting features such as edges, lines, corners, T-
junctions, X-junctions, circles, and noise. We will use this
image throughout this paper to illustrate different alterna-
tive forms of the Hermite transformation because it is much
easier to judge the properties of the Hermite transformation
on this image than on a natural image.

In Figure 9 we show the residue amplitude and the Her-
mite coefficients up to order 2 for a Gaussian window with
spread σ = 2.5 times the sampling distance. The coeffi-
cients ln−m,m for all positions are grouped into subimages.
The (fuzzy) derivatives of order n −m along the x-direction
and order m along the y-direction are obtained by filter-
ing the original image with the derivative-of-Gaussian filter
dn−m,m(x, y) and (optionally) subsampling the filtered image.
No subsampling has been applied in the case of Figure 9. One
important advantage of the derivative-of-Gaussian filters is
that they are separable. This means that they can be imple-
mented very efficiently by first filtering along the x-direction
and subsequently along the y-direction (or vice versa).

Figure 8: Original image used in the Hermite analyses.

5.2. Scale space

Derivative-of-Gaussian filters play a key role in the theory of
scale space [32, 37, 38]. Scale space represents a systematic
way of studying structure in images. An image is regarded
as a surface that can be analyzed at varying degrees of de-
tail. To reduce the level of detail, the image is first passed
through a Gaussian filter. The smoothed surface is then de-
scribed using traditional methods from differential geometry
(see also Section 7), a well-studied discipline of mathematics
[39]. Many interesting surface properties can be expressed as
combinations of the local partial derivatives ln−m,m of (42)
to the smoothed image l(x, y; σ). It is well known that this
smoothed image is the solution to a diffusion equation

∂

∂t
u(x, y, t) =

[
∂2

∂x2
+

∂2

∂y2

]
u(x, y, t), (46)

with initial condition

u(x, y, 0) = l(x, y) (47)

that is stopped after time t = T = (σ/2)2. Fast recursive
methods for numerically solving this diffusion equation [40]
may be used to determine u(x, y,T) = l(x, y; 2

√
T) for large

values of T . In the Hermite transformation the operations of
smoothing and differentiating are combined, so that the Her-
mite transformation corresponds to an analysis at a specified
level in scale space.

Very often, the most efficient way for calculating the Her-
mite coefficients is by combining diffusion and filtering, as
shown in Figure 10. Indeed, if the input image l(x, y) is first
diffused up to time T = (σD/2)2, and subsequently analyzed
by a Hermite transformation with parameter σH , then the re-
sulting coefficients at the origin, that is,

un−m,m=
[
dn−m,m(x, y; σH)� u(x, y;T)

]
x=y=0=

(
σH
σ

)n
ln−m,m,

(48)
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Figure 9: Hermite coefficients ln−m,m, for m = 0, . . . ,n, up to order
n = 2 for a Gaussian window with spread σ = 2.5 times the sam-
pling distance. The image in the lower-right corner is the residue
amplitude Ar . To relate the mathematical results in this paper to the
figures, it should be realized that the x-axis points to the right and
the y-axis downwards. Moreover, the coefficients of order n, which
are located in the nth diagonal, are amplified by the same factor βn
for display purposes. The factors βn are chosen independently for
each order n, in such a way that the complete display range is used.

u(x, y; 0) = l(x, y)

Diffuse
for time T

u(x, y;T)

= l(x, y; σD)
Hermite (σH ) un−m,m

·
(

σ

σH

)n

ln−m,m

Figure 10: The Hermite coefficients for a large standard deviation
equal to σ can be obtained by a three-step process. First, a diffu-
sion is applied to the original image u(x, y; 0) = l(x, y) for a time
T , resulting in the diffused image u(x, y;T) = l(x, y; σD), where
σD = 2

√
T . Second, a Hermite transformation with a small stan-

dard deviation equal to σH , where σ2
H = σ2 − σ2

D , is applied to the
diffused image, resulting in the coefficients un−m,m, form = 0, . . . ,n
and n = 0, 1, 2 . . . . Third, these coefficients of order n are rescaled by
a factor (σ/σH)n to obtain the required Hermite coefficients ln−m,m.

belong to a Hermite transformation with parameter

σ =
√
σ2D + σ2H =

√
4T + σ2H. (49)

An upper limit on σH allows to limit the size of the
derivatives-of-Gaussian filters, since this filter size is pro-
portional to σH . The number of computations required in
the filtering stage increases (linearly) with this filter size. A
lower limit on σH (typically, σH larger than 1.5 times the
sampling distance [13]) is required to guarantee that the
derivative operations can be closely approximated for digi-
tal images. Most of the time we use a well-designed set of

derivatives-of-Gaussian filters (for σH equal to 1.8 times the
sampling distance), and vary the diffusion time T to accom-
plish the required value of σ .

5.3. Angular functions

An important step towards obtaining a better insight into
the Hermite transformation is to express the filtering that is
performed on the input image in the Fourier domain. The
Fourier transformations of the filter functions, expressed in
polar coordinates, are

D̂n−m,m(ω,φ; σ) = D̂n(ω; σ) · αn−m,m(φ), (50)

where

D̂n(ω; σ) = 1√
2nn!

(− jωσ)n exp
[
− (ωσ)2

4

]
(51)

is the 1D Fourier transformation of the nth-order Gaussian
derivative

Dn(r; σ) = 1√
2nn!

dn

d(r/σ)n

[
1

σ
√
π
exp

(
− r2

σ2

)]
, (52)

and

αn−m,m(φ) =
√

n!
(n−m)!m!

cosn−m φ · sinm φ, (53)

for m = 0, . . . ,n, are the Cartesian angular functions of or-
der n [2, 20]. The shape of these Cartesian angular functions
can be judged very well in Figure 9 from the angular modu-
lation of the coefficients along the edge of the circle image.
The Cartesian angular functions of order n = 1 are sim-
ply α10(φ) = cosφ and α01(φ) = sinφ, while the Cartesian
angular functions of order n = 2, that is, α20(φ) = cos2 φ,
α11(φ) =

√
2 cosφ sinφ, and α02(φ) = sin2 φ, are plotted in

Figure 11.
The Hermite coefficients can be derived from the Fourier

image representation l̂(ωx,ωy) through

ln−m,m =
∫ +∞

−∞
dωx

2π

∫ +∞

−∞

dωy

2π
l̂
(
ωx,ωy

) · d̂n−m,m
(
ωx,ωy ; σ

)
(54)

or, alternatively, by changing to polar coordinates, through

ln−m,m = 1
2π

∫ 2π

0
dφl̂n(φ) · αn−m,m(φ) (55)

form = 0, . . . ,n, where

l̂n(φ) = 1
2π

∫∞
0
ωdω l̂(ω,φ) · D̂n(ω; σ) (56)

is called the “image” angular function of order n [20]. This
function is real if the original image l(x, y) is real. It more-

over satisfies l̂n(φ + π) = (−1)n · l̂n(φ), so that it is odd
or even symmetric, depending on whether the order n is
odd or even, respectively. Obviously, the Hermite coefficients
[ln−m,m, m = 0, . . . ,n] of the same order n can all be derived
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Figure 11: Cartesian angular functions of order n = 2.

from the angular function l̂n(φ). One advantage of defining
the “image” angular function as an intermediate step in the
analysis is that it becomes straightforward to extend many
of the results below, that is, those that only depend on the
properties of the angular components of the filters, to filter
banks in which the radial components of the filters, that is,
D̂n(ω; σ), are not derivatives-of-Gaussians.

The Fourier transformation of the local image lw(x, y) =
w2(x, y; σ) · l(x, y) can be expressed as

l̂w(ω,φ) = l̂(ω,φ)� D̂0(ω) =
∞∑
n=0

D̂�n (ω) · ln(φ), (57)

where

ln(φ) =
n∑

m=0
ln−m,m · αn−m,m(φ) (58)

is called the “derivative” angular function of order n. Since the
interest here will be mainly in the derivative angular func-
tions of order n = 1 and n = 2, the following explicit expres-
sions

l1(φ) = l10 · cosφ + l01 · sinφ,
l2(φ) = l20 · cos2 φ + l11 ·

√
2 cosφ sinφ + l02 · sin2 φ

(59)

are provided.

5.4. One-dimensional images

The Hermite coefficients at the generic lattice position (0, 0)
describe the local image lw(x, y) = w2(x, y; σ) · l(x, y). An
important specific case of local patterns in 2D are 1D pat-
terns, that is, patterns that vary only in one direction (and

are constant along the orthogonal direction). In natural im-
ages, many of the image details that are of prime impor-
tance, such as edges and lines, can be locally described as
one-dimensional patterns, at least within the analysis win-
doww(x, y; σ). Since analysis, coding, and processing of such
patterns are considered important, it is worthwhile to inves-
tigate them separately.

The angular function for a locally one-dimensional (1D)
image with normal along direction (cosφo, sinφo), that is,
l(x, y) = l(x cosφo + y sinφo), has only contributions in the
directions φo and φo + π and is therefore of the form

l̂n(φ) = πln
[
δ
(
φ − φo

)
+ (−1)nδ(φ − (φo + π

))]
, (60)

where ln is the nth-order Hermite coefficient of the 1D signal
l(r).

For a 1D image we can express the Hermite coefficients
as

ln−m,m = ln · αn−m,m
(
φo
)
, (61)

so that the “derivative” angular function becomes

ln(φ) = ln ·
n∑

m=0
αn−m,m

(
φo
) · αn−m,m(φ) = ln · cosn

(
φ − φo

)
.

(62)

6. LOCAL COORDINATE AXES

6.1. Effect on Hermite coefficients

In scale-space theory [32], geometric features of the
smoothed surface l(x, y; σ) as a function of the position (x, y)
(and scale σ) are used for image analysis [41, 42]. The well-
established mathematical discipline of differential geometry
[43] is especially concerned with how such geometric fea-
tures can be derived, and some of the major results of ap-
plying differential geometry for image feature extraction will
be discussed in Section 7.

Adopting local coordinate axes[
x̃
ỹ

]
=
[
cosφo sinφo
− sinφo cosφo

]
·
[
x
y

]
(63)

is one of the basic operations in differential geometry because
many expressions for important surface properties can be
simplified greatly in an adaptive coordinate system. For ex-
ample, for the one-dimensional patterns introduced above,
we will see shortly that aligning the x̃-axis with the direction
of the pattern has distinct advantages.

We analyze the behavior of the angular functions ln(φ)

and l̂n(φ) under rotation of the coordinate axes. If we ro-
tate the coordinate axes clockwise (or the image anticlock-
wise) through an angle φo (in the left-handed coordinate sys-

tem that is used in the figures), that is, if we change l̂n(φ) to

l̂n(φ + φo), then the Hermite coefficients in the local coordi-
nate system (x̃, ỹ) are equal to

ln−m,m
(
φo
) = 1

2π

∫ 2π

0
dφl̂n(φ) · αn−m,m

(
φ − φo

)
, (64)
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for m = 0, . . . ,n, and are related to the coefficients
[ln−m,m, m = 0, . . . ,n] in the global coordinate system (x, y)
by a linear transformation with parameter φo. The linear na-
ture of the transformation is a consequence of the fact that
both cos(φ − φo) and sin(φ − φo) can be expressed as linear
combinations of cosφ and sinφ. Specifically, since

αn,0
(
φ − φo

) = cosn
(
φ − φo

) = n∑
m=0

αn−m,m
(
φo
) · αn−m,m(φ),

(65)

we obtain that the derivative of order n along direction φo is
given by ln,0(φo) = ln(φo), which explains the name “deriva-
tive” angular function for ln(φ). Based on the n + 1 partial
derivatives [ln−m,m;m = 0, . . . ,n], we can hence derive the
directional derivative ln(φo) of order n for any direction φo
[20, 44]. The derivative angular function of order n can of
course also be expressed in terms of the Hermite coefficients
in the rotated coordinate frame, that is,

ln(φ) =
n∑

m=0
ln−m,m

(
φo
) · αn−m,m

(
φ − φo

)
. (66)

Note that the linear transformation of the Hermite coef-
ficients under rotation of the coordinate system requires that
the image be locally approximated by a polynomial within a
circularly symmetric windoww(x, y; σ). Rotating the coordi-
nate axes can have a complicated effect on the Hermite coef-
ficients, especially if the order n is high. A systematic analysis
for arbitrary orders has been performed [20], but is beyond
the scope of this paper. In the remainder, we will only need
the results for orders n = 1, that is,

[
l10
(
φo
)

l01
(
φo
)] = [ cosφo sinφo

− sinφo cosφo

]
·
[
l10
l01

]
, (67)

and n = 2, that is,

⎡⎢⎢⎣
l20
(
φo
)

l11
(
φo
)

l02
(
φo
)
⎤⎥⎥⎦ = Tt

2 ·
⎡⎢⎣ cos

(
2φo
)

0 sin
(
2φo
)

0 1 0
− sin

(
2φo
)

0 cos
(
2φo
)
⎤⎥⎦ · T2 ·

⎡⎢⎣l20l11
l02

⎤⎥⎦ ,
(68)

where

T2 =

⎡⎢⎢⎢⎢⎢⎣
1√
2

0 − 1√
2

1√
2

0
1√
2

0 1 0

⎤⎥⎥⎥⎥⎥⎦ (69)

is a unitary transformation matrix (with determinant equal
to −1). These results for orders n = 1, 2 can also be ob-
tained by straighforward manipulation of the goniometric

functions involved in (64), for example,

l1,0
(
φo
) = 1

2π

∫ 2π

0
dφl̂n(φ) cos

(
φ − φo

)
= 1

2π

∫ 2π

0
dφl̂n(φ) cosφ · cosφo

+
1
2π

∫ 2π

0
dφl̂n(φ) sinφ · sinφo

= l10 · cosφo + l01 · sinφo.

(70)

Since rotation of an image within a circularly symmet-
ric window does not alter the signal energy contained in this
window, we obtain that the local energy up to order N satis-
fies

EN =
N∑
n=0

n∑
m=0

l2n−m,m =
N∑
n=0

n∑
m=0

l2n−m,m

(
φo
)
, (71)

for all N ≥ 0. This also explains why the above transforma-
tion matrices are unitary matrices.

6.2. Optimizing energy compaction

We now discuss how a suitable orientation for the local coor-
dinate axes can be derived from the Hermite coefficients. For
a 1D image with orientation φo, we obtain that

ln−m,m = ln · αn−m,m
(
φo
)

or ln−m,m
(
φo
) = ln · αn−m,m(0),

(72)

so that ln,0(φo) = ln(φo) = ln and ln−m,m(φo) = 0, for m =
1, . . . ,n, in this case. We can hence split the local energy up
to order N as follows:

EN = l200 + EN ,1d
(
φo
)
+ EN ,2d

(
φo
)

= l200 +
N∑
n=1

l2n,0
(
φo
)
+

N∑
n=1

n∑
m=1

l2n−m,m

(
φo
)
,

(73)

where EN ,1d(φo) and EN ,2d(φo) are the local 1D and 2D ener-
gies up to order N along direction φo, respectively. We there-
fore propose to use a strategy in which φo is selected such that
EN ,1d(φo) is maximized.

In Figure 12, we show an adaptive Hermite transforma-
tion of order N = 2 in which the local orientation φo has
been selected by optimizing EN ,1d(φo). Note the perfect en-
ergy compaction that is obtained for 1D patterns. The 1D-
amplitude AN ,1d(φo) = [EN ,1d(φo)]1/2 and 2D-amplitude
AN ,2d(φo) = [EN ,2d(φo)]1/2 are very useful features, since
they can be used to distinguish between 1D and 2D features
in an image. The 1D features that are detected in this way
can be classified based on the set of 1D Hermite coefficients
ln,0(φo) = ln, for n = 0, 1, . . . . This energy compaction and
1D pattern classification has been exploited in image cod-
ing [5, 6] and image-feature extraction [16, 18, 24]. The ex-
tracted features have in turn proven useful for single-ended
quality predictions (i.e., quality predictions that do not re-
quire the original image) on blurred images [19] and JPEG-
coded images [45].
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6.3. Gradient direction

In differential geometry, the reference angle φo is often cho-
sen such that the value of the derivative angular function of
order n = 1, that is,

l1
(
φo
) = l10 · cosφo + l01 · sinφo, (74)

is maximized. This is equivalent to optimizing the 1D en-
ergy up to order N = 1. The above angular function can be
rewritten as

l1
(
φo
) = l1 · cos

(
φo − φd

)
, (75)

with l1 =
√
l210 + l201, provided that the angle φd satisfies

tanφd = l01
l10

, (76)

or equivalently, l10 = l1 · cosφd and l01 = l1 · sinφd. The
maximum value obviously occurs for φo = φd. This direction
that makes an angle φd with the horizontal axis is called the
gradient direction.

In the neighbourhood of the generic lattice position
(0, 0), the smoothed image can be expressed in both the
global coordinate system (x, y) and the local coordinate sys-
tem [

xd
yd

]
=
[
cosφd sinφd
− sinφd cosφd

]
·
[
x
y

]
, (77)

that is, l(x, y; σ) = ld(xd, yd; σ) are two equivalent descrip-
tions of the same local image. The derivatives for a Cartesian
coordinate system that is aligned with this gradient direction
can hence be expressed as

ldn−m,m =
∂n

∂xn−md ∂ymd
ld
(
xd, yd; σ

)∣∣∣∣
xd=yd=0

=
√
2n(n−m)!m!

σn
ln−m,m

(
φd
)
,

(78)

for n = 0, 1, 2, . . . and m = 0, . . . ,n. Selecting the reference
angle along the gradient direction guarantees that ld01 = 0.
The value

ld10 =
√
2
σ

l1 =
√
2
σ

√
l210 + l201 (79)

is called the gradient amplitude. The following explicit rela-
tionships

ld20=
2
√
2

σ2
l20
(
φd
)
, ld11=

2
σ2

l11
(
φd
)
, ld02=

2
√
2

σ2
l02
(
φd
)

(80)

exist between the Hermite coefficients of order 2 and the
second-order partial derivatives to the smoothed image
ld(xd, yd; σ) for coordinate axes (xd, yd) oriented along the
gradient direction.

Figure 12: Hermite coefficients ln−m,m(φo), for m = 0, . . . ,n, up
to order n = 2 for adaptive coordinate axes and a Gaussian win-
dow with spread σ = 2.5 times the sampling distance. The image
in the lower-right corner codes the local orientation φo. The image
at the right in the middle row is the 1D-amplitude A2,1d(φo), while
the image at the bottom in the middle column is the 2D-amplitude
A2,2d(φo).

7. GEOMETRIC FEATURES

7.1. Planar curves

The geometric features that we will derive from the Hermite
coefficients will all be characteristics of curves that are in
some way defined by the surface function l(x, y; σ). We will
only consider curves that belong to a 2D plane, and there-
fore start by summarizing some basic properties of such pla-
nar curves. We denote by c(t) = (u(t), v(t)) the coordinates
traced out by a curve segment in an orthogonal coordinate
system (u, v) of a 2D plane (this plane need not be the im-
age plane (x, y)). The parameter t is defined for an interval
of the real axis that includes 0, while c(0) = (u(0), v(0)) is
the point at which we want to measure the curve character-
istics. We assume that the functions u(t) and v(t) that relate
the parameter t to the curve coordinates are at least twice dif-
ferentiable.

We will use two well-known properties of planar curves
that are both illustrated in Figure 13. First, the tangent line to
the curve at position c(t) has the direction indicated by the
tangent vector

ct(t) = 1([
u′(t)

]2
+
[
v′(t)

]2)1/2 (u′(t), v′(t)). (81)

This vector can be used as the first vector in a right-handed
orthonormal coordinate system. The second coordinate vec-
tor thus defined is called the normal vector and can be ex-
pressed as follows:

cn(t) = 1([
u′(t)

]2
+
[
v′(t)

]2)1/2 (− v′(t),u′(t)
)
. (82)

As we move along the curve, the direction of the tangent
(and normal) vector will change. The next theorem on planar
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v

u

cn(t)

c(t)
ct(t)

1
κ(t)

· cn(t)

c(t) +
1

κ(t)
· cn(t)

Figure 13: The tangent vector ct(t) at the curve c(t) can be com-
bined with the normal vector cn(t) to obtain a right-handed or-
thonormal coordinate system. The circle with radius 1/|κ(t)| has
second-order contact with the curve c(t).

curves tells us how to measure this rate of change. More
specifically, there exists a circle that is tangent to the curve
at c(t) and for which the normal vector to the curve turns at
the same rate as the normal vector to the circle when mov-
ing in the direction of the tangent vector (i.e., this circle has
second-order contact with the curve). This circle has radius
1/|κ(t)| and its center is located at position

c(t) +
1

κ(t)
cn(t), (83)

where

κ(t) = u′(t) · v′′(t)− u′′(t) · v′(t)([
u′(t)

]2
+
[
v′(t)

]2)3/2 (84)

is called the curvature at position c(t) [43]. A positive or neg-
ative curvature implies that the curve bends towards or away
from the normal vector, respectively.

7.2. Isophote curvature

A first planar curve that can be derived from the surface z =
ld(xd, yd; σ) is the isophote through the origin, defined by

ld
(
u(t), v(t); σ

) = ld
(
u(0), v(0); σ

)
(85)

for some parameter interval including t = 0. This is the curve
that arises if the image surface is intersected with a horizontal
plane through the surface at the point of interest. The image
value along the isophote does not change as a function of t,

so that

d

dt
ld
(
u(t), v(t); σ

)∣∣∣∣
t=0
= ld10 · u′ + ld01 · v′,

d2

dt2
ld
(
u(t), v(t); σ

)∣∣∣∣
t=0

= ld20 · (u′)2 + 2ld11 · u′v′ + ld02 · (v′)2 + ld10 · u′′ + ld01 · v′′
(86)

are both equal to zero. Since the coordinate system is aligned
along the gradient direction, that is, ld01 = 0, we obtain that
u′(0) = 0 and u′′(0) = −[v′(0)]2 · ld02/ld10, which in turn leads
to the expression

κi = − u′′(0)[
v′(0)

]2 = ld02
ld10
= 2

σ

l02
(
φd
)

l10
(
φd
) , (87)

for the isophote curvature at the origin.
Since isophotes will have a high curvature near a corner,

such as the one shown in Figure 14, the isophote curvature
can assist in corner detection. More specifically, finding local
maxima in the derived isophote curvature measure

mi =
∣∣κi · (ld10)3∣∣1/3 = ∣∣ld02 · (ld10)2∣∣1/3, (88)

which also contains contrast information by including the
image gradient ld10, is a frequently used method for select-
ing corner candidates. Figure 14 illustrates that, although the
position of a maximum in the isophote curvature measure
is usually very close to the true corner position, both posi-
tions will usually not coincide. This implies that a maximum
in the isophote curvature measure can at best be used as an
indication for the presence of a corner, and that a more in-
depth analysis is required, for instance to update the position
estimate of the corner feature [32].

The isophote curvature measure for the entire test image
of Figure 8 is shown in Figure 15(a).

7.3. Flowline curvature

A second planar curve that can be derived from the surface
z = ld(xd, yd; σ) is the flowline through the origin, defined by
the demand that the tangent to the flowline is equal to the
image gradient, that is,

u′(t) = ∂

∂xd
ld
(
xd, yd; σ

)∣∣∣∣∣
xd=u(t),yd=v(t)

,

v′(t) = ∂

∂yd
ld
(
xd, yd; σ

)∣∣∣∣∣
xd=u(t),yd=v(t)

,

(89)

for some parameter interval including t = 0. Note that, at the
origin, the flowline is orthogonal to the isophote.

Evaluating the second derivatives to the flowline at the
origin results in

u′′(0) = ld20 · u′(0) + ld11 · v′(0) = ld20 · ld10,
v′′(0) = ld11 · u′(0) + ld02 · v′(0) = ld11 · ld10

(90)
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Figure 14: Curvature measures for a corner feature extracted from Figure 8. Upper left: original image, lower left: smoothed image, upper
middle: isophote curvature measure |mi|, and lower middle: flowline curvature measure |mf |. The rightmost figures use the “spot noise”
technique [46] to visualize the isophote vector field (upper) and the flowline (or gradient) vector field that is orthogonal to it (lower).

which immediately leads to the expression

κ f = v′′(0)[
u′(0)

]2 = ld11
ld10
=
√
2
σ

l11
(
φd
)

l10
(
φd
) (91)

for the flowline curvature at the origin [32], since u′(0) = ld10
and v′(0) = ld01 = 0.

The derived flowline curvature measure

mf =
∣∣κ f ·

(
ld10
)3∣∣1/3 = ∣∣ld11 · (ld10)2∣∣1/3 (92)

that also depends on the image gradient can be shown to
react especially to junctions, such as the T-junction shown
in Figure 16. Again note that the position of the maximum
in the flowline curvature measure does not coincide exactly
with the true position of the T-junction. The flowline curva-
ture measure for the entire test image of Figure 8 is shown in
Figure 15(b).

In conclusion, the feature vector (|mi|, |mf |) is very use-
ful for the (inital) detection and classification of corners and
junctions. Candidate corner/junction positions are obtained
by finding local maxima (and minima) in these curvature
measures. The next section discusses some geometric image
features that can be used to find such local extrema in (fea-
ture) images.

7.4. Intersection and surface curvatures

7.4.1. Intersection curvatures

A third kind of planar curve that can be derived from the
surface z = l(x, y; σ) is the intersection curve with a vertical

plane through the origin in the direction that makes an angle
φ with the global x-axis (or an angle φ − φd with the local
gradient axis xd). This curve can be parametrized by u(t) = t
and

v(t) = l(t · cosφ, t · sinφ; σ)
= ld

(
t · cos (φ − φd

)
, t · sin (φ − φd

)
; σ
)
.

(93)

The first-order derivatives for t = 0 are equal to u′(0) = 1
and

v′(0) = l1(φ)

√
2
σ

, (94)

while higher-order derivatives satisfy u(n)(0) = 0 and

v(n)(0) = ln(φ)

√
2nn!
σn

, (95)

where ln(φ) is the “derivative” angular function of order n.
The intersection curve hence has an intersection curvature in
the direction φ equal to

κ(φ) = σl2(φ)[
(σ/
√
2)2 +

(
l1(φ)

)2]3/2 . (96)

The intersection curvature will vary between κmin = κ(φmin)
and κmax = κ(φmax). These minimum and maximum cur-
vatures can be used directly as image features or they can
be combined into κl = κmax + κmin, κg = κmax · κmin, or
κr = |κ2max − κ2min|. These latter curvature measures are il-
lustrated in the left part of Figure 17. An interpretation of
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(a) (b)

Figure 15: Curvature measures: (a) isophote curvature measure |mi| and (b) flowline curvature measure |mf |.

Figure 16: Curvature measures for a T-junction feature extracted from Figure 8. Upper left: original image, lower left: smoothed image,
upper middle: isophote curvature measure |mi|, and lower middle: flowline curvature measure |mf |. The rightmost figures use the “spot
noise” technique [46] to visualize the isophote vector field (upper) and the flowline (or gradient) vector field that is orthogonal to it (lower).

these curvature measures will follow after the discussion on
surface curvatures.

The intersection curvature can also be used to define the
intersection curvature measure

m(φ) = κ(φ)
(√

2
σ

l1(φ)
)3

= 2
√
2

σ2
l2
(
φo
) · (

l1(φ)
)3[

(σ/
√
2)2 +

(
l1(φ)

)2]3/2 ,
(97)

which is approximately equal to l2(φ) · (2
√
2/σ2) if the

first-order directional derivative l1(φ) ·
√
2/σ � 1. The

intersection curvature measure is hence equal to the second-
order directional derivative if the first-order directional
derivative is sufficiently large.

7.4.2. Surface curvatures

Intersection curvatures are especially useful at positions
where the gradient is zero, that is, for which l1(φ) = 0 for
all directions φ, while l2(φ) �= 0 for some angles φ, or equiv-
alently

∑2
m=0 l

2
2−m,m �= 0. Such positions are called singu-

lar points, and are important landmarks in an image. They
can be subdivided into minima, maxima, and saddle points.
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Figure 17: Curvature measures. Left from top to bottom: intersection curvatures κl , sgn(κg)|κg |1/2, and |κr|1/2. Right from top to bottom:
surface curvatures κ̃l , sgn(κ̃g)|κ̃g |1/2, and |κ̃r|1/2.

In this case, the intersection curvatures are identical to the fa-
miliar surface curvatures [43], since translations in the image
plane correspond one to one to translations in the tangent
plane. For a singular point, we can arbitrarily select φd = 0 as
the reference angle, and obtain the following expression for
the surface curvature in the direction φ:

κ̃(φ) = 2
√
2

σ2
l2(φ)

= ld20 · cos2 φ + 2ld11 · cosφ sinφ + ld02 · sin2 φ

= ld20 + ld02
2

+

√√√(
ld11
)2

+
(
ld20 − ld02

2

)2
· cos [2(φ − φc

)]
,

(98)

where the direction φc of maximum surface curvature

κ̃max = ld20 + ld02
2

+

√√√(
ld11
)2

+
(
ld20 − ld02

2

)2
(99)

satisfies

tan
(
2φc
) = 2ld11

ld20 − ld02
=

√
2l11

l20 − l02
. (100)

The direction of minimum surface curvature

κ̃min = ld20 + ld02
2

−
√√√(

ld11
)2

+
(
ld20 − ld02

2

)2
(101)

is φc + π/2. The surface curvatures at a singular point hence
belong to the range [κ̃min, κ̃max], where the sum of the two
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extreme curvatures is equal to the Laplacian, that is,

κ̃l = κ̃max + κ̃min = ld20 + ld02 = traceH , (102)

and the product of the two extrema curvatures is equal to the
Gaussian curvature

κ̃g = κ̃max · κ̃min = ld20 · ld02 − ld11 · ld11 = detH . (103)

Both can be expressed in terms of the Hessian matrix

H =
⎡⎣ld20 ld11

ld11 ld02

⎤⎦ = 2
σ2

[√
2l20 l11
l11

√
2l02

]
. (104)

A large absolute value for the Gaussian curvature indi-
cates isolated singular points, since both extreme curvatures
must have a large amplitude in this case. If the Gaussian
curvature is positive, then both extreme curvatures have the
same sign, which can only occur in case of an extremum
point. The sign of the Laplacian κ̃l allows to distinguish be-
tween minima (κ̃l > 0) and maxima (κ̃l < 0) in this case. A
negative value for the Gaussian curvature indicates a saddle
point.

If one of the extreme curvatures κ̃max or κ̃min is zero, then
the Gaussian curvature κ̃g is also zero. This occurs in case the
singular points are not isolated but align to form extended
ridges (line-like structures). The ridge strength

κ̃2r =
∣∣κ̃2max − κ̃2min

∣∣2 = (ld20 + ld02
)2[

4
(
ld11
)2

+
(
ld20 − ld02

)2]
(105)

can be used to find singular points for which there is a sub-
stantial difference between the amplitudes of both extreme
curvatures. A large value for the ridge strength κ̃r , in com-
bination with a small value for the Gaussian curvature κ̃g , is
then evidence for the presence of ridge points.

All three mentioned surface curvature measures are illus-
trated in the right part of Figure 17.

Although the surface curvature measures only have a ge-
ometrical interpretation at singular points, they give nonzero
responses for most nonuniform regions in an image. The
gradient is hence needed alongside these measures in order
to guide the interpretation. It is straightforward to derive the
relationship

κ(φ) = κ̃(φ)[
1 +

(
ld10 · cos

(
φ − φd

))2]3/2 (106)

between intersection and surface curvature at positions
where the gradient amplitude is ld10 and the gradient direc-
tion is φd. Because the gradient amplitude is usually nonzero,
except for uniform regions and singular points, the surface
curvature differs from the intersection curvature in the sense
that contributions for nonsingular points are being sup-
pressed in the latter. This can be observed in Figure 17 by
comparing the corresponding intersection and surface cur-
vature measures on the left and right, respectively. This sup-
pression of nonsingular points is expected to be beneficial for
subsequent pattern matching or classification.

Note that, while edges are nonsingular points of the im-
age itself, they are singular points of the image gradient, so
that the focus on singular points can also be used to per-
form edge detection. Some intersection and surface curva-
ture measures obtained from a gradient image are illustrated
in Figure 18. A large value for the ridge strength κr , in com-
bination with a small value for the Gaussian curvature κg , is
then an evidence for the presence of edge points.

8. ANISOTROPIC NOISE REDUCTION

We finish by applying the partial image decomposition tech-
nique of Figure 5 to the case of the Hermite transformation
in order to create an anisotropic noise reduction and contrast
enhancement algorithm. More specifically, we will use a Her-
mite transformation up to order N , so that the index set No

contains the Hermite coefficients ln−m,m, for n = 0, 1, . . . ,N
andm = 0, . . . ,n. The mapping of these Hermite coefficients
can be influenced by the following control variables.

(1) As in the case of residue-image processing, the aver-
age value l00 and the local energy E are used to determine
the noise in the image. It was discussed earlier how the noise
characteristics can be estimated from the histogram of the
residue energy Er = E − l200 or residue amplitude Ar =

√
Er .

(2) The Hermite coefficients up to order N can be
mapped into a 1D and 2D component. Most often, the 1D
energy E2,1d(φo) in the first- and second-order Hermite coef-
ficients is maximized to determine the direction φo of the lo-
cal coordinate axes. The resulting adaptive Hermite transfor-
mation with coefficients ln−m,m(φo), for n = 0, 1, . . . ,N and
m = 0, . . . ,n, allows to separate the energy up to orderN into
a 1D and 2D component, that is, EN = EN ,1d(φo)+EN ,2d(φo).

The mappings2

l̃00
(
φo
) = (1− κ) · l00

(
φo
)
,

l̃n0
(
φo
) = (κ1 − κ

) · ln0(φo),
l̃n−m,m

(
φo
) = (κ2 − κ

) · ln−m,m
(
φo
)
, form = 1, . . . ,n

(107)

for the adaptive Hermite coefficients of orders n = 0, 1, . . . ,N
specify the adaptive algorithm, as depicted in Figure 5. The
factors κ1, κ2, and κ are the amplification factors of the 1D
Hermite component, the 2D Hermite component, and the
residue component, respectively. The case of κ1 = κ2 = κ
corresponds to the residue-image processing algorithm of
Section 4.

We of course need to make a specific choice for the am-
plification factors in order to realize our anisotropic noise re-
duction and/or contrast enhancement algorithm. Again, as in
the case of residue-image processing, there are some heuris-
tics involved in making this choice. A simple modification to
the residue-image processing algorithm of Section 4 leads to

2 Based on the argumentation in [14, 33], a mapping with κ1 and κ2 re-
placed by κn1 and κn2 may possibly constitute a better choice.
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Figure 18: Curvature measures on gradient image. Left from top to bottom: intersection curvatures κl, sgn(κg)|κg |1/2, and |κr|1/2. Right from
top to bottom: surface curvatures κ̃l , sgn(κ̃g)|κ̃g |1/2, and |κ̃r|1/2.

the following suggestion:

κ = κ2 = s + (1− s)
Av

Ar
, κ1 = s1 +

(
1− s1

)Av

Ar
(108)

with

s1 = s ·
[
1− (1− α) ·

(
EN ,1d

(
φo
)

EN

)β]
, (109)

for At ≤ Ar ≤ Av. The slope s1 varies from s, in case
EN ,1d(φo) = 0, to α · s, with 0 ≤ α ≤ 1, for purely 1D fea-
tures with EN ,1d(φo) = EN . The power β ≥ 0 controls the
steepness of this transition. No anisotropic processing is ap-
plied outside the range [At,Av], that is, κ = κ1 = κ2 = 0 for
Ar < At and κ = κ1 = κ2 = 1 for Ar > Av.

In the upper-left corner of Figure 19, we show a detail of
an original image. The results of anisotropic processing are
illustrated in the bottom row of Figure 19 for some fairly ar-
bitrary choices of the parameters. Specifically, α = 0, β = 0.2
for the image in the lower left, and α = 0, β = 5 for the
image in the lower right. The value At = 3 is at twice the
mode of the residue amplitude histogram, while the parame-
ters controlling the amplification factors are fixed at Av = 30
and s = 0.5. The image in the upper right-hand corner
has been included for comparison. It is obtained using the
residue-image processing algorithm of Section 4 (with the
same parameter values) and corresponds to isotropic image
processing. As can also be observed in the figure, the differ-
ences between isotropic and anisotropic filtering are often
very subtle, so that a formal image-quality comparison [24]
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Figure 19: Results of anisotropic image processing with the Her-
mite transformation of orderN = 2 and σ = 1.5 times the sampling
distance. The original image is in the upper left-hand corner. The
image in the upper right-hand corner is obtained through isotropic
residue-image processing. The two images in the bottom row are
obtained with the anisotropic image processing algorithm.

is probably needed to determine if the extra effort required
for anisotropic filtering is truly worthwhile.

9. CONCLUSION

With this survey we have attempted to give an overview of the
main characteristics of the Hermite transformation and their
implications for applications. In summary, we can state that
the characteristics of the two-dimensional Hermite transfor-
mation at a single scale (i.e., for one value of the Gaussian
standard deviation σ) are by now well understood. In our
view, the main challenges for the future lie in the exten-
sion to higher dimensions [26] and in a better exploitation
of the characteristics of the Hermite transformation across
multiple scales (i.e., more advanced than the simple pyra-
mid extension usedmost of the time today). We need a better
understanding of how the Hermite coefficients relate across
scales, and how this relationship can be exploited more prof-
itably for image coding, image processing, and image anal-
ysis [33, 42]. An improved link between the two alternative
ways of interpreting multiscale Gaussian derivatives, that is,
as analysis functions of theHermite transformation or within
the mathematical theory of scale space, may potentially also
profit both approaches.
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