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A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition.
Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced
by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition
(FVC2004), our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory
cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant im-
provements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge
number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially
reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter
definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples

available in different classes.
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1. INTRODUCTION

Daugman [1] presented evidence that visual neurons could
optimize the general uncertainty relations for resolution in
space, spatial frequency, and orientation. Gabor filters are
believed to function similarly to the visual neurons of the
human visual system. From an information-theoretic view-
point, Okajima [2] derived Gabor functions as solutions for a
certain mutual-information maximization problem. It shows
that the Gabor receptive field can extract the maximum in-
formation from local image regions. Researchers have also
shown that Gabor features, when appropriately designed, are
invariant against translation, rotation, and scale [3]. Success-
ful applications of Gabor filters in face recognition date back
to the FERET evaluation competition [4], when the elastic
bunch graph matching method [5] appeared as the winner.
The more recent face verification competition [6] also saw
the success of Gabor filters: both of the top two approaches
used Gabor filters for feature extraction.

For face recognition applications, the number of Gabor
filters used to convolve face images varies with applications,
but usually 40 filters (5 scales and 8 orientations) are used
[5, 7-9]. However, due to the large number of convolution
operations of Gabor filters with the image (convolution at
each position of the image), the computation cost is pro-

hibitive. Even if a parallel system was used, it took about 7
seconds to convolve a 128 x 128 image with 40 Gabor fil-
ters [7]. For global methods (convolution with the whole
image), the dimension of the feature vectors extracted is
also incredibly large, for example, 163840 for an image of
size 64 X 64. To address this issue, a trial-and-error method
is described in [10] that performs Gabor feature selection
for facial landmark detection. A sampling method is pro-
posed in [11] to determine the “optimal” position for ex-
tracting Gabor feature. This applies the same set of filters,
which might not be optimal, at different locations of an im-
age. Genetic algorithm (GA) has also been used to select Ga-
bor features for pixel classification [12] and vehicle detec-
tion [13]. This basically creates a population of randomly
selected combinations of features, each of which is consid-
ered a possible solution to the feature selection problem.
However, the computation cost of GAs is very high, par-
ticularly in the case when a huge number of features are
available. Recently, the AdaBoost algorithm has been used
to select Haar-like features for face detection [14] and for
learning the most discriminative Gabor features for clas-
sification [15]. Once the learning process is finished, Ga-
bor filters of different frequencies and orientations are ap-
plied at different locations of the image for feature extrac-
tion.
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FiGure 1: Gabor filters II( f, 0, y, ) in spatial domain (the 1st row) and frequency domain (the 2nd row), (a) I1,(0.1,0,1,1); (b) I1,(0.3,

0,6,3); (¢) 11:(0.2,71/4,3,1); (d) 114(0.4, /4, 2,2).

Despite its success, AdaBoost algorithm selects only
features that perform “individually” best, the redundancy
among selected features is not considered [16]. In this paper,
we present a conditional mutual-information-[17, 18] based
method for selecting Gabor features for face recognition. A
small subset of Gabor features capable of discriminating in-
trapersonal and interpersonal spaces is selected using the
information theory, which is then subjected to generalized
discriminant analysis (GDA) for class separability enhance-
ment. The experimental results show that 200 features are
enough to achieve highly competitive accuracy for the face
database used. Significant computation and memory effi-
ciency have been achieved since the dimension of features
has been reduced from 163 840 to 200 for 64 x 64 images.
The kernel enhanced informative Gabor features have also
been tested on the whole FERET database following the same
evaluation protocol and improved performance on three test
sets has been achieved.

2. GABORFEATURE EXTRACTION
2.1. Gabor filters

In the spacial domain, the 2D Gabor filter is a Gaussian ker-
nel modulated by a sinusoidal plane wave [3]:
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where f (cycles/pixel) is the central frequency of the sinu-
soidal plane wave, 6 is the anticlockwise rotation of the Gaus-

sian and the plane wave, « is the sharpness of the Gaussian
along the major axis parallel to the wave, and f8 is the sharp-
ness of the Gaussian minor axis perpendicular to the wave.
y = f/aand 4 = f/p are defined such that the ratio between
frequency and sharpness is constant. Figure 1 shows four Ga-
bor filters with different parameters in both spatial domain
and frequency domain.

Note that (1) is different from the one normally used
for face recognition [5, 7-9], however, this equation is more
general. Given that the orientation 0 of the major axis of
the elliptical Gaussian is the same as that of the sinusoidal
plane wave, the wave vector k (radian/pixel) can now be ex-
pressed as k = 27 f exp(j0). Setting y = n = o/+/2m, that
is, « = B = 2nf/o, the Gabor filter located at position
Z = (x, y) can now be defined as

-
o (—IIkiIUIJZH ) exp(ik-2). ()

The Gabor functions used in [5, 7-9] have been derived from
(1), which can be seen as a special case when a = . Similarly,
the relationship between (1) and those in [10, 19] could also
be established. When DC term could be deduced to make the
wavelet DC free [5, 7-9], similar effects can also be achieved
by normalizing the image to be zero mean [20].
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2.2. Gabor feature representation

Once Gabor filters have been designed, image features at
different locations, frequencies, and orientations can be ex-
tracted by convolving the image I(x, y) with the filters:

Oni .0,y (% ¥) = 1(x, ¥) * @ri(1.0,9. (%, ¥). (3)
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FIGURE 2: Magnitude and real part of an image convolved with 40 Gabor filters.

A number of Gabor filters at different scales and orientations
are usually used. We designed a filter bank with 5 scales and
8 orientations for feature extraction [7]:

{onioym )}, y=n=08, fu= Wik

(4)

where f, and 6, define the orientation and scale of the Gabor
filter, fiay is the maximum frequency, and +/2 (half octave) is
the spacing factor between different central frequencies. Ac-
cording to the Nyquist sampling theory, a signal containing
frequencies higher than half of the sampling frequency can-
not be reconstructed completely. Therefore, the upper limit
frequency for a 2D image is 0.5 cycles/pixel, whilst the low
limit is 0. As a result, we set fmax = 0.5. The resultant Gabor
feature set thus consists of the convolution results of an input
image I(x, y) with all of the 40 Gabor filters:

S=1{0u(x,y):ue{0,...,4}, ve {0,...,7}},  (5)

where O,,,(x, y) = [I(x, y) * ¢11(,,6,.y.1) (X, ¥)|. Figure 2 shows
the magnitudes of Gabor representation of a face image with
5 scales and 8 orientations. A series of row vectors O, could
be obtained out of Oy, (x, y) by concatenating its rows or
columns, which are then concatenated to generate a discrim-
inative Gabor feature vector:

G(I) =0(I) = (0Opy Op, --- Of). (6)

Take an image of size 64 x 64 for example, the convolution
result will give 64 X 64 X 5 X 8 = 163 840 features. Each Ga-
bor feature is thus extracted by a filter with parameters f,,
0, at location (x, y). Since the parameters of Gabor filters are
chosen empirically, we believe a lot of redundant informa-
tion is included, and therefore a feature selection mechanism
should be used to choose the most useful features for classi-
fication.

3. MUTUAL INFORMATION FOR FEATURE SELECTION
3.1. Entropy and mutual information

As a basic concept in information theory, entropy H(X) is
used to measure the uncertainty of a random variable (rv) X.
If X is a discrete rv, H(X) can be defined as below:

HX)=-> p(X =x)1g(p(X = x)). (7)

Mutual information I(Y;X) is a measure of general interde-
pendence between two random variables X and Y
I(Y;X)=H(X)+H(Y)-H(X,Y). (8)

Using Bayes rule on conditional probabilities, (8) can be
rewritten as

I(Y;X)=HX)-H(X|Y)=H(Y)-H(Y |X). (9
Since H(Y') measures the a priori uncertainty of Y and H(Y |
X) measures the conditional a posteriori uncertainty of Y
after X has been observed, the mutual information I(Y;X)
measures how much the uncertainty of Y is reduced if X has
been observed. It can be easily shown that if X and Y are in-
dependent, H(X,Y) = H(X)+H(Y), and consequently their
mutual information is zero.

3.2. Conditional mutual information

In the context of information theory, the aim of feature se-
lection is to select a small subset of features (X,(1), Xv(2)>-- >
Xxy) from (X,X,,...,Xy) that gives as much information
as possible about Y, that is, maximize I(Y;X,1), Xy2)>--->
X (x)). However, the estimation of this expression is unprac-
tical since the number of probabilities to be decided could
be as huge as 2K*! even when the value of r.v. is binary. To
address this issue, one approach is to use conditional mutual
information (CMI) for feature fitness measurement. Given
a set of candidate features (X;,X5,...,Xy), CMI I(Y; X, |
X)), 1 < n < N, could be used to measure the informa-
tion about Y carried by the feature X,, when a feature X, )
k=1,2,...,K, is already selected:

I(Y; X, | Xyw) =

H(Y | Xop)) — H(Y | X Xoh))

= H(Y,Xyw) — H(Xv) (10)

— H(Y,Xn,Xv(k)) + H(X,,,Xv(k)).

We can justify the fitness of a candidate feature by its CMI
given an already selected feature, that is, a candidate fea-
ture is good only if it caries information about Y, and if
this information has not been caught by any of the X, al-
ready selected. When there are more than two selected fea-
tures, the minimum CMI given each selected feature, that is,
ming I(Y; X, | Xyx)), could be used as the fitness function.
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Forj=1,2,...m
Foru=0,1,...4
Forv=0,1,...7

Randomly generate an image pair (I, I;)
from different person

Calculate the Gabor feature difference Z,,, cor-
responding to filter ¢, (x, y) using the image
pair as below:

Zu,v = |Oi{7v - Oilq,v
End
End

Concatenate the 40 feature differences into
an extrapersonal sample,

g = [ZO,OZO,l v Zyy o Z4,7]
End

Output the m extrapersonal Gabor feature
difference samples

{(gb)/l)y---a(gm)ym)}; Vi=)Y2="""=Ym= 1

ArLgoriTHM 1: Extrapersonal training samples generation.

This selection process thus takes both individual strength and
redundancy among selected features into consideration. The
estimation of CMI requires information about the marginal
distributions p(X,),p(Y) and the joint probability distri-
butions p(Y,X,w)), p(Xn, Xvk))> and p(Y, Xy, Xy(x)), which
could be estimated using a histogram. However, it is very dif-
ficult to determine the number of histogram bins. Though
Gaussian distribution could be applied as well, many of the
features, as shown in the experimental section, do not show
the Gaussian property. To reduce the complexity and com-
putation cost of the feature selection process, we hereby fo-
cus on random variables with binary values only, that is,
x, € {0,1}, y € {0,1}, where x, and y are the values of
random variables X, and Y, respectively. For binary rv, the
probability could be estimated by simply counting the num-
ber of possible cases and dividing that number with the total
number of training samples. For example, the possible cases
will be {(0,0), (0,1), (1,0), (1, 1)} for the joint probability of
two binary random variables p(Y, X, k)).

4. SELECTING INFORMATIVE GABOR FEATURES
4.1. The Gabor feature difference space

Due to the complexity of estimation of CMI, the work pre-
sented here focuses on two-class problem only. As a result,
the face recognition problem is formulated as a problem in
the difference space [21] for feature selection, which mod-
els dissimilarities between two facial images. Two classes, dis-
similarities between faces of the same person (intrapersonal

space) and dissimilarities between faces of the different peo-
ple (extrapersonal space), are defined. The two Gabor feature
difference sets CI (intrapersonal difference) and CE (extrap-
ersonal difference) can be defined as

CI = {[|G(I,) = G(I)I], p = g},
CE = {l|G(I,) = G|, p # q},

(11)

where I, and I, are the facial images from people p and
q> respectively, and G(-) is the Gabor feature extraction
operation as defined in last section. Each of the M sam-
ples in the difference space can now be described as g; =
[x1% - Xy - xn],i=1,2,...,M, where N is the di-
mension of extracted Gabor features and x, = (/G(I,) —
G(Ig)Dn = (10p) = O -

4.2. Training samples generation

For a training set with L facial images captured for each of
the D persons, D(%) samples could be generated for intrap-
ersonal difference class while (5F) — D(%) samples are avail-
able for extrapersonal difference class. There are always much
more extrapersonal samples than intrapersonal samples for
face recognition problems. Take a database with 400 images
from 200 subjects for example, 200 intrapersonal image pairs
and (*9°) — 200 = 79 800 extrapersonal image pairs are avail-
able. To achieve a balance between the numbers of training
samples from the two classes, a random subset of the extrap-
ersonal samples could be produced. However, we also want to
make the subset a representative of the whole set as much as
possible. To achieve this tradeoff, we proposed a procedure
shown in Algorithm 1 to generate m extrapersonal samples
using 40 (5 scales, 8 orientations) Gabor filters: instead of us-
ing only m pairs, our method randomly generates m samples
from m X 40 extrapersonal image pairs. As a result, without
increasing the number of extrapersonal samples to bias the
feature selection process, the training samples thus generated
are more representative.

With I = D(}) intrapersonal difference samples, the
training sample generation process finally outputs a set of
M = m + | Gabor feature difference samples: {(g1, y1),...,
(gm> ym)}. Each sample g; = [x1x2 - -+ Xy - xn] in the
difference space is associated with a binary label: y; = 0 for
an intrapersonal difference, while y; = 1 for an extrapersonal
difference.

4.3. Gabor feature selection using CMI

Once a set of training face samples with class label (intraper-
sonal, or extrapersonal) {(g1, ¥1), (£ ¥2),--. (@, yMm)}> & =
(X1 - Xy - XN, is given, each feature of the sample
in the difference space is now also converted to binary value
as below, that is, if the difference is less than a threshold, the
difference is set as 0, otherwise it is set as 1:

0, x,<t,,
Xp = (12)
1, x,=t,.
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Given a set of candidate features (X1, X>,...,Xy)
and sample labels Y

K=1
v(K) = argmax, I(Y;X,)
while K < Kiax
for each candidate feature X,

calculate CMI I(Y; X, | X,x)) given
each of the selected feature

X0k =1,2,...K
end
v(K + 1) = argmax, {ming I(Y; X,, | X))}
K=K+1

end

ArcoriTHM 2: CMI for feature selection.

Since we are only interested in the selection of features, the
threshold t, is simply determined by the centre of intraper-
sonal samples mean and extrapersonal samples mean:

N | —
§|H

m 1 I
Z |)’p_1+72 ((g9)s =0) |,
p=1 q=1

(13)
where m and [ are the numbers of intra- and extraper-
sonal difference samples, respectively. Once the features are
binarized, the set of training samples can now be repre-
sented by N binary random variables (Xi,X5,...,Xy) rep-
resenting candidate features and a binary random variable
Y representing class labels. The iterative process listed in
Algorithm 2 can be used to select the informative Gabor fea-
tures. The Gabor features thus selected carry important in-
formation about predicting whether the sample is an intrap-
ersonal difference or an extrapersonal difference. Based on
the fact that face recognition is actually to find the most sim-
ilar match with the least difference, the selected features will
also be very important for recognition.

5. KERNEL ENHANCEMENT FOR RECOGNITION

Once the most informative Gabor features are selected, dif-
ferent approaches could be used for face recognition, for ex-
ample, principal component analysis (PCA) or linear dis-
criminant analysis (LDA) can be further applied for enhance-
ment and the nearest-neighbor (NN) classifier can be used
for classification. Recently, kernel methods have been suc-
cessfully applied to solve pattern recognition problems be-
cause of their capacity in handling nonlinear data. By map-
ping sample data to a higher-dimensional feature space, ef-
fectively a nonlinear problem defined in the original image
space is turned into a linear problem in the feature space

[22]. Support vector machine (SVM) is a successful exam-
ple of using the kernel methods for classification. However,
SVM is basically designed for two-class problem and it has
been shown in [23] that nonlinear kernel subspace meth-
ods perform better than SVM for face recognition. As a re-
sult, we use generalized discrimniant analysis (GDA) [24] for
further feature enhancement and KNN classifier for recogni-
tion. GDA subspace is firstly constructed from the training
image set and each image in the gallery set is projected onto
the subspace. To classify an input image, the selected Gabor
features are extracted and then projected to the GDA sub-
space. The similarity between any two facial images can then
be determined by distance of the projected vectors. Different
distance measures such as Euclidean, Mahalanobis, and nor-
malized correlation have been tested in [9] and the results
show that the normalized correlation distance measure is the
most appropriate one for GDA method.

As a generalization of LDA, GDA performs LDA on sam-
ple data in the high-dimension feature space F via a nonlin-
ear mapping ¢. To make the algorithm computable in the
feature space F, kernel method is adopted in GDA. Given
that the dot product of two samples in the feature space can
be easily computed via a kernel function, the computation
of an algorithm in F can now be greatly reduced. By inte-
grating the kernel function into the within-class variance S,,
and between-class variance Sy, of the samples in F, GDA can
successfully determine the subspace to maximize the ratio
between S and S,,. While the maximal dimension of LDA
is determined by the number of classes C [25], the maxi-
mal dimension of GDA subspace is also determined by the
rank of the kernel matrix K, that is, min{C — 1,rank(K)}
[24].

6. EXPERIMENTAL RESULTS

We first analyze the performance of our algorithm using a
subset of FERET database, which is a standard testbed for
face recognition technologies [4]. Six hundred frontal face
images corresponding to 200 subjects are extracted from the
database for the experiments—each subject has three images
of size 256 x 384 with 256 gray levels. The images were cap-
tured at different photo sessions so that they display differ-
ent illumination and facial expressions. Two images of each
subject are randomly chosen for training, and the remain-
ing one is used for testing. Figure 3 shows the sample images
from the database. The first two rows are the example train-
ing images while the third row shows the example test im-
ages.

The following procedures were applied to normalize the
face images prior to the experiments.

(i) The centres of the eyes of each image are manually

marked.

(ii) Each image is rotated and scaled to align the centres of
the eyes.

(iii) Each face image is cropped to the size of 64 X 64 to
extract facial region.

(iv) Each cropped face image is normalized to zero mean
and unit variance.
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FIGURE 3: Sample images used in experiments.

6.1. Selected Gabor features

The randomly selected 400 face images (2 images each sub-
ject) are used to learn the most important Gabor feature for
intrapersonal and extrapersonal face space discriminations.
As a result, 200 intrapersonal face difference samples and
1600 extrapersonal face difference samples using the method
as described in Section 4.2 are randomly generated for fea-
ture selection. When implemented in Matlab 6.1 and a P4
1.8 GHz PC, it took about 12 hours to select 200 features
from the set of training data. Figure 4 shows the first six se-
lected Gabor features and locations of the 200 Gabor fea-
tures on a typical face image in the database. It is interest-
ing to see that most of the selected Gabor features are lo-
cated around the prominent facial features such as eyebrows,
eyes, noses, and chins, which indicates that these regions are
more robust against the variance of expression and illumi-
nation. This result is agreeable with the fact that the eye and
eyebrow regions remain relatively stable when the person’s
expression changes. Figure 5 shows the distribution of se-
lected filters in different scales and orientations. As shown
in the figure, filters centred at low-frequency band are se-
lected much more frequently than those at high-frequency
band. On the other hand, majority of the discriminative
Gabor features are with orientation around 37/8, 7/2, and
57/8. The orientation preference indicates that horizontal
features seem to be more important for face recognition
task.

To check whether the distribution of the Gabor features
in the difference space is Gaussian or not, we list in Table 1
the normalized skewness and kurtosis for each of the first 10
selected features. The hypothesis for the test is that a set of
observations follows the Gaussian distribution if the normal-
ized skewness and kurtosis of the data follow the standard
Gaussian distribution N(0, 1) [26], which can be defined as
below:

(14)

N
1 _\4 3N
K= (-5 -2,
T2 2 i = %) 8

where N, %, o are the sample size, sample mean, and sam-
ple standard deviation, respectively. Given the critical values
for the standard Gaussian distribution as +1.96, we observe
from Table 1 that all of the 10 features are non-Gaussian since
their kurtosis exceeds the critical value. The information gain
of the first 10 features has also been included in Table 1, for
example, the value for the second feature shows the informa-
tion carried by it when the first feature has been selected. As
shown, the gain decreases monotonically when more features
are included.
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F1GURE 4: First six selected Gabor features (a)—(f); and the 200 selected feature points (g).
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FiGUre 5: Distribution of selected filters in scale and orientation.

TasLE 1: Information gain, skewness, and kurtosis of the first 10 selected features.

Feature number 1 2 3 4 5 6 7 8 9 10

Information gain 0.1603 0.1253 0.1155 0.1084 0.1076 0.1017 0.1017 0.1009 0.0995 0.0994

Skewness 1.0548 1.2035 1.1914 1.0275 0.9540 1.0968 0.9865 1.0047 1.2664 1.1999
4.2637 4.2075

Kurtosis

3.6319 4.3834 4.2048 3.6621 3.5001 3.8315 3.4612 3.5050
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FIGURE 6: Recognition performance using different Gabor features.

6.2. Recognition performance on
the subset of FERET database

Once the informative Gabor features (InfoGabor) are se-
lected, we are now able to apply them directly for face
recognition. Normalized correlation distance measure and
I-NN classifier are used. For comparison, we have also
implemented the AdaBoost algorithm to select Gabor fea-
tures for face recognition (BoostedGabor), using exactly
the same training set. During boosting, exhaustive search
is performed in the Gabor feature difference space as de-
fined in (12). By picking up at each iteration the feature
with the lowest weighted classification error, AdaBoost al-
gorithm selects one by one those features that are sig-
nificant for classification. As mentioned before, the fea-
tures selected by AdaBoost perform “individually” well,
but there are still lots of redundancy available. As a re-
sult, many features selected by AdaBoost are similar. De-
tails of the learning process can be found in [15]. The per-
formance shown in Figure 6 proves the advantage of Info-
Gabor over BoostedGabor. As shown in the figure, InfoGa-
bor achieved as high as 95% recognition rate with 200 fea-
tures. The performance drop using 120 features could be
caused by the variance between test images and training
images—some features significant to discriminate training
images might not be the appropriate ones for test images.
A more representative training set could alleviate this prob-
lem.

In the next series of experiments, we perform GDA on
the selected Gabor features (InfoGabor-GDA) for face recog-
nition. To show the robustness and efficiency of the pro-
posed methods, we also perform GDA on the whole Gabor
feature set (Gabor-GDA) for comparison purposes. Down-
sampling is adopted to reduce feature dimension to a certain

level, see [9] for details. Normalized correlation distance
measure and the nearest-neighbor classifier are used for both
methods. The maximum dimensions of GDA subspace for
InfoGabor-GDA and Gabor-GDA are 96 and 199, respec-
tively. It can be observed from Figure 6 that InfoGabor-
GDA performs a little better than Gabor-GDA. Accuracy of
99.5% is achieved when dimension of GDA space is set as
70, while Gabor-GDA needs 80 to achieve 97% accuracy. The
comparison shows that some important Gabor features may
have been missing during the dowsampling process, while
many features that remained are, on the other hand, redun-
dant. We also compare the computation and memory cost
of Gabor-GDA and InfoGabor-GDA in Table 2. This shows
that InfoGabor-GDA requires significantly less computation
and memory than Gabor-GDA, for example, the number
of convolutions to extract Gabor features is reduced from
16 3840 to 200. Although fast Fourier transform (FFT) could
be used here to circumvent the convolution process, the fea-
ture extraction process still takes about 1.5 seconds in our C
implementation whilst the 200 convolutions takes less than
4 milliseconds. For Gabor-GDA with downsample rate = 16,
the feature dimension is reduced to 10240, which is still
50 times of the dimension of InfoGabor-GDA. As a re-
sult, InfoGabor-GDA is much faster in training and test-
ing. While it takes Gabor-GDA 275 seconds to construct
the GDA subspace using the 400 training images, it takes
InfoGabor-GDA only about 6 seconds. InfoGabor-GDA also
achieves substantial recognition efficiency—only 4 seconds
are required to recognize the 200 test images. The compu-
tation time is recorded in Matlab 6.1, with a P4 1.8 GHz
PC.

Having shown in our previous work [9] that GDA
achieved significantly better performance on the whole Ga-
bor feature set (Gabor-GDA) than LDA (Gabor-LDA), we
also performed LDA on the selected informative Gabor
features (InfoGabor-LDA) for comparison. The results are
shown in Figure 7, together with that of InfoGabor as a
baseline. The results show that instead of enhancing it,
the application of LDA surprisingly deteriorates the per-
formance of InfoGabor. Only 80% accuracy is achieved
when the dimension of LDA subspace is set as 60. The
result suggests that when the input features are discrim-
inative enough, LDA analysis may not necessarily lead to
a more discriminative space. The results also show that
the feature enhancement ability of GDA is better than
LDA.

6.3. Recognition performance on
the whole FERET database

We now test our InfoGabor-GDA algorithm on the whole
FERET database. According to the FERET evaluation proto-
col, a gallery of 1196 frontal face images and 4 different prob
sets are used for testing. The numbers of images in different
prob sets are listed at Table 3, with example images shown
in Figure 8. Fb and Fc prob sets are used for assessing the
effect of facial expression and illumination changes, respec-
tively, and there is only a few seconds between the capture of
the gallery-probe pairs. Dup I and Dup II consist of images
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TasLE 2: Comparative computation and memory cost of Gabor-GDA and InfoGabor-GDA.
Methods Number of convolutions Dimension of Gabor Training time Test time
to extract Gabor feature features before GDA (s) (s)
Gabor-GDA 64 X 64 x 40 = 163 840 10240 275 263
InfoGabor-GDA 200 200 6 4
100 TasLE 3: List of different prob sets.
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FIGURE 7: Recognition performance of InfoGabor-LDA.

taken on different days from their gallery images, and par-
ticularly, there is at least one year between the acquisition of
the probe image in Dup II and the corresponding gallery im-
age. A training set consisting of 736 images is used to select
the most informative Gabor features and construct the GDA
subspace [28]. As a result, 592 intrapersonal and 2000 extrap-
ersonal samples are produced to select 300 Gabor features us-
ing the sample generation algorithm and information theory.
The feature selection process took about 18 hours in Mat-
lab 6.1, with a P4 1.8 GHz PC. During development phase,
the training set is randomly divided into a gallery set with
372 images and a test set with 364 images to decide the RBF
kernel and dimension of GDA for optimal performance. The
same parameters are used throughout the testing process.
Performance of the proposed algorithm is shown in
Table 4, together with that of the main approaches used in
FERET evaluation [4], and the approach that extracts Ga-
bor features from variable feature points [27]. The results
show that our method achieves the best result on sets Fb, Fc,
and Dup II due to the robustness of selected Gabor features
against variation of expression, illumination, and capture
time. Particularly, the performance of our methods is signif-
icantly better than all of other methods on Dup II. The elas-
tic graph matching (EGM) method, based on the dynamic
link architecture, performs a little better than our method on

Prob Gallery Pro.b set Ga?lery Variations

set size size

Fb Fa 1195 1196 Expression

Fc Fa 194 1196  Illumination and camera
Dup I Fa 722 1196 Time gap < 1 week
Dup II Fa 234 1196 Time gap > 1 year

Dup 1. However, the method requires intensive computation
for both Gabor feature extraction and graph matching. It was
reported in [5] that the elastic graph matching process took
30 seconds on a SPARC station 10-512. Compared with their
approach, our method is much faster and efficient.

7. CONCLUSIONS

Mutual information theory has been successfully applied to
select informative Gabor features for face recognition. To re-
duce the computation cost, the intrapersonal and extraper-
sonal difference spaces are defined. The Gabor features thus
selected are nonredundant while carrying important infor-
mation about the identity of face images. They are further
enhanced in the nonlinear kernel space. Our algorithm has
been tested extensively. The results on the whole FERET
database also show that our algorithm achieves better per-
formance on 3 test data sets than the top method in the
competition—the elastic graph matching algorithm. Partic-
ularly, our method gives significantly better performance
on the most difficult test set Dup II. Furthermore, our al-
gorithm has advantage in computation efficiency since no
graph matching process is needed.

Whilst we model features as binary random variables,
the method could certainly be extended for continuous vari-
ables. However, as shown in Table 1, most of the feature dis-
tributions are non-Gaussian. As a result, a Gaussian mixture
model may be needed to represent the distribution of fea-
tures. When the random variables with multiple values are
used, the selection process will require much more compu-
tation. The number of features to be selected is currently de-
cided by experiments. A more advanced method is to use the
information gain. If the gain by including a new feature is
less than a threshold, we can say that the inclusion of new
feature does not bring any more useful information. We are
currently working on how to determine the threshold.
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(c)

F1GURrE 8: Examples of different probe images.

TasLE 4: FERET evaluation results for various face recognition algorithms.

Methods Fb Fc DupI Dup IT
PCA 83.4% 18.2% 40.8% 17.0%
PCA + Bayesian 94.8% 32.0% 57.6% 35.0%
LDA 96.1% 58.8% 47.2% 20.9%
Elastic graph matching 95.0% 82.0% 59.1% 52.1%
Variable Gabor features [27] 96.3% 69.6% 58.3% 47.4%
InfoGabor-GDA 96.9% 85.57% 55.54% 65.38%
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