Hindawi Publishing Corporation

EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 28636, Pages 1-11
DOI 10.1155/ASP/2006/28636

Macrocell Builder: IP-Block-Based Design Environment for
High-Throughput VLSI Dedicated Digital Signal

Processing Systems

Nacer-Eddine Zergainoh,' Ludovic Tambour,' %3 Pascal Urard,?> and Ahmed Amine Jerraya'

I'TIMA Laboratory, National Polytechnique Institute of Grenoble, 46 Avenue Félix Viallet, 38031 Grenoble Cedex 1, France
2ST Microelectronics, 850 Rue Jean Monnet, 38926 Crolles Cedex, France
3CIRAD, TA 40/01, avenue Agropolis Lavalette, 34398 Montpellier Cedex 5, France

Received 3 October 2004; Revised 14 April 2005; Accepted 25 May 2005

We propose an efficient IP-block-based design environment for high-throughput VLSI systems. The flow generates SystemC
register-transfer-level (RTL) architecture, starting from a Matlab functional model described as a netlist of functional IP. The
refinement model inserts automatically control structures to manage delays induced by the use of RTL IPs. It also inserts a control
structure to coordinate the execution of parallel clocked IP. The delays may be managed by registers or by counters included in
the control structure. The flow has been used successfully in three real-world DSP systems. The experimentations show that the
approach can produce efficient RTL architecture and allows to save huge amount of time.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

As the complexity of the high-throughput dedicated digi-
tal signal processing (DSP) systems under hardware design
increases, development efforts increase dramatically. At the
same time, the market dynamics for electronic systems push
for shorter and shorter development times [1]. In order to
meet the design time requirements, a design methodology
for VLSI dedicated DSP system that favors reuse and early
error detection is essential. One idea, largely widespread and
applied to design DSP systems, is to adopt a modular ap-
proach based on divide-and-conquer strategy (recursive).
The global complexity of the system should be divided into
subsystems (i.e., elementary signal processing functions),
well known and of easily accessible complexity such as fil-
ter (FIR, IIR), fast Fourier transform (FFT), Viterbi decoder,
and so forth. The system can be obtained by the hierarchi-
cal assembly of these common functions of signal processing
(also known as IP blocks). The intellectual-property- (IP)-
based design is obviously an important issue for improving
not only design productivity, but also design from the higher-
level abstraction [2, 3].

However, designers encounter two major problems with
the IP-block-based design approach [2—4]. The first problem
is the difficulty in using IPs blocks for high-throughput DSP
systems that require various performances (throughput) or

functions with nonstandard algorithms [5]. This is because
VLSI DSP system cannot be parameterized for global per-
formance and functions; for example, necessary processing
cycles cannot be adjusted for IPs blocks. The second prob-
lem comes from interfacing of IPs blocks between themselves.
Designers have to design IPs blocks that can communicate
according to the blocks’ interface specification. When they
connect two different IP blocks, they have to insert an extra
interface circuitry in order to synchronize them. Area and de-
lay overhead for circuitry cannot be neglected in some cases.
Our goal is to find some appropriate design tactics to avoid
these problems.

In this paper, we propose an efficient IP-block-based de-
sign environment for high-throughput VLSI dedicated dig-
ital signal processing (DSP) systems called DSP macrocells
builder tool. The flow generates SystemC register-transfer-
level (RTL) architecture, starting from a Matlab functional
model described as a netlist of functional IP. To provide IPs
with more reusability and flexibility, we use parameterized
reusable DSP components at functional and RT levels. Thus,
by setting the appropriate parameters, unnecessary functions
and redundant interfaces are eliminated in our IP-based de-
sign approach. The refinement process inserts automatically
control structures to treat delays induced by the use of RTL
IPs. It also inserts a control structure to coordinate the exe-
cution of parallel clocked IP. The delays may be managed by

EURASIP Journal on Applied Signal Processing

registers or by counters included in the control structure. The
main contribution of this paper is a prototype implementa-
tion and experimentation of the approach. The rest of the
paper is organized as follows. After investigating related work
in Section 2, we introduce our methodology and discuss its
merits, the important issues, and how this approach handled
the IP-based design problems. Section 4 details the IP-block-
based design environment for high-throughput VLSI DSP
systems. Section 5 describes several experiments to analyze
the efficiency of the proposed design flow and Section 6 con-
cludes the paper.

2. RELATED WORK
2.1. Standard design flow for ASIC

A standard design flow for hardware implementation of al-
gorithms has four phases which are typically handled by four
different designers. Algorithm designers conceive the chip
and deliver a specification to system designers, often in the
form of a floating-point simulation. The system or archi-
tecture designers begin to add structure to this simulation,
partitioning the design into functional units. They must also
convert the data types from floating to fixed-point and ver-
ify that finite word-length effects and pipeline depth do not
compromise the algorithm. The hardware designers map the
simulation RTL code and verify that the code matches the
specified functionality and pipeline depth. Physical designers
take standard-cell netlists synthesized from the RTL code and
generate layout mask patterns. This flow requires three trans-
lations of the design, expressing the functionality as grad-
ually less sequential and more structural with requirements
for reverification at each stage. Opportunities for algorithmic
modifications, to reduce power and area, are often lost due
to the separation of engineering decisions. Performance bot-
tlenecks discovered during the physical design phase are un-
known to the algorithm designer. Aggressive system require-
ments may require new and unusual architectures, which can
stall the flow, leading to uncontrolled looping back to earlier
stages of the design process and extending the design time in-
definitely. The main problem with this flow is that it attempts
to avoid feedback information to algorithm designers.

The flow we need would allow algorithm designers to ex-
plore the design space as thoroughly as possible by creating
RTL model and obtaining performance estimates. This ex-
ploration should allow refinement of fixed-point types to be
constrained libraries of efficient hardware blocks, and to be
carried out by automated design flow. This encourages feed-
back of RTL design issues to algorithm designers by allowing
them to maintain ownership of the design data at all times. It
also would encourage interaction with algorithm and hard-
ware designers by reducing the design process to a single
phase.

2.2. Current methods and flows for DSP
algorithm implementation

Recent efforts have identified the gaps between algorithm,
system, hardware, and physical design, but yet have to

encompass the complete problem. Some attempt to close the
gap between algorithm and hardware design by basing syn-
thesis tools on C/C++ description [6-11]. However, these
solutions require a style of code that is very similar to RTL
code and it is unattractive to algorithm designers. Commer-
cial tools from design automation companies offer RTL code
generation solutions from block diagrams [12]. However,
these tools are targeted mostly for hardware designers and
obscure the information about the algorithm and architec-
ture through the code generation process.

Some have proposed using high-level system design
flows, such as Ptolemy [13], and POLIS [14]. These flows em-
phasize overall system cosimulation and cosynthesis for het-
erogeneous systems rather than the details required in creat-
ing and integrating DSP-ASIC into an existing system. There
are also some works on system-level design flows targeted
for DSP hardware systems [15-19]. Grape-II [15], Cham-
pion [16], Logic foundry [17], and MATCH [18] follow this
scheme. In Grape-II, the target architecture consists of com-
mercial DSP processors, bond-out versions of core proces-
sors, and FPGAs linked to form a powerful heterogeneous
multiprocessor. The Logic foundry is system-level design
flow for the rapid creation and integration of FPGA-based
DSP by using predictable, preverified IP blocks that have
standardized interfaces. The problem of this approach is that
the area and delay overhead for standard interface circuitry
cannot be neglected in some cases. Champion is IP-block-
based design approach for data path of DSP-ASIC. The de-
sign automation of data path is performed using two libraries
of predesigned basic blocks (functional and cells libraries).
Unfortunately, the lack of flexibility of libraries (no param-
eterized blocks) limits the reuse of the IP blocks especially
for high-throughput DSP systems which require various per-
formances (throughput) or functions with nonstandard al-
gorithms. This work was also limited to data paths without
runtime control considerations. MATCH has attempted to
compile high-level languages, such as Matlab, directly into
hardware implementations (including code for DSP, embed-
ded processors, and FPGA).

However, we believe that in all above works, design
methodologies tackle some issues of DSP design but they yet
have to encompass the entire problem. In fact, most of the
above-mentioned approaches cannot satisty a tradeoff be-
tween architecture quality, rapid algorithm/architecture ex-
ploration, and fast modeling and validation.

2.3. IP-based design issues

A lot of research has been carried out on the IP-based
design [2-4, 20-27]. Most of the research deals with IP-
based SoC [2, 20-23]. Problems on SoC synthesis are ad-
dressed in [23], where it is assumed that an external refer-
ence clock is supplied and the asynchronous communication
is used. However, most of on-chip buses for SoC use the syn-
chronous communication. IP blocks are also exploited in the
application-specific instruction-set processor (ASIP) synthe-
sis for the embedded DSP software [26]. To accelerate the
execution of the software, they select an optimal set of IPs

Nacer-Eddine Zergainoh et al.

Generic

Functional model

]

Out System-level simulation

functional

DSP-IP library

Refinement
(parameters extraction, FSM

integration, automatic assembly)

(parameters exploration)

Automatic delay
correction method

RTL architecture

Y

o o o |

i

Generic

RTL

DSL-IP library

In ‘L ‘L Out
){ RTL-IP1 g RTL-IP2 ‘ RTL-IP3 I> Behavior difference?
N
RTL-1P4

FIGURE 1: IP-based design methodology for VLSI dedicated DSP.

and interface types for each IP. However, the interface types
for IPs are restricted to coprocessor integration style. Inter-
rupt/trap or shared-mapped I/O memories are often used.
The software called handshaking offers flexible communica-
tion between hardware and software, but it is too slow. Some
researchers are trying to develop general communication in-
terfaces in hardware. In the area of the application-specific
integrated circuit (ASIC) design, communication between
IPs is often conducted by shared registers or shared memo-
ries. The typical interface configuration contains multiplexes
with enable signals or address decoders. The concept of a
generic virtual interface has been attracting a lot of attention
as a way to increase the design reuse. General virtual inter-
faces lead to designers believing that any IP could communi-
cate with any other IP [27]. Some practical approaches are re-
ported such as the automatic matching/generation/deletion
of interface pins [3, 4, 24, 25]. General virtual interfaces are
kinds of wrapper IPs, so they would have the area and delay
overhead.

None of the above works solve the two above-mentioned
problems for the high-throughput ASIC DSP systems. The
main contribution in this paper is to provide some appropri-
ate design tactics to avoid these problems.

3. OVERVIEW OF DESIGN METHODOLOGY

The IP-based design methodology is based on designer’s
practice [28, 29]. The methodology, described in Figure 1,
generates register-transfer-level (RTL) architecture starting
from a functional model, given in Matlab. The functional
modeling and RTL architecture generation are performed us-
ing two libraries of predesigned DSP basic blocks (functional
and RTL libraries).

In our IP-block-based design approach, the functional
model is created by assembly of existing functional IP written
in Matlab [30]. The refinement process keeps the same archi-
tecture and replaces each functional IP by a corresponding

RTL one, according to a set of parameters given by the
designer. These are present as attributes in the functional
model. The choice of IP parameter values (i.e., architec-
tural parameter values such as bit width) is made by the
system designer in order to satisty a tradeoff between sig-
nal quality and implementation constraints. To generate the
architecture, IP parameter values are firstly extracted from
a validated functional architecture model and then used to
instantiate the predesigned RTL IP written in synthesizable
hardware language (i.e., VHDL, SystemC). The architecture
is then built by automatic assembly of predesigned RTL IPs
(with the same assembly topology as the functional model).
The connection between the RTL IPs is made by name. The
design flow includes a unified verification platform used to
verify both RTL and functional models.

The platform exploits directly the high-level environ-
ment used for functional validation. The results of the
methodology are a safety functional and RTL models of the
whole DSP application. The functional model can be used
as an executable reference for the next generation of design.
Overall, the final architecture takes implicit advantage of the
hardware designer expertise. The RTL model is suitable for
logical synthesis.

3.1. Generic DSP-IPs blocks

To provide IPs with more reusability and flexibility (prob-
lem 1), we are developing parameterized reusable DSP com-
ponents at functional and RTL levels called “generic F-IP”
and “generic RTL IP” We define the generic F-IP as tem-
plate described in Matlab hybrid representation; many de-
tails are left open, only some signals which are relevant
for the quantification are implemented in quantified inte-
ger. The generic F-IP blocks are stored in library. We define
the generic RTL IP as a synthesizable RTL model of a basic
DSP block. Each F-IP is mapped on one or more RTL IPs.
A typical RTL IP is shown in Figure 2 (where the generic

EURASIP Journal on Applied Signal Processing

N = number of coefficients

nbit_in

In

Z*l

coeff-1

coeff-2

coeff-N

+

nbit_sum

’ Round H Saturation ILut

FIGURE 2: Generic RTL-IP description of FIR filter.

parameters are in italic). The external interface concepts
(e.g., external ports-structure, functional, and timing details,
generic parameters, etc.) of IPs provide how the IP block ex-
changes information with its environment. The F-IP inter-
face defines the component name, I/O data stream names,
and generic parameters names. The external interface in-
formation of RTL-IP block is described by the component
definition (including component name, generic parameters
names, ports names, ports directions, and ports data types).
The ports can be data, clock, reset, control, and test ports.
Figure 3 illustrates the analogy between F-IP and RTL-IP in-
terfaces. Therefore, just by setting appropriate parameters
(problem 2), unnecessary functions and redundant interfaces
are eliminated in the IP-based assembly approach (no need
to insert an extra interface circuitry). Furthermore, the de-
signer does not have to pay attention to the communication
of interface protocols.

3.2. Overview of automatic delay
correction method (ADCM)

Although each functional IP and its equivalent RTL pro-
duce individually the same digital values, in some cases,
the register-transfer model obtained by automatic assembly
from the functional model can be wrong [31]. This can oc-
cur due to delays induced by implementation constraints
(pipeline registers, output buffers, etc.). This behavioral fault
is caused by the existence of delays in the RTL model, which
cannot be found in the functional model. These delays occur
when the DSP application contains parallel branches of IPs
converging towards another IP, feedback loops of IPs, and/or
time-depending IP. This problem is generally known as re-
timing issue.

There are three main techniques able to correct the differ-
ent behavior between the two models. The first technique in-
volves the insertion of synchronization protocol (e.g., hand-
shake protocol) for each IP component, which indicates
when the input and output data are valid. The advantage
of this technique is that the delay problems are solved be-
fore the assembly of RTL IPs. The main drawback of this

technique is the area and delay overhead for each IP. How-
ever, the problem occurs only in the three cases above. The
second technique involves the insertion of registers between
RTL IPs in order to compensate the additive delays. This
technique has the advantage of being nonintrusive. However,
performing the corrections manually (i.e., locating the places
where the problems are, determining exactly how many reg-
isters need to be inserted, and where to insert them) is a very
difficult task, increasing the number of IPs. The third tech-
nique involves the modification of the initial finite-state ma-
chine (FSM) by generating additional signals to control the
IPs. These signals are time shifted of the initial signals of the
global FSM. Therefore, they are able to put back or to put for-
ward the activation of the IPs. This technique adopts various
stages of the second technique (i.e., locating the places where
the problems are, determining exactly how many signals are
needed) and requires the FSM to be modified. Modification
costs more because of the complexity of the FSM (multiplies
the number of control signals and increases the number of
states).

In our IP-block-based design, we have implemented
a systematic approach called “automatic delay correction
method (ADCM) to solve the problem without inserting an
extra interface circuitry. The ADCM implements efficiently
the last two techniques (register-insertion-based and FSM
modification-based). We have developed two algorithms
(algorithm-1 and algorithm-2) to perform ADCM [31]. The
first algorithm (algorithm-1), similar to the Bellman labeling
algorithm [32], determines an optimal solution in latency;
whereas the second algorithm (algorithm-2), similar to the
simplex algorithm [32], determines an optimal solution in
the number of inserted registers (i.e., optimizing area).

4. DSP MACROCELL BUILDER: IP-BLOCK-BASED
DESIGN ENVIRONMENT FOR
VLSI DEDICATED DSP

Our IP-block-based design environment called “DSP macro-
cell builder” shown in Figure 4 consists of system-level vali-
dation flow, hardware design flow (including data path and

Nacer-Eddine Zergainoh et al.
Functional
Function [outl, out2] } Outputs
e e . = GF.IP (
> Sl \ Generic Outl <, Inl,
| F-IPblock .. S In2, Inputs
I PP paral, Generic
R para2) parameters
e A
' Component GRT_IP
: ' 3 generic (.
e RTL paral: positive; } Genertlc
N ; .. arameters
> —4> It} . para2: positive); P
IRTT R Generic .- o
) o> RTL-IP blOCk Outl _Ly(p.ort (
7 I inl:instd_- - -3 } Inputs
A in2:instd_- - -
—>{En#1 } e
—{En#2 % L v outl: outstd_- - -3 } o
Clock > paral,para2 . | out2: out std_. - -; J OUtPuts
—>| Reset e
control: in std_- - -
clock: in std_- - - } Other ports
. LT e reset: IN std_- - -)
Systematic analogy :
Rt U end component;
I

FiGURE 3: F-IP interface versus RTL-IP interface.

Matlab functional

Mat2Colif

SystemC functional

CosimX
|jrC01if functional l%

architecture
ColifRefiner
Prepare-1 ColifLatencer
Delay correction { o Registers insertion-based (RegInsert)
o FSM modification-based (ModFSM)
method
|ir Colif RTL |
GenFSM ESM
Prepare-2 (SystemC RTL code)
CosimX |
| SystemC RTL netlist

F1GUrE 4: DSP macrocell builder.

FSM), and delay correction flow for high-throughput VLSI
dedicated DSP systems. The main feature of our configura-
tion is that the tool flow is based on a unified design model
for simulation and synthesis of system-on-chip (SoC) ar-
chitectures, called “Colif” [33]. Other tools take advantage
of information from the Colif and the characteristics of the

generic IPs libraries. Initially, a designer uses the generic F-IP
library to describe his functional model in Matlab [30]. The
next step is to explore a pure algorithm for DSP system using
Matlab environment. Then, the Mat2Colif tool transforms
the Matlab description into Colif description. IP parame-
ter values are extracted from a validated functional model

EURASIP Journal on Applied Signal Processing

%
& A

%@W%_@

%

Virtual component

W

Virtual port

Virtual channel

Figure 5: Colif representation.

and then used by Preparel and CosimX tools to generate the
functional architecture in SystemC [11]. The delay correction
flow (including ColifRefiner, ColifLatencer, and ADCM), as
will be explained later, transforms the Colif functional into
a corrected Colif RTL. Architectural parameters are used to
instantiate the predesigned RTL IP written in synthesizable
hardware language (i.e., VHDL, SystemC). The DSP macro-
cell builder includes the automatic generation of RTL Sys-
temC of the final architecture (including data path and FSM).
After cycle-level simulation, the generated architecture can
be passed to a logic synthesis, automatic placement, and
routing tools, in order to achieve a good performance circuit.

The following subsections detail the several automatic
phases of the macrocell builder.

4.1. Colif (Codesign language-independent format)

Colif is a unified abstract model for high-level system design
and refinement methodology [33]. Colif represents a system
as a hierarchical network of virtual components using three
basic concepts: module, port, and net. Virtual components
use wrappers to separate the interface of the internal compo-
nent from the interface of external nets (see Figure 5). The
wrapper is the set of virtual ports of a virtual component.
Virtual ports contain internal and external ports that can be
different in terms of communication protocol and abstrac-
tion level. Colif uses a uniform syntax to represent systems
that are described at multiple abstraction levels. A virtual
port can contain multiple levels of hierarchy to represent an
“N : M” (N and M are natural numbers) correspondence be-
tween internal and external ports. The internal ports are used
to connect the internal behavior of the module to the vir-
tual port. The external ports are used to connect the external
communication channel to the virtual port. A virtual chan-
nel groups nets that are parts of the same communication

protocol. Each Colif object has a list of local parameters, for
example the kind of protocol used in a virtual channel and
addresses of ports.

Colif is used as intermediate language for describing the
design model through different phases of the DSP macrocell
builder.

4.2. Mat2Colif

The Mat2Colif is developed to transform the functional Mat-
lab model into a functional description in Colif language. It
consists of a lexical and syntactical analyzer applied upon the
Matlab description, the functions treating the different in-
put parameters of the tool, and the functions necessary for
producing the correct output file. The tool needs an inter-
mediate variable for integrating the inputs and the outputs.
This means that it is not possible to use directly the labels of
the inputs and the outputs for calling these functions. After
the intermediate form is explored, the tool imports the Colif
objects corresponding to functional IPs. After all the objects
are correctly imported into the Colif tree structure located in
memory, the tool instantiates this structure in order to obtain
a suitable file for visualization. This file describes the func-
tional description in Colif language.

4.3. ColifRefiner

The ColifRefiner tool transforms the Colif functional archi-
tecture model into Colif RTL model. First, the Colif F-IPs
are substituted by their corresponding Colif RTL IPs using
the IPs libraries. Then, the module of global FSM is added
and the ports-nets connections are performed. The connec-
tions between IPs are made by name, meaning that ports with
same role have same name in both functional and RTL mod-
els. The output result of ColifRefiner is Colif RTL structure

Nacer-Eddine Zergainoh et al.

Module Colif: F-IP1

Module Colif: F-IP2

Module Colif: F-IP3

Data_outl

Data_in s1

Inl

1

Data_out2

Data_in

Data_out []
[|Data_in2

s2

BCOIifReﬁner

Module Colif: RTL-IP1

_ Data_outl
Data_in

Module Colif: RTL-IP2

Module Colif: RTL-IP3

[|Data_inl Outl

[]Data_in2

Module Colif: FSM ,—L

clk clk

nrst

nrst

—
i : : Enable

F1GURE 6: Input and output of ColifRefiner tool.

description of the system (including data path and FSM
structure). Figure 6 illustrates an example of the input and
output of ColifRefiner tool.

4.4. Delay correction flow

Figure 7 shows the flow of the delay correction method [31].
The inputs of this flow are Colif functional and Colif RTL
descriptions of the entire system. The output of this flow is
a corrected RTL-level description producing the same digital
displays as the functional description. The localization and
the calculation of the number of delays to be inserted require
the use of an intermediate form called differential graph of
evolution, highlighting the delays present in the RTL model
and absent from the functional one. For that, the functional
model (resp., the RTL model) is represented by a graph called
functional graph of evolution (resp., RTL graph of evolution)
describing its own delays. The differential graph of evolution
is created by performing one by one the difference between
the weight of edges of the functional graph of evolution and
those of the RTL graph of evolution. This difference makes
possible to see only the additive delays due to the constraints
of implementation, by removing all the delays related to the
functionality.

Starting from the differential graph, the ADCM deter-
mines the corrections necessary to compensate the additive

delays. The ADCM uses two algorithms in performing the
corrections needed by the differential graph of evolution
in order to obtain a balanced graph. The first algorithm
(algorithm-1) determines an optimal solution in latency,
while the second algorithm (algorithm-2) gives an optimal
solution in number of inserted registers, optimizing area. Fi-
nally, the step of code generation produces a corrected RTL
description of the system, inserting the right number of de-
lays into the right place. The ADCM implements efficiently
two alternatives to correct the RTL description of the system:
one based on registers insertion while the second is based on
FSM modification. According to the implementation con-
straints and the target application, the designer can choose
the suitable techniques to be used. In practice, the ColifLa-
tencer tool inserts automatically the latency values into the
Colif files (Colif RTL and functional), while the ADCM per-
forms the correction.

4.5. Synthetic example

In order to highlight the problem of behavior difference and
its solution in a real case of IP-block-based design, we have
willfully selected a synthetic example composed of two par-
allel branches of block IPs tending towards the same IP (see
Figure 8). One contains three FIR filters IPs and the others
contain only one FIR filter. A behavior difference between

EURASIP Journal on Applied Signal Processing

Functional description | | RTL description

Compute the algorithmic
delay between I/O of the IP

Compute the delay between
1/O of the TP

Functional graph of RTL graph of

evolution

evolution

Delay difference

Differential graph of

evolution

Corrected differential
evolution graph

F1GURE 7: Delay correction flow.

e| FIR1 |—>| FIR2 H FIR3 P

B——
FIR4

x10° Output

+ FIR5

0 10 20 30 40 50 60 70 80 90 100

--- Matlab
—— SystemC RTL

FIGURE 8: Synthetic example and problem of behavior problem be-
tween functional and RTL models.

the RTL and functional model has been detected by our
ADCM as well as during both functional and cycle accurate
simulations (both digital data curves in Figure 6 are differ-
ent). The problem is due to an output register present in each
RTL FIR filter and absent in functional filters. This register
induces an additional delay in the RTL model. The differen-
tial graph of evolution is shown in Figure 9. The first path
has three additional delays, whereas the second path has one
additional delay. It was necessary to add two delays in the sec-
ond path in order to balance the differential graph. This de-
lay correction was translated in two ways on the RTL model.
The first one consists of inserting two registers in the second

path (Figure 10(a)). The other method involves modifying
the initial FSM (Figure 10(b)). The initial FSM generates a
control signal at each fourth clock cycle. In the case of the
second correction method, the FSM has to produce a supple-
mentary control signal, but delayed initially by two impulses
of the first signal (8 clock cycles). Then, the filter in the sec-
ond branch starts its computation after the same period as
the filters of the first path. Both of the two techniques were
applied upon this example. Independently of the used cor-
rection method, the RTL models produce exactly the same
digital values as the functional one (see Figure 11).

4.6. Discussion

We assumed the systems are mono-rates, do not include
time-varying IPs, and can be built by acyclic assembly of
IPs. We assumed the model is a static data flow graph (SDF
graph), that is, latency and data throughput of IPs are con-
stant, and this model is not a limitation of our methodol-
ogy. In practice, when designing data-dependency IPs, the
FIFOs with parameterized sizes are placed at the outputs of
IPs; it boils down to SDF graph case. In the case of cyclic
graph, heuristic algorithms that build acyclic graphs from
cyclic ones need to be considered, which are outside the scope
of this paper. The most high-throughput DSP systems can be
supported by our methodology.

5. EXPERIMENTAL RESULT

We applied our ADCM and associated IP-based design flow
to synthetic example (previously presented) and three high-
throughput dedicated DSP systems: digital modulation chain
circuit extracted from a real design of TV digital transmis-
sion satellite application, decoder based on the soft-output
Viterbi algorithm (SOVA), MP3 (MPEG-1 audio layer-3) au-
dio compression standard. Functional and RTL models of
these three applications were built by assembling the various
predesigned and prevalidated IPs. The behaviors were sub-
jected to ADCM; we used two alternatives (registers insertion
and FSM modification) of implementing delay correction on
these circuits. The logic synthesis was performed using Syn-
opsys Design Compiler [34] and the resultant circuits were
mapped to AMS’s 0.35u cell-based array library. The resul-
tant gate-level circuits were compared with respect to the
following metrics: area and performance. The area and clock
period are obtained after performing synthesis and technol-
ogy mapping. The performance, that is, execution time is the
product of clock period and number of clock cycles (RTL
simulation).

Table 1 presents the number of registers inserted af-
ter the behaviors which were performed by ADCM (i.e.,
algorithm-1 and algorithm-2). Save for the synthetic exam-
ple, algorithm-2 improves significantly the solutions found
by algorithm-1. The average registers improvement is 50%
(the averages were calculated based on comparing the sum of
the values in algorithm-1 and algorithm-2 columns).

In Tables 2 and 3, we present, respectively, execution time
and area results. The results are obtained according to the fol-
lowing three cases: designs without ADCM (second column),

Nacer-Eddine Zergainoh et al.

0 /1

(o]

IR1
N/

0

FIGURE 9: Balanced differential graph of evolution.

Cl

Clk [MUULULITTLY
(o I I N | e

F1GURE 10: Two ways to correct the behavior in RTL model: (a) delay
correction by registers insertion and (b) delay correction by modi-
fying FSM.

x10°

0 10 20 30 40 50 60 70 80 90 100

-+ - Matlab
-+- RTL

FIGURE 11: Output signals of functional and corrected RTL models.

designs with ADCM by registers insertion (third column),
and ADCM by FSM modification (fourth column). In the
first case (second column), the interfacing of IPs blocks
was performed by inserting an extra interface circuitry (i.e.,
handshake protocol), in order to synchronize them.

Tables 2 and 3 indicate that our ADCM results in sig-
nificant improvements of performance and area, the aver-
age performance improvement is 15.67%, whereas the av-
erage area improvement is 10.7%. Area and delay overhead

TaBLE 1: Registers insertion performed by ADCM algorithms.

Registers inserted no.

System - -
Algorithm-1 Algorithm-2

Synthetic example 2 2

Modulation chain 15 7

SOVA 9 5

MP3 decoder 12 5

for circuitry cannot be neglected in the first case (second
column). Regarding both alternatives of ADCM (registers
insertion versus FSM modification), the two corrections
are equivalent in terms of performances (third and fourth
columns in Table 2). With regard to area (third and fourth
columns in Table 3), the two corrections give the slightly dif-
ferent results. We note that the difference is the area no more
than 4% for the cases studied. This difference is due to the
way in which the N delays correction are distributed on the
balanced differential graph. The N delays correction on dif-
ferential graph correspond to M (1 < M < N, M depends
on the distribution of delays correction on the differential
graph) supplementary control signals in ADCM by FSM
modification, whereas they always correspond to N registers
in ADCM by registers insertion. The choice of a method is
closely related to the application and must be done after ap-
plying the two methods, and analyzing the area results.

6. SUMMARY AND CONCLUSIONS

In this paper, we proposed an efficient IP-block-based design
environment for high-throughput VLSI Systems. The flow
generates SystemC RTL architecture, starting from Matlab-
based functional model of digital system. To provide IPs with
more reusability and flexibility, we are developing parame-
terized reusable DSP components at functional and register-
transfer level called “generic F-IP” and “generic RTL-IP”
Thus, by setting the appropriate parameters, unnecessary
functions and redundant interfaces are eliminated in the IP-
based design approach. Although each functional IP and its
equivalent RTL produce the same digital displays, in some
cases, the register-transfer model obtained by automatic as-
sembly from the functional model can be wrong. We have
also proposed an approach called automatic delay correction
method to solve this problem without the insertion of an ex-
tra interface circuitry. The approach corrects the behavior of

10

EURASIP Journal on Applied Signal Processing

TABLE 2: Performance results: registers versus FSM modification.

System Execution time (ns)
Without ADCM ADCM by registers insertion ADCM by FSM modification
Modulator 4567870 3859850 3859854
MP3 decoder 2297500 1929902 1929907
SOVA* 68266 58026 58027

*Time required to decode a single 1024-bit block of information using 4-stage iterative decoding.

TABLE 3: Area results: registers insertion versus FSM modification.

System Area (# kgates)
Without ADCM ADCM by registers insertion ADCM by FSM modification
Modulator 541.7 482.5 483.2
MP3 decoder 149.4 134.1 134.9
SOVA 52.5 47.5 47.1

the RTL model in a judicious way that includes locating the
places where the problems occur, determining how many de-
lays are needed, and implementing the correction. We have
described two alternatives (registers insertion and FSM mod-
ification) of implementing delay correction methods and we
have presented a realistic example where the delay correction
method has been efficiently applied. Experimental results in
real cases, also, demonstrate significant improvements in the
quality of the synthesized implementations.

REFERENCES

[1] International Technology Roadmap for Semiconductors, 2003
Edition Report, http://public.itrs.net.

[2] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and
M. Sgroi, “Benefits and challenges for platform-based design,”
in Proceedings of 41st IEEE Design Automation Conference
(DAC ’04), pp. 409—414, San Diego, Claif, USA, June 2004.

[3] G. Martin, “Design methodologies for system level IP in
Proceedings of IEEE Design, Automation and Test in Europe
(DATE *98), pp. 286—289, Paris, France, February 1998.

[4] D.D. Gajski, A. C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama,
and P. Bricaud, “Essential issues for IP reuse,” in Proceedings
of IEEE Asia and South Pacific Design Automation Conference
(ASP-DAC °00), pp. 37-42, Yokohama, Japan, January 2000.

[5] K. K. Parhi, VLSI Digital Signal Processing Systems: Design
and Implementation, John Wiley & Sons, New York, NY, USA,
1998.

[6] Celoxica, Handel-C Language Reference Manual, 2003. RM-
1003-4.0, http://www.celoxica.com.

[7] G. De Micheli, “Hardware synthesis from C/C++ models,” in
Proceedings of IEEE Design, Automation and Test in Europe
Conference and Exhibition (DATE ’99), pp. 382—383, Munich,
Germany, March 1999.

[8] S. A. Edwards, “The challenges of hardware synthesis from C-
like languages,” in Proceedings of IEEE Design, Automation and
Test in Europe (DATE ’05), vol. 1, pp. 66—67, Munich, Ger-
many, March 2005.

[9] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauser, and S. Zhoa,
Spec C: Specification Language and Methodology, Kluwer Aca-
demic, Boston, Mass, USA, 2000.

[10] D.C.KuandG. De Micheli, “HardwareC: A language for hard-
ware design,” Tech. Rep. CSTL-TR-90-419, Computer Systems
Laboratory, Stanford University, Stanford, Calif, USA, August
1990.

] SystemC Community, http://www.systemc.org.
12] Xilinx System Generator v2.1 for Simulink Reference Guide,
Xilinx, 2000.

[13] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
a framework for simulating and prototyping heterogeneous
systems,” International Journal of Computer Simulation, vol. 4,
no. 2, pp. 155-182, 1994.

[14] FE Balarin, M. Chiodo, P. Di Giusto, et al., Hardware-Software
Co-Design of Embedded Systems: The POLIS Approach, Kluwer
Academic, Boston, Mass, USA, 1997.

[15] R. Lauwereins, M. Engels, M. Ade, and J. A. Peperstraete,
“Grape-II: a system-level prototyping environment for DSP
applications,” IEEE Computer, vol. 28, no. 2, pp. 35-43, 1995.

[16] S. Natarajan, B. Levine, C. Tan, D. Newport, and D. Bouldin,
“Automatic mapping of khoros-based applications to adaptive
computing systems,” in Proceedings of Military and Aerospace
Applications of Programmable Devices and Technologies Inter-
national Conference (MAPLD °99), pp. 101-107, Laurel, Md,
USA, Septemper 1999.

[17] G. Spivey, S. S. Bhattacharyya, and K. Nakajima, “Logic
foundry: rapid prototyping for FPGA-based DSP systems,”
EURASIP Journal on Applied Signal Processing, vol. 2003, no. 6,
pp. 565-579, 2003.

[18] P. Banerjee, N. Shenoy, A. Choudhary, et al., “MATCH: A
MATLAB Compiler for Configurable Computing Systems,”
Tech. Rep. CPDCTR-9908-013, Center for Parallel and Dis-
tributed Computing, Northwestern University, Evanston, Il
USA, August 1999.

[19] W. R. Davis, N. Zhang, K. Camera, et al., “A design environ-
ment for high-throughput low-power dedicated signal pro-
cessing systems,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 3, pp. 420431, 2002.

[20] R. K. Gupta and Y. Zorian, “Introducing core-based system
design,” IEEE Design and Test of Computers, vol. 14, no. 4, pp.
15-25, 1997.

[21] L. Lavagno, S. Dey, and R. Gupta, “Specification, modeling
and design tools for system-on-chip,” in Proceedings of 7th
IEEE Asia and South Pacific Design Automation Conference and

http://public.itrs.net
http://www.celoxica.com
http://www.systemc.org

Nacer-Eddine Zergainoh et al.

11

15th International Conference on VLSI Design (ASP-DAC °02),
pp. 21-23, Bangalore, India, January 2002.

[22] W. Cescirio, A. Baghdadi, L. Gauthier, et al., “Component-
based design approach for multicore SoCs,” in Proceedings of
39th IEEE Design Automation Conference (DAC ’02), pp. 789—
794, New Orleans, La, USA, June 2002.

[23] B.-W. Kim and C.-M. Kyung, “Exploiting intellectual proper-
ties with imprecise design costs for system-on-chip synthesis,”
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 10, no. 3, pp. 240-252, 2002.

[24] M. Vachharajani, N. Vachharajani, S. Malik, and D. I. August,
“Facilitating reuse in hardware models with enhanced type in-
ference,” in Proceedings of IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’04), pp. 86-91, Stockholm, Sweden, Septem-
ber 2004.

[25] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli,
“Automatic synthesis of interfaces between incompatible pro-
tocols,” in Proceedings of 35th IEEE Design Automation Confer-
ence (DAC ’98), pp. 8-13, San Francico, Calif, USA, June 1998.

[26] H. Choi, J. H. Yi, J.-Y. Lee, I.-C. Park, and C.-M. Kyung, “Ex-
ploiting intellectual properties in ASIP designs for embedded
DSP software,” in Proceedings of 36th IEEE Design Automation
Conference (DAC °99), pp. 939-944, New Orleans, La, USA,
June 1999.

[27] VSI Alliance, http://www.vsi.org.

[28] L. Tambour, “Efficient methodology for design and vali-
dation of complex DSP system-on-chip,” Ph.D. thesis, In-
stitut National Polytechnique de Grenoble (INPG), Greno-
ble, France, December 2003, http://tima.imag.fr/publications/
files/th/mfs_196.pdf.

[29] N. E. Zergainoh, K. Popovici, A. A. Jerraya, and P. Urard,
“Matlab based environment for designing DSP systems using
IP blocks,” in Proceedings of 12th Workshop on Synthesis and
System Integration of Mixed Information Technologies (SASIMI
’04), pp. 296-302, Kanazawa, Japan, October 2004.

[30] The MathWorks Incorporation, http://www.mathworks.com.

[31] N. Zergainoh, L. Tambour, H. Michel, and A. A. Jerraya,
“Méthode de correction automatique de retard dans les
modeles RTL des systemes monopuces DSP obtenus par as-
semblage de composants IP)” Techniques et Sciences Informa-
tiques, vol. 24, no. 10, pp. 1227-1257, 2005.

[32] A. Gibbons, Algorithmic Graph Theory, Cambridge University
Press, Cambridge, UK, 1985.

[33] W. O. Cesario, G. Nicolescu, L. Gauthier, D. Lyonnard, and
A. A. Jerraya, “Colif: A design representation for application-
specific multiprocessor SOCs,” IEEE Design and Test of Com-
puters, vol. 18, no. 5, pp. 8-20, 2001.

[34] Synopsys Incorporation, http://www.synopsys.com.

Nacer-Eddine Zergainoh received the State
Engineering degree in electrical engineering
from National Telecommunication School
and the M.S. and Ph.D. degrees in computer
engineering from University of Paris XI,
in 1992 and 1996, respectively. Currently,
he is an Associate Professor at Ecole Poly-
technique of University of Joseph Fourier,
Grenoble, and member of the research staff
of the Techniques of Informatics and Mi-
croelectronics for Computer Architecture Laboratory, Grenoble.
Prior to that, he was an R&D Engineer at ILEX-Computer Systems,
Paris, France. His current research interests are hardware/software

codesign, high-level synthesis and CAD issues for real-time digi-
tal signal processing, design and exploration of application-specific
multiprocessor SoC (including design and analysis of on-chip com-
munication architectures, network on-chip issues). He also main-
tains an active interest in parallel processing, multiprocessor archi-
tectures, and real-time operating systems. Professor Zergainoh has
served on the technical program committees for several interna-
tional conferences and workshops.

Ludovic Tambour received the Engineer
degree in computer science from the Ecole
Polytechnique de Grenoble in 2000 and the
M.S. and Ph.D. degrees in computer science
from the Institut National Polytechnique
de Grenoble (INPG), Grenoble, France, in
2000 and 2003, respectively. In 2000, he
joined the R&D SHIVA Group at ST Micro-
electronics and SLS Group at TIMA Lab-
oratory where he worked on methodology
and flow for design and validation of digital signal processing ASIC
macrocells. In 2004, Dr. Tambour moved to hold an Engineer po-
sition at CIRAD (International Cooperating Center in Research for
Agronomic Developing), Montpellier, France. His research inter-
ests include software tools for modeling, simulation and data anal-
ysis in a large field of activities including microelectronic, signal
processing, agronomy, and so forth.

Pascal Urard joined ST Microelectronics in
1992 where he has worked successively in
test, engineering, ASIC design, and archi-
tecture of mixed signal processing ASICs.
In 2000, he joined ST R&D to work on
ESLD flows. He initiated a Matlab-2-RTL
flow that is now used internally in ST. In
2001, he initiated cooperations with HLS
tools companies. He is now the Manager of
High-Level Synthesis Group within ST Mi-
croelectronics Central—CAD.

Ahmed Amine Jerraya received the Engi-
neer degree from the University of Tunis
in 1980 and the DEA, “Docteur Ingénieur,”
and the “Docteur d’Etat” degrees from the
University of Grenoble in 1981, 1983, and
1989, respectively, all in computer sciences.
In 1986, he held a Full Research posi-
tion with the CNRS (Centre National de la
Recherche Scientifique). From April 1990to |
March 1991, he was a member of the scien- I /!
tific staff at Nortel in Canada, working on linking system design
tools and hardware design environments. He is the General Chair
of HLDVT ’02 and Coprogram Chair of CASES ’02. He served as
the General Chair for DATE 2001, ISSS ’96, and General Cochair
for CODES ’99. He also served as Program Chair for ISSS 95,
RSP ’96, and Coprogram Chair of CODES ’97. He published more
than 100 papers in international conferences and journals. He re-
ceived the Best Paper Award at the 1994 ED&TC for his work on
hardware/software cosimulation. Dr. Jerraya is currently managing
the System-Level Synthesis Group of TIMA Laboratory and has the
grade of Research Director within the CNRS.

http://www.vsi.org
http://tima.imag.fr/publications/files/th/mfs_196.pdf
http://tima.imag.fr/publications/files/th/mfs_196.pdf
http://www.mathworks.com
http://www.synopsys.com

	Introduction
	Related Work
	Standard design flow for ASIC
	Current methods and flows for DSPalgorithm implementation
	IP-based design issues

	Overview of Design Methodology
	Generic DSP-IPs blocks
	Overview of automatic delaycorrection method (ADCM)

	DSP Macrocell Builder: IP-block-based design environment for VLSI Dedicated DSP
	Colif (Codesign language-independent format)
	Mat2Colif
	ColifRefiner
	Delay correction flow
	Synthetic example
	Discussion

	Experimental Result
	Summary and Conclusions
	REFERENCES

