
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 32408, Pages 1–12
DOI 10.1155/ASP/2006/32408

A Fully Automated Environment for Verification of
Virtual Prototypes

P. Belanović, B. Knerr, M. Holzer, andM. Rupp

Institute of Communications and Radio Frequency Engineering, Vienna University of Technology, 1040 Vienna, Austria

Received 15 October 2004; Revised 29 March 2005; Accepted 25 May 2005

The extremely dynamic and competitive nature of the wireless communication systems market demands ever shorter times to
market for new products. Virtual prototyping has emerged as one of the most promising techniques to offer the required time
savings and resulting increases in design efficiency. A fully automated environment for development of virtual prototypes is pre-
sented here, offering maximal efficiency gains, and supporting both design and verification flows, from the algorithmic model
to the virtual prototype. The environment employs automated verification pattern refinement to achieve increased reuse in the
design process, as well as increased quality by reducing human coding errors.

Copyright © 2006 P. Belanović et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Complexity of modern embedded systems, particularly in
the wireless communications domain, grows at an astound-
ing rate. This rate is so high that the algorithmic complex-
ity now significantly outpaces the growth in complexity of
underlying silicon implementations, which proceeds accord-
ing to the famousMoore’s Law [1]. Furthermore, algorithmic
complexity even more rapidly outpaces design productivity,
expressed as the average number of transistors designed per
staff/month [2, 3]. In other words, current approaches to em-
bedded system design are proving inadequate in the struggle
to keep up with system complexity.

Hence, a number of new system design techniques with
potential to speed up design productivity are intensively re-
searched [4, 5]. One of these techniques known as virtual
prototyping [6–8] speeds up the design process by enabling
development of hardware and software components of the
embedded system in parallel.

Development of a comprehensive design environment
for automatic generation and verification of virtual proto-
types (VPs) from an algorithmic-level description of the sys-
tem is presented here. Section 1.1 describes the concept of
a VP in closer detail and Section 1.2 explains the model of
the hardware platform used in this work. A survey of re-
lated work, including a comparison of the presented environ-
ment with the most advanced current approaches, is given in
Section 1.3. The design environment for automatic genera-
tion of VPs is described in detail in Section 2. The part of

the presented environment concerned with automated veri-
fication pattern refinement for VPs is presented in Section 3,
together with an example design. Finally, conclusions are
drawn in Section 4.

1.1. Virtual prototype concept

System descriptions at algorithmic level contain no specific
implementation details. Hence, before implementation of
the system can begin, the algorithmic description is parti-
tioned, that is, each component in the description is assigned
to software or hardware implementation.

Traditionally, implementation of hardware components
proceeds from this point. Development of software modules,
however, can begin only once all required hardware design is
complete. This is due to the fact that the design of software
components must take into consideration the behaviour of
the underlying hardware. Hence, a significant penalty is in-
curred in the length of the design process (see Figure 1, top
chart).

Virtual prototyping [9] is a technique which can elimi-
nate most of this penalty and thus dramatically shorten the
development cycle. A VP is a software model of the complete
system, fully representing its functionality, without any im-
plementation details. To achieve the mentioned system de-
velopment speedup, we consider VPs which additionally in-
clude full definitions of hardware/software interfaces found
in the system, including the required architectural informa-
tion, but still no details of the actual implementation of any
component.



2 EURASIP Journal on Applied Signal Processing

Traditional embedded system development

Algorithmic modeling

Hardware development

Software development

Embedded system development with VP (manually generated)

Time
savings

Algorithmic modeling

VP development (manual)

Hardware development

Software development

Figure 1: Shortening of the design cycle by the VP technique.

The speedup in the system development cycle by employ-
ing virtual prototyping is achieved as depicted in Figure 2.
Firstly, the algorithmicmodel is partitioned into components
to be implemented in hardware and those to be implemented
in software. This defines the hardware-software interfaces in
the system. In Figure 2, blocks B, C, and E have been assigned
to implementation in hardware and blocks A, D, and F in
software. The algorithmic description is then remodeled to a
form where these interfaces are clearly defined. Thus, the VP
of the system is created.

From this point, hardware and software development
proceed in parallel. It is important to note that all blocks as-
signed to hardware implementation are grouped into a num-
ber of VP components, each of which will later be realised as
a separate hardware accelerator in the system architecture. In
Figure 2, blocks B and C form the VP component 1, whereas
block E alone forms the VP component 2.

Development of the hardware implementation of VP
component 1 is done against the hardware-software inter-
face defined in the VP. Similarly, the software implementa-
tion of VP component 2 relies on the existence of the same
hardware-software interface. At the same time, the develop-
ment of the software implementation of VP component 3
makes use of the same interface. Such use of the VP en-
sures co-operability of the three implementations, allowing
for their parallel development and the resulting time savings.

Virtual prototyping offers numerous improvements to
the design process. First and foremost, it allows parallel de-
velopment of all components in the system, resolving all in-
terface dependencies. Furthermore, it allows verification of
software components which interface with hardware against
the known hardware-software interface. Finally, a VP allows
verification of the hardware implementation itself, making
sure the hardware indeed provides correct interface to ex-
ternal components as it was designed for at the algorithmic
level.

Very importantly, creation of a VP for a system com-
ponent requires a relatively small design effort, compared
to that of a full hardware or software implementation. This
is due to the relaxed requirement of the VP to recreate

behaviour only at component boundaries, allowing all other
implementation details to be overlooked. As seen in Figure 1
(bottom chart), this allows the time savings which make VP
a desirable design technique.

1.2. Model of hardware platform

The structure of the hardware platform assumed in this
work is a generic multiprocessor system-on-chip (SoC) ar-
chitecture. At least one processor core, such as the StarCore
DSP, for example, is present in the architecture, as shown in
Figure 3. All the system components assigned to software im-
plementation will be targeted to one of these processor cores.
Also present in the system are a number of hardware accel-
erator (HA) blocks. These contain custom silicon designs to
provide accelerated processing for time-critical system func-
tions. All the system components assigned to hardware im-
plementation will be realised as these HA blocks. The system
also contains one or more banks of system memory and a
dedicated direct memory access (DMA) controller, serving
the processor cores as well as the HA blocks.

Communications on this hardware platform are facili-
tated by at least one system bus, such as an AMBA bus for ex-
ample, connecting all system components. Additionally, HA
blocks may be provided with dedicated direct I/O ports, for
off-chip communications.

1.3. Relatedwork

Extension of the virtual prototyping environment into the
verification flow requires automated verification pattern re-
finement, as explained in Section 3. Several previous research
efforts in this area exist. Varma and Bhatia [10] present an
approach to reusing preexisting verification programs for
virtual components. This approach includes a fully auto-
mated reuse methodology, which relies on a formal descrip-
tion of architectural constraints and produces system-level
verification vectors. However, this approach is applicable
only to hardware virtual components.



P. Belanović et al. 3

Hardware
development

Virtual prototype
Comp2
(HW)Comp1 (HW)

B C E

A D F

Algorithmic model

A B C

D E F

Comp1 Comp2

HW HW

A D F

B C E

Comp3

Comp1 Comp2

Comp3

Software
development

Comp3 (SW)

HA1 HA2

DSP

SW

Final
implementation

Figure 2: System development using a VP.

DMA DSP

HA1 HA2

Direct I/O

System
bus

� � �

� � �

RAM

Figure 3: Target hardware platform.

On the other hand, Stöhr et al. [11] present FlexBench,
a fully automated methodology for reuse of component-
level stimuli in system verification. While this environment
presents a novel structure which supports verification pat-
tern reuse at various abstraction levels without the need for
reformatting of the verification patterns themselves, this in
turn creates the need for new “driver” and “monitor” blocks
in the environment for every new component being verified.
Also, this environment has only been applied to hardware
components.

An automated testing framework offered by Odin Tech-
nologies called Axe [12] also offers automated reuse of ver-
ification patterns during system integration. However, this
environment requires manual rewriting of test cases in Mi-
crosoft Excel and relies on the use of a third-party test au-
tomation tool on the back end. Also, the Axe framework has
only been applied to development of software systems.

The verification extension of the virtual prototyping en-
vironment presented here is also designed to provide fully

automated verification pattern refinement, but addresses this
issue in a more general manner than previously published
work. Hence, it is applicable to both software and hardware
components, and indeed to verification pattern refinement
between any two abstraction levels, though the particular
instance of this framework presented here is specific to the
transition from algorithmic to virtual prototype abstraction
levels.

2. AUTOMATED VIRTUAL PROTOTYPE
GENERATION

As described earlier, design of an embedded system proceeds
from the algorithmic-level description towards the system’s
final implementation firstly through a partitioning process,
followed by the creation of a VP and finally hardware or soft-
ware implementation of each individual component.

The process of VP generation is typically performed
manually, through rewriting of the VP from the algorithmic-
level description. However, when the VP design environment
is integrated into a unified design methodology, it is possi-
ble to make VP generation a fully automated process. This
helps eliminate human errors and drastically decrease the
time needed to create a VP, in turn deriving maximum possi-
ble efficiency gain promised by virtual prototyping [13, 14].
This is illustrated in Figure 4.

The automatic VP generation environment presented
here is depicted in Figure 5. The process of automatically
generating a VP component from that component’s algorith-
mic description consists of two parts. First, the algorithmic
description of the entire system (encompassing all its compo-
nents) is read into the single system description (SSD). This
also includes partitioning of the system by labelling each sys-
tem component for implementation in hardware or software.
The second step in the process is the generation of all parts
of the VP component from the SSD.



4 EURASIP Journal on Applied Signal Processing

Embedded system development with VP (manually generated)

Algorithmic modeling

VP development (manual)

Hardware development

Software development

Embedded system development with VP (automatically generated) Time
savings

Algorithmic modeling

VP development (automatic)

Hardware development

Software development

Figure 4: Shortening of the design cycle by automating VP generation.

HW/SW
partitioning
information

table

COSSAP project

W X Z

Y

Fileset

�.gc v arc v ent

COSSAP
guidelines

SDI
for

COSSAP
SSD VPG

VP components for
W, X, Y, Z

Bus interface

C A

B

Scheduler

Figure 5: Design environment for automatic generation of VPs.

2.1. Processing the algorithmic description

The environment for automatic generation of VPs presented
here is based on processing algorithmic descriptions created
in the COSSAP environment. Nevertheless, the VP environ-
ment is in principle independent of languages and tools used
for algorithmic modelling and can, due to its modular struc-
ture, easily be adapted to any language or tool.

COSSAP descriptions contain separate structural/inter-
connection and functional information. The structural and
interconnection information in the COSSAP description is
VHDL-compliant and is read into the SSD by the system
description interface (SDI). The SDI comprises a VHDL-
compliant parser module as well as a scanner module which
manages the database structure within the SSD.

The functional information in COSSAP descriptions is
written in GenericC (extension to ANSI C proprietary to the

COSSAP environment) and has to be formatted in accor-
dance with specific guidelines. These guidelines ensure com-
patibility of the GenericC code with tools in the second phase
of the automatic VP generation. Suitably formatted func-
tional component descriptions are placed directly into the
SSD.

After the complete algorithmic system description is
processed into the SSD, it is necessary to perform hard-
ware/software partitioning before VP components for all
hardware components can be generated. Manually created
hardware/software partitioning decisions, stored in textual
form, are integrated directly into the SSD. Also, possibilities
for automated hardware/software partitioning exist and have
been successfully applied to the presented environment [15],
yielding the same quality of results as manual system parti-
tioning. Once system partitioning has been performed, the
first phase of the VP generation process is complete.



P. Belanović et al. 5

Initial
concept

...

Level n

Level n + 1

...

Final
product

Model
(level n)

Model
refinement

Model
(level n + 1)

Verification

Refinement
information

Verification

Verification
patterns
(level n)

Verification pattern
refinement

Verification
patterns

(level n + 1)

Figure 6: Conceptual view of parallel refinement of the model and the associated verification patterns.

2.2. Virtual prototype generation

A VP component is composed of several parts, as shown in
Figure 5. The core of the VP component is the recreated in-
terconnected block structure, as found in the algorithmic-
level model—blocks A, B, and C in Figure 5. Additionally,
the VP component contains a scheduler which controls the
execution of each block, according to the current input and
output sample rates of each block and the availability of data
to be processed. Finally, the VP component contains a bus
interface, responsible for communications between the VP
component and the processor core(s) in the system over the
bus. This block is shown in gray in Figure 5, because it needs
to be created manually, depending on the bus type, commu-
nications protocol, and processor core(s) used in the system.

The second phase of automatic VP generation is per-
formed by the virtual prototype generator (VPG) tool. This
tool extracts all necessary structural information for the par-
ticular component from the SSD and creates the intercon-
nected block structure accordingly. Relevant functional in-
formation in the SSD is code-styled to be compliant with the
VSIA standard [16] and the C++ language and is then in-
tegrated into the VP component. Following these steps, the
automatically created VP component can be manually cus-
tomised to a particular system bus, processor core(s), and
communications protocols, before being used.

3. AUTOMATED VERIFICATION PATTERN
REFINEMENT

As stated previously, design flows for embedded systems tra-
ditionally start from initial concepts of system functionality,
progressing through a number of refinement steps, eventu-
ally resulting in the final product, containing all the software
and hardware components that make up the system. These

refinement levels of a particular design flow may include the
algorithmic level, architectural level, register transfer level
(RTL), and others.

As the model of the design progresses from one refine-
ment level to another, it needs to be verified for correct func-
tionality at each level. Hence, the model of the system at each
refinement level has associated with it a set of verification
patterns, designed to verify correct functionality of the cor-
responding model.

The verification patterns at each new level in the design
flow are traditionally created from the verification patterns at
the previous refinement level. This is shown in Figure 6. We
refer to this process henceforth as verification pattern refine-
ment.

Whereas a great multitude of EDA tools and reseach work
exists for automating refinement of system models between
all the various refinement levels, there is a distinct lack of
such support for verification pattern refinement. This causes
both significantly prolonged verification cycles as well as
lower design quality, due to the introduction of manual cod-
ing errors. Hence, significant reduction of the time to mar-
ket as well as improvement in quality can be achieved by au-
tomating verification pattern refinement.

The manual process of verification pattern refinement,
as it is customary in modern engineering practice, involves
rewriting of the verification patterns from the earlier refine-
ment level, applying the refinement information which re-
sulted from model refinement, to produce the new verifica-
tion patterns (see Figure 6). Hence, two distinct tasks can be
recognised in the process of verification pattern refinement.

(i) Reformatting of verification pattern data, to fit the new
format required at the next refinement level.

(ii) Enrichment of the same data, with the refinement in-
formation (see Figure 6), which does not appear in the



6 EURASIP Journal on Applied Signal Processing

Algorithmic level verification patterns

Data-in
streams

Data-out
streams

Parameter-in
stream

Parameter-out
stream

Test
generator
script

Interface
specification

Direct I/O
data

Memory
image

Verification
program

Virtual prototype level verification patterns

Figure 7: Structure of the environment for automatic generation of verification patterns.

original verification patterns, but is a necessary com-
ponent in the newly created verification patterns.

Although the reformatting task can be, and frequently is,
fully automated, current approaches to verification pattern
refinement require manual effort from the designer in order
to complete the enrichment task, for which traditionally no
formal framework exists.

The environment for automated generation of vir-
tual prototypes from algorithmic-level models presented in
Section 2 demonstrated automated model refinement be-
tween these two refinement levels. This section presents an
environment for automating the corresponding verification
pattern refinement, from the algorithmic level to the virtual
prototype level, performing both reformatting and enrich-
ment of the verification patterns automatically.

3.1. Verification at algorithmic level

At the algorithmic level, the model of the system contains no
architectural information and the partitioning of the system
is done on a purely functional basis. Hence, the model of the
system typically assumes the form of a process network, with
all functional blocks that make up the system executing con-
currently and communicating through FIFO channels. Pop-
ular commercially available environments for development
and simulation of such models are Matlab/Simulink, COS-
SAP, and SPW, among others. The work described here con-
centrates on algorithmic models developed in the COSSAP
environment, though with no substantial changes, it is appli-
cable to other algorithmic-level models as well.

The presence of two types of information flowing
through the FIFO communications channels of the model is
assumed. The first type of information consists of parame-
ters, responsible for controlling the modes of operation of
each process. The second type of information is data, the ac-
tual values which are processed in the system and have no
influence on the mode of operation of any process.

Therefore, verification patterns at the algorithmic level
consist of a set of sequences of values, or streams. Exactly

one stream exists for each of the data channels going into
the model and one for each data channel going out of the
model. A pair of dedicated parameter streams, exactly one
for all parameters going into the model, and exactly one for
those going out of the model, also exist. The complete set of
streams is shown as algorithmic-level verification patterns in
Figure 7.

Since no architectural or implementation information is
yet known at the algorithmic level, the simulation of the
model (and hence its verification) at this level is purely un-
timed functional. In other words, the simulation is driven
solely by the availability of input parameters and data, and
their processing by the system modules.

3.2. Verification at virtual prototype level

Use of a virtual prototype implies a highly heterogeneous
system. Initially, all of the components in the system have a
general, purely algorithmic description. During parallel soft-
ware and hardware development of the various system com-
ponents (see Figure 2), some of the initial component de-
scriptions may be replaced by implementation specific de-
scriptions. For hardware components these may be VHDL
or Verilog descriptions, while for software components these
may be written in Java or C++, for example. Hence, as the
development of the system progresses, the VP becomes in-
creasingly heterogeneous.

In this work, we focus on verification of system compo-
nents assigned to hardware implementation, since they will
be implemented as part of an HA block (see Figure 3). Ver-
ification of software components is entirely analogous, but
has reduced complexity, because no HA blocks are involved
(a more homogeneous problem).

Hence, verification at the virtual prototype level requires
the following:

(i) device under verification (DUV),
(ii) verification patterns,
(iii) verification program (runs on the DSP, applies the ver-

ification patterns to the DUV).



P. Belanović et al. 7

Header Header Header

Input
memory
image

output
memory
image

Block 1

Block 2

Block 3

...

Block i

Sequence 1

Sequence 2

Sequence 3

...

Sequence j

Values

Masks

Figure 8: Structure of the memory image.

It is important to note that the structure of the hardware
platform (see Figure 3) enforces the separation of verification
patterns into two types, according to how they are commu-
nicated to the DUV. Hence, there exist verification patterns
communicated to the VP through the system bus (stored in a
structured memory image) and those communicated to the
VP through its direct I/O interfaces (supplied directly to the
VP during functional simulation). Both of these types of ver-
ification patterns are shown as virtual prototype-level verifi-
cation patterns in Figure 7, together with the necessary veri-
fication program.

Since verification at the virtual prototype level relies
heavily on transactions over the system bus, it is imple-
mented in a bus-cycle true manner. The bus interface of the
DUV, as well as the rest of the simulation environment, in-
cluding the VSIA-compliant models of the DSP and the sys-
tem bus, are also accurate to this time resolution within the
functional simulation of the complete system.

3.3. Environment for automatic generation of
verification patterns

The environment for automated verification pattern refine-
ment presented here generates virtual prototype-level verifi-
cation patterns from algorithmic-level verification patterns,
as shown in Figure 7.

3.3.1. COSSAP verification patterns

The environment for algorithmic-level modelling consid-
ered in this work is COSSAP from Synopsys. Hence, the
algorithmic-level verification patterns used also come from
the COSSAP environment. As seen in Figure 7, they are di-
vided into four sets of streams parameter in and out, and data
in and out streams.

Exactly one stream exists for all parameters supplied to
the DUV during functional verification, as well as exactly one
stream for all parameters read from the DUV. Exactly one
stream exists for each data input port of the DUV and exactly
one for each of its output ports.

The structure of each stream is a sequence of values to
be supplied to the inputs or expected at the outputs of the
DUV. Remembering that verification at the algorithmic level

follows an untimed functional paradigm, that is, is driven
purely by the availability of input parameters and data, no
further timing information needs to be contained in the
streams.

3.3.2. Verification program

The verification program runs on the processor core and
communicates with the DUV over the system bus. Its func-
tion is to supply the appropriate verification patterns from
the memory image to the DUV, as well as to verify the pro-
cessing results of the DUV against the expected results, also
stored in the memory image. The cycle of writing to/reading
from the DUV is repeated for the complete set of verifica-
tion patterns, on the basis of one input block and one output
block being processed per cycle (see Section 3.3.3 for more
details).

Functionality of the verification program is hence not de-
pendent on the particular VP being verified. Thus, the veri-
fication program is generic in nature, and can be reused for
verification of any VP component. However, a separate ver-
ification program must of course be written for every new
processor core used in the system and being employed to run
the verification of any DUV.

3.3.3. Memory image

The memory image is a structured representation of the ver-
ification patterns for the virtual prototype level. It includes
only those verification patterns which are to be supplied to
or read from the DUV over the system bus.

As already mentioned, since the verification program is
generic and applicable to the verification of any VP com-
ponent, all verification pattern values, their sequence, and
the appropriate interface information must be contained in
the memory image. This in turn dictates the structure of the
memory image: it contains all the above information, while
both making it efficiently accessible in a generic manner by
the verification program, as well as minimizing the memory
size overhead required to establish this structure.

As a consequence, the memory image is organised as
shown in Figure 8. It is primarily divided into the input mem-
ory image and the output memory image. The former contains
all verification patterns (both parameter and data) which are
written to the DUV. The latter contains those verification
patterns which are used to check the validity of the outputs
of the DUV.

Further, each of the two primary parts of thememory im-
age contains a header, followed by several blocks. The header
contains the number of blocks in the particular image, fol-
lowed by a pointer to the beginning of each block, as well
as a pointer to the end address of the last block. The latter
pointer is effectively the pointer to the end of the particular
image and is used in assessing the total size of the memory
image by the verification program.

Each block is a set of verification patterns which are con-
sumed (for input image) or produced (for the output image)



8 EURASIP Journal on Applied Signal Processing

vc1
di1
pi1
di2
di3
di3

b1 b2

p1

d1
do1

po1
po2

System bus

di
1

di
2

di
3

do
1

di
4

p
in

p
ou

t

vc1

Direct I/O

Figure 9: Model refinement of the virtual component vc1, from algorithmic level (left) to virtual prototype level (right).

by the DUV in a single functional invocation. Similar to the
structure of the memory image itself, each block contains a
header, followed by a number of sequences. The header con-
tains the number of sequences in the particular block, fol-
lowed by a pointer to the beginning of each sequence.

A sequence is a set of verification pattern values to be
written to or read from a contiguous section of the DUV’s
register space. It is composed of a header, a set of values,
and a set of masks. The header contains only the start ad-
dress within the DUV’s register space where the write or read
operation is to take place.

In the case of the input memory image, the values in a
sequence are to be written to the DUV, while the masks de-
termine which bits of each value are to be written to the
DUV (overwriting the current content) and which bits are
to be kept at their current state. Hence, the required oper-
ation for writing the verification patterns from the mem-
ory image to the DUV is given (on the bit level) as n =
(m̄ · c)+(m ·v), or a simple 1-bit multiplex operation, where
v is the value in the verification pattern, m is the mask, c is
the current value in the DUV register space, and n is the new
value.

In the case of the output memory image, the values in a
sequence are to be compared to those returned by the DUV,
to verify its functionality. The mask values are used to indi-
cate which of the bits are to be verified and which bits can
be regarded as “do not care.” Hence, the required operation
while verifying the functionality of the DUV is given (on the
bit level) as t = m · (c ⊕ v), where v is the expected value, m
is the mask, c is the current value in the DUV register space,
and t is the test output. A failed test is indicated with the log-
ical state “1” of the variable t.

3.3.4. Direct I/O data

As already mentioned in Section 3.2, during the verification
process, some verification patterns are supplied to the DUV
directly through the I/O interfaces of the HA (see Figure 3)
and not through the system bus. Hence, during the verifica-
tion process these values are not handled by the processor
core and are thus not part of the memory image.

The direct I/O data is therefore handled separately during
the simulation process. A dedicatedmodule in the simulation
environment has been created to serve the sole purpose of
making the direct I/O data available to the DUV through its
direct I/O ports.

3.3.5. Interface specification

The interface specification (see Figure 7) contains all the
structural information which is present, and naturally re-
quired during verification, at the VP level, but did not ex-
ist at the algorithmic level. Indeed, this interface information
comes as a result of the refinement process, going from the
algorithmic model to the VP.

In other words, the interface specification is the refine-
ment information (as depicted in Figure 6) between the algo-
rithmic level and the VP level. Hence, the interface informa-
tion is needed in order to perform verification pattern refine-
ment between these two levels.

The interface specification can contain interface informa-
tion for several VP components. Each part dedicated to a par-
ticular VP component is composed of exactly one parameter
and one data section. The parameter section contains inter-
face information for all the parameters of the VP component
in question. Correspondingly, the data section contains in-
terface specifications for each data channel (input as well as
output) of the VP component in question.

The parameter interface information includes names of
all parameters in the model, together with their bit-exact ad-
dresses in the register space of the DUV. Unlike parameters,
data is packaged for communication over the system bus and
writing into the register space of the DUV. That is to say,
several data values may be packaged into one register of the
DUV. If the latter is 32 bits wide, it is efficient to package
four 8-bit data values into a single register. Hence, the data
section of the interface specification contains in addition to
the name of the data input or output, also its packaging fac-
tor (being four in the example above) and its starting address
in the register space of the DUV.

3.3.6. Test generator script

The test generator script (TGS) lies at the core of the auto-
mated environment for verification pattern refinement pre-
sented here, as shown in Figure 7. Its main function is to cre-
ate the VP level verification patterns, that is, perform both
steps in the verification pattern refinement process automat-
ically (see Section 3).

In order to achieve this, the TGS creates the structure
of the memory image as described in Section 3.3.3. The re-
formatting step of the verification pattern refinement pro-
cess is achieved by interleaving the block-based structure of



P. Belanović et al. 9

di1 di1

di1 di1

di2 di2 di2 di2

di3

di3

pi1

do1 do1 do1 do1

po2 po1

01A0

01A1

01A2

01A3

01A4

01A5

01A6

01A7

Figure 10: Register mapping of each data and parameter port of
vc1.

Interface specification

· · ·
Component vc1
Parameter
Pi1 01A5 3 0
Po1 01A7 0 0
Po2 01A7 8 1
Data
di1 bus 01A0 2
di2 bus 01A2 4
di3 bus 01A3 1
di4 IO
do1 bus 01A6 4

Component vc2

· · ·

Figure 11: Interface specification for the virtual component vc1.

the algorithmic verification patterns, followed by the analysis
of the resulting single stream of patterns. As a result of this
analysis, the structure of the memory image, with associated
block, sequence, and pointer structures can be created.

The second step in the verification pattern refinement
process is the enrichment of the verification patterns with re-
finement information, that is, architectural details. This task
achieves the filling out of the empty memory image struc-
ture with the actual verification pattern values, with correct
bus interface formats, including appropriate register map-
ping. Hence, in order to complete this task, the TGS con-
structs each sequence of each block, both in the input and the
output memory image, by bitwise combination of the algo-
rithmic verification patterns, according to the register map-
ping found in the interface specification. Also, the TGS cre-
ates the appropriate bitwise masks found in each sequence,
again from the information found in the interface specifica-
tion.

di1

New block
CD9A
501C
E0D5
4F05
New block
1AC1
7000
· · ·

di2

New block
1B
89
60
A1
New block
7B
70

· · ·

di3

New block
000B0855
002C4002
New block
00F4128E
00C11032

· · ·

do1

New block
22
01
84
74
New block
01
76

· · ·

para in

New block
pi1A
New block
New block
pi1 3
New block

· · ·

para out

New block
po1 0
po2 04
New block
po2 03
New block
New block
po2 1A
· · ·

Figure 12: The COSSAP verification patterns for each port of vc1.

The so-prepared memory image is written by the TGS
in binary file format, ready to be loaded directly into system
memory, either within the VP simulation environment or (in
the implementation stage of the design process) on the hard-
ware platform itself.

3.4. Example design

An example design, showing the automated refinement of
verification patterns for a virtual component vc1, from the
algorithmic level to the virtual prototype level, is given in
this section. Initially, this component undergoes refinement
of the model itself, as shown in Figure 9. Here the model of
vc1 in the algorithmic modelling environment, such as COS-
SAP, is shown on the left. The component is made up of two
subblocks, b1 and b2, connected by various data channels
(represented by full lines, such as d1) and parameter chan-
nels (represented by broken lines, such as p1).

On the right in Figure 9, the virtual prototype model of
vc1 is shown. This model contains the same interconnected
structure as that in the algorithmic model, but additionally
it contains architectural information. This additional archi-
tectural information is hence introduced into the model as a
result of the refinement process, as shown in Figure 6 as “Re-
finement Information.” This architectural information in-
cludes the architectural location of data ports, such as the
assignment of input port di1 to the system bus interface and
input port di4 to the direct I/O interface.

Moreover, this refinement information includes the reg-
ister mapping of all data and parameter channels which have
been assigned to the system bus interface, as described earlier
in this section. The register mapping for the virtual compo-
nent vc1 is shown in Figure 10. Hence, the bus interface be-
tween the component vc1 and the processor core on which
the software components are running occupies the section of
the register space between addresses 01A0 and 01A7 (inclu-
sive). Data corresponding to the input data port di1 occu-
pies registers 01A0 and 01A1, with a packaging factor two (as
described earlier). Similarly, the output parameters po1 and
po2 occupy nonoverlapping (but bordering) sections of the
register 01A7.

All parts of this refinement information are formally de-
scribed in the interface specification for the component vc1,
as shown in Figure 11. Here, it is specified that the input



10 EURASIP Journal on Applied Signal Processing

00 00 00 05
00 00 00 07

� � �

00 00 00 43
00 00 00 52

00 00 00 01

00 00 00 09

00 00 01 A0
50 1C CD 9A

4F 05 E0 D5
A1 60 89 15

00 0B 08 55
00 2C 40 02
00 00 00 0A
FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF
FF FF FF FF

00 00 00 0F

� � �

00 00 00 05
00 00 00 5A

� � �

00 00 00 70
00 00 00 75

00 00 00 01
00 00 00 5C
00 00 00 A6

74 84 01 22
00 00 00 08

FF FF FF FF
00 00 01 FF

� � �

Number of blocks in the input image
Pointer to input block 1

Pointer to input block 5
Pointer to end of input block 5

Number of sequences in input block 1
Pointer to sequence 1
Pointer to the starting address in the register space

Values

Masks

Number of blocks in the output image

Pointer to output block 1

Pointer to output block 5
Pointer to end of output block 5

Number of sequences in output block1
Pointer to sequence 1
Pointer to the starting address in the register space

Values

Masks

Input image
header

00
01

05
06

07

08

09

0A

0B
0C
0D

0E
0F
10
11

12

13
14
15
16

52

53
54

58

59

5A

5B
5C
5D
5E

5F
60
61

75

Input block 1

Start of input
block 2

End of input
block 5

Output image
header

Output block 1

Start of output
block 2

End of output
block 5

In
pu

t
im

ag
e

O
u
tp
u
t
im

ag
e

Figure 13: The structure and content of the memory image for the virtual component vc1.

parameter pi1 will be read by vc1 from the address 01A5,
occupying a total of four bits, between bits 0 and 3 inclu-
sive. Similar specifications are given for the other parameters.
The interface of each data channel is similarly described. For
example, data associated with the output data channel do1 is
to be written by the component vc1 to the system bus inter-
face, at address 01A6, packaging four data values into each
32-bit register.

After the refinement information has been formally spec-
ified, in the form of the interface specification, it is possi-
ble to automatically generate virtual prototype verification
patterns from algorithmic-level verification patterns. These
algorithmic-level patterns are shown in Figure 12. As de-
scribed earlier, each data input and data output port in the al-
gorithmic model has associated with it a stream of values, in
addition to the two dedicated parameter streams, para in and
para out, for the input and output parameters, respectively.

Values in each stream are devided into blocks, for synchro-
nization across streams.

As already explained, the idea of automated verification
pattern refinement revolves around the enrichment of the
algorithmic-level patterns with the refinement information
that results from the model refinement, to create virtual pro-
totype patterns automatically. The result is a memory image,
containing the original algorithmic patterns, which are not
only reformatted to fit the VP simulation environment (as
well as the final hardware platform), but also appropriately
enriched with the necessary architectural information, which
is not present in the original verification patterns. The struc-
ture and content of the memory image for the example vir-
tual component vc1 is shown in Figure 13.

It can be noted that, as explained earlier, the memory im-
age is composed of two parts: the input and the output im-
age. Each image is then further broken down into a header,



P. Belanović et al. 11

followed by a number of blocks. In this case, both images
contain five blocks. Each block is composed of a header, fol-
lowed by a number of sequences. In this example, both the
first blocks of the input and the output image are shown fully,
and both of them contain one sequence each.

Each sequence starts with a pointer to the starting address
in the register space, where the reading (in the case of the
input image) or writing (output image) is to start. Following
this pointer, the rest of the sequence is made up of actual
values and the corresponding masks, as described earlier. In
this example, as can be seen in Figure 13, the first sequence of
the first block of the input image is six values long, whereas
the same in the output image is two values long.

4. CONCLUSIONS

In the rapidly changing and highly competitive field of wire-
less communication systems, minimizing time to market is a
key requirement for any commercially viable product devel-
opment. While virtual prototyping has proved to be one of
the most effective techniques for achieving the required time
savings, it is only with full automation that themaximal gains
can be achieved.

The presented environment for automated development
of virtual prototypes not only offers these maximal time
gains, but also supports the virtual prototyping process com-
prehensively, in both the design and verification flows. In
other words, the transition from the algorithmic-level to the
corresponding virtual prototype is covered seamlessly by the
presented environment, for both the model itself, as well as
for the associated verification patterns.

The application of the presented environment is limited
in its general applicability in several aspects. Firstly, the al-
gorithmic descriptions considered in this work come from
the COSSAP environment. While system descriptions origi-
nating in any of the numerous other environments for algo-
rithmicmodelling have not yet been considered, themodular
nature of the presented environment offers the possibility to
process these other types of descriptions as well withminimal
modifications and/or extensions. In particular, processing al-
gorithmic descriptions in SystemC is being considered as a
future extension to the presented environment, due to the
strong presence of SystemC in the EDAmarket [17–19]. This
will require only minimal extension to the presented envi-
ronment, due to the already present ability of the underlying
framework to process algorithmic descriptions in SystemC.

Furthermore, the verification strategy presented here has
been implemented only for systems built around the Star-
Core DSP [20]. However, the modular nature of the verifi-
cation environment ensures the applicability of the environ-
ment to systems build both around other processor cores as
well as multiprocessor systems, with only minimal modifi-
cations and/or extensions. One of the directions of future
work being considered includes extending the environment
to systems using other processor cores, by creating verifica-
tion programs for a set of supported cores. This may also re-
quire reformatting the associated memory images, to accom-
modate varying register and memory widths. However, since

these widths are parameters in the TGS, no further modifica-
tion to this script itself is required in order to adopt it to any
set of processor cores.

ACKNOWLEDGMENTS

The authors would like to acknowledge the ongoing co-
operation with Infineon Technologies and in particular
thank Guillaume Sauzon, Thomas Herndl, Ahmad Sarashgi,
Wolfgang Haas, and Johann Glaser for their collabora-
tion. This work has been funded by the Christian Doppler
Laboratory for Design Methodology of Signal Processing Al-
gorithms.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, vol. 38, no. 8, pp. 114–117,
1965.

[2] R. Subramanian, “Shannon vs Moore: driving the evolution of
signal processing platforms in wireless communications,” in
Proc. IEEE Workshop on Signal Processing Systems (SIPS ’02),
pp. 2–2, San Diego, Calif, USA, October 2002.

[3] International SEMATECH, The International Technology
Roadmap for Semiconductors, Austin, Tex, USA, 1999.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
integrated development of embedded software,” Proc. IEEE,
vol. 91, no. 1, pp. 145–164, 2003.

[5] P. Belanović, M. Holzer, D. Mičušı́k, and M. Rupp,
“Design methodology of signal processing algorithms in
wireless systems,” in Proc. International Conference on Com-
puter, Communication and Control Technologies (CCCT ’03),
pp. 288–291, Orlando, Fla, USA, July–August 2003.

[6] A. Hemani, A. K. Deb, J. Oberg, A. Postula, D. Lindqvist, and
B. Fjellborg, “System level virtual prototyping of DSP SOCs
using grammar based approach,” Design Automation for Em-
bedded Systems, vol. 5, no. 3-4, pp. 295–311, 2000.

[7] C. A. Valderrama, A. Changuel, and A. A. Jerraya, “Virtual
prototyping for modular and flexible hardware-software sys-
tems,” Design Automation for Embedded Systems, vol. 2, no. 3-
4, pp. 267–282, 1997.

[8] N. S. Voros, L. Sánchez, A. Alonso, A. N. Birbas, M. Bir-
bas, and A. Jerraya, “Hardware-software co-design of complex
embedded systems: an approach using efficient process mod-
els, multiple formalism specification and validation via co-
simulation,” Design Automation for Embedded Systems, vol. 8,
no. 1, pp. 5–49, 2003.

[9] R. Ernst, “Codesign of embedded systems: status and trends,”
IEEE Des. Test. Comput., vol. 15, no. 2, pp. 45–54, 1998.

[10] P. Varma and S. Bhatia, “A structured test re-use methodol-
ogy for core-based system chips,” in Proc. IEEE International
Test Conference (ITC ’98), pp. 294–302,Washington, DC, USA,
October 1998.

[11] B. Stöhr, M. Simmons, and J. Geishauser, “FlexBench: reuse of
verification IP to increase productivity,” in Proc. Design, Au-
tomation and Test in Europe Conference and Exposition (DATE
’02), pp. 1131–1131, Paris, France, March 2002.

[12] Odin Technology, Axe Automated Testing Framework, 2004,
www.odin.co.uk/downloads/AxeFlyer.pdf.

[13] P. Belanović, M. Holzer, B. Knerr, M. Rupp, and G. Sauzon,
“Automatic generation of virtual prototypes,” in Proc. 15th In-
ternational Workshop on Rapid System Prototyping (RSP ’04),
pp. 114–118, Geneva, Switzerland, June 2004.



12 EURASIP Journal on Applied Signal Processing

[14] P. Belanović, B. Knerr, M. Holzer, G. Sauzon, and M. Rupp,
“A consistent design methodology for wireless embedded sys-
tems,” EURASIP Journal on Applied Signal Processing, Special
issue on DSP enabled radio, 2005

[15] B. Knerr, M. Holzer, and M. Rupp, “HW/SW partitioning us-
ing high level metrics,” in Proc. International Conference on
Computer, Communication and Control Technologies (CCCT
’04), Austin, Tex, USA, August 2004.

[16] U. Bortfeld and C. Mielenz, “White paper C++ System Simu-
lation Interfaces,” Infineon, Munich, Germany, July 2000.

[17] The Open SystemC Initiative (OSCI), San Jose, Calif, USA,
www.systemc.org.

[18] CoWare Incorporation, “SoC Platform-Based Design Using
ConvergenSC/SystemC,” July 2002, www.coware.com.

[19] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC, Kluwer Academic, Boston, Mass, USA, 2002.

[20] StarCore DSP, www.starcore-dsp.com.

P. Belanović received his Dr. tech. degree in
2006 from the Vienna University of Tech-
nology, Austria, where his research focused
on designmethodologies for embedded sys-
tems in wireless communications, virtual
prototyping, and automated floating-point
to fixed-point conversion. He received his
M.S. and B.E. degrees from Northeastern
University, Boston, and the University of
Auckland, New Zealand, in 2002 and 2000,
respectively. His research focused on the acceleration of image
processing algorithms with reconfigurable platforms, both in re-
mote sensing and biomedical domains, as well as custom-format
floating-point arithmetic. Currently he is a Ph.D. candidate at the
Vienna University of Technology, Austria, focusing on the design
methodologies for embedded systems in wireless communications,
virtual prototyping, and automated floating-point to fixed-point
conversion.

B. Knerr studied communications engi-
neering at the University of Saarland and
the Technical University of Hamburg, Har-
burg, respectively. He finished the diploma
thesis about OFDM communications sys-
tems and graduated with honours in 2002.
He worked for one year as a Software Engi-
neer for the UZR GmbH & Co KG, Ham-
burg, on image processing and 3D com-
puter vision. In June 2003 he joined the
Christian Doppler Laboratory for Design Methodology of Signal
Processing Algorithms at the Vienna Technical University as a Ph.D.
candidate. His research interests are hw/sw partitioning, multicore
task scheduling, static code analysis, and platform-based design.

M. Holzer received his Dipl. Ing. degree in
electrical engineering from the Vienna Uni-
versity of Technology, Austria in 1999. Dur-
ing his diploma studies he worked on the
hardware implementation of the LonTalk
protocol for Motorola. From 1999 to 2001
he worked at Frequentis in the area of auto-
mated testing of TETRA systems and after-
wards until 2002 at Infineon Technologies
on ASIC design for UMTS mobiles. Since

2002 he has a research position at the Christian Doppler Labora-
tory for Design Methodology of Signal Processing Algorithms at
the Technical University of Vienna.

M. Rupp received his Dipl. Ing. degree in
1988 at the University of Saarbrücken, Ger-
many and his Dr. Ing. degree in 1993 at
the Technische Universität Darmstadt, Ger-
many, where he worked with Eberhardt
Hänsler on designing new algorithms for
acoustical and electrical echo compensa-
tion. From November 1993 until July 1995
he had a postdoctoral position at the Uni-
versity of Santa Barbara, California with
Sanjit Mitra where he worked with Ali H. Sayed on a robustness
description of adaptive filters with impacts on neural networks and
active noise control. FromOctober 1995 until August 2001 he was a
member of the Technical Staff in the Wireless Technology Research
Department of Bell-Labs where he was working on various top-
ics related to adaptive equalization and rapid implementation for
IS-136, 802.11, and UMTS. He is presently a Full Professor for Dig-
ital Signal Processing in Mobile Communications at the Technical
University of Vienna. He is an Associate Editor of the IEEE Transac-
tions on Signal Processing and of the EURASIP Journal on Applied
Signal Processing, and EURASIP Journal on Embedded Systems,
and is elected as an AdComMember of EURASIP. He authored and
coauthored more than 180 papers and patents on adaptive filter-
ing, wireless communications, and rapid prototyping, including 12
patents.

file:www.systemc.org
file:www.coware.com
file:www.starcore-dsp.com

	1. INTRODUCTION
	1.1. Virtual prototype concept
	1.2. Model of hardware platform
	1.3. Related work

	2. AUTOMATED VIRTUAL PROTOTYPE GENERATION
	2.1. Processing the algorithmic description
	2.2. Virtual prototype generation

	3. AUTOMATED VERIFICATION PATTERN REFINEMENT
	3.1. Verification at algorithmic level
	3.2. Verification at virtual prototype level
	3.3. Environment for automatic generation of verification patterns
	3.3.1. COSSAP verification patterns
	3.3.2. Verification program
	3.3.3. Memory image
	3.3.4. Direct I/O data
	3.3.5. Interface specification
	3.3.6. Test generator script

	3.4. Example design

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

