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Multiple description (MD) video coding can be used to reduce the detrimental effects caused by transmission over lossy packet
networks. A number of approaches have been proposed for MD coding, where each provides a different tradeoff between compres-
sion efficiency and error resilience. How effectively each method achieves this tradeoff depends on the network conditions as well
as on the characteristics of the video itself. This paper proposes an adaptive MD coding approach which adapts to these conditions
through the use of adaptive MDmode selection. The encoder in this system is able to accurately estimate the expected end-to-end
distortion, accounting for both compression and packet loss-induced distortions, as well as for the bursty nature of channel losses
and the effective use of multiple transmission paths. With this model of the expected end-to-end distortion, the encoder selects
between MD coding modes in a rate-distortion (R-D) optimized manner to most effectively tradeoff compression efficiency for
error resilience. We show how this approach adapts to both the local characteristics of the video and network conditions and
demonstrates the resulting gains in performance using an H.264-based adaptive MD video coder.
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1. INTRODUCTION

Streaming video applications often require error-resilient
video coding methods that are able to adapt to current net-
work conditions and to tolerate transmission losses. These
applications must be able to withstand the potentially harsh
conditions present on best-effort networks like the Internet,
including variations in available bandwidth, packet losses,
and delay.

Multiple description (MD) video coding is one approach
that can be used to reduce the detrimental effects caused by
packet loss on best-effort networks [1–7]. In a multiple de-
scription system, a video sequence is coded into two or more
complementary streams in such a way that each stream is in-
dependently decodable. The quality of the received video im-
proves with each received description, but the loss of any one
of these descriptions does not cause complete failure. If one
of the streams is lost or delivered late, the video playback can
continue with only a slight reduction in overall quality. For
an in-depth review of MD coding for video communications
see [8].

There have been a number of proposals for MD video
coding each providing their own tradeoff between com-
pression efficiency and error resilience. Previous MD cod-
ing approaches applied a single MD technique to an entire

sequence. However, the optimal MD coding method will de-
pend on many factors including the amount of motion in
the scene, the amount of spatial detail, desired bitrates, error
recovery capabilities of each technique, current network con-
ditions, and so forth. This paper examines the adaptive use of
multipleMD codingmodes within a single sequence. Specifi-
cally, this paper proposes an adaptiveMD coder which selects
among MD coding modes in an end-to-end rate-distortion
(R-D) optimized manner as a function of local video charac-
teristics and network conditions. The addition of the end-to-
end R-D optimization is an extension of the adaptive system
proposed in [9]. Some preliminary results with this approach
were presented in [10].

This paper continues in Section 2 with a discussion of the
MD coding modes used and the advantages and disadvan-
tages of each. Sections 3 and 4 present an overview of how
end-to-end optimizedmode selection can be achieved inMD
systems. The details of the proposed system are provided in
Section 5, and experimental results are given in Section 6.

2. MD CODINGMODES

A multiple description (MD) coder encodes a media stream
into two or more separately decodable streams and transmits
these independently over the network. The loss of any one of
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Figure 1: Examined MD coding methods: (a) single description coding: each frame is predicted from the previous frame in a standard
manner to maximize compression efficiency; (b) temporal splitting: even frames are predicted from even frames and odd from odd; (c)
spatial splitting: even lines are predicted from even lines and odd from odd; (d) repetition coding: all coded data repeated in both streams.

these streams does not cause complete failure, and the qual-
ity of the received video improves with each received descrip-
tion. Therefore, even when one description is lost for a sig-
nificant length of time the video playback can continue, at a
slight reduction in quality, without waiting for rebuffering or
retransmission.

Perhaps the simplest example of anMD video coding sys-
tem is one where the original video sequence is partitioned in
time into even and odd frames, which are then independently
coded into two separate streams for transmission over the
network. This approach generates two descriptions, where
each has half the temporal resolution of the original video.
In the event that both descriptions are received, the frames
from each can be interleaved to reconstruct the full sequence.
In the event one stream is lost, the other stream can still be
straightforwardly decoded and displayed, resulting in video
at half the original frame rate.

Of course, this gain in robustness comes at a cost. Tem-
porally subsampling the sequence lowers the temporal cor-
relation, thus reducing coding efficiency and increasing the
number of bits necessary to maintain the same level of qual-
ity. Without losses, the total bitrate necessary for this MD
system to achieve a given distortion is generally higher than
the corresponding rate for a single stream encoder to achieve
the same distortion. This is a tradeoff between coding effi-
ciency and robustness. However, in an application where we
stream video over a lossy packet network, it is not so much
a question of whether it is useful to give up some amount of
efficiency for an increase in reliability as it is a question of
finding the most effective way to achieve this tradeoff.

This paper proposes adaptive MD mode selection in
which the encoder switches between different coding modes

within a sequence in an intelligent manner. To illustrate this
idea, the system discussed in this paper uses a combination
of four simple MD modes: single description coding (SD),
temporal splitting (TS), spatial splitting (SS), and repetition
coding (RC), see Figure 1. This section continues by describ-
ing these methods and their advantages and disadvantages;
see Table 1.

Single description (SD) coding represents the typical
coding approach where each frame is predicted from the pre-
vious frame in an attempt to remove as much temporal re-
dundancy as possible. Of all the methods presented here, SD
coding has the highest coding efficiency and the lowest re-
silience to packet losses. On the other extreme, repetition
coding (RC) is similar to the SD approach except the data
is transmitted once in each description. This obviously leads
to poor coding efficiency, but greatly improves the overall er-
ror resilience. As long as both descriptions of a frame are not
lost simultaneously, there will be no effect on decoded video
quality. The remaining two modes provide additional trade-
offs between error resilience and coding efficiency. The tem-
poral splitting (TS) mode effectively partitions the sequence
along the time dimension into even and odd frames. Even
frames are predicted from even and odd frames from odd
frames. Similarly, in spatial splitting (SS), the sequence is par-
titioned along the spatial direction into even and odd lines.
Even lines are predicted from even lines and odd from odd.

We chose to examine these particular modes for the fol-
lowing reasons. First, these methods tend to complement
each other well with one method strong in regions where
another method is weak, and vice versa. This attribute will
be illustrated later in this paper. Secondly, each MD mode
makes a different tradeoff between compression efficiency
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Table 1: List of MD coding modes along with their relative advantages and disadvantages.

MD mode Description Advantages Disadvantages

SD Single description coding Highest coding efficiency of all methods Least resilience to errors

TS Temporal splitting
Good coding efficiency with better error Increased temporal distance reduces the

resilience than SD coding. Works well in effectiveness of temporal prediction leading to

regions with little or no motion a decrease in coding efficiency

SS Spatial splitting
High resilience to errors with better coding Field coding leads to decreased coding

efficiency than RC. Works well in regions with efficiency, with typically lower coding efficiency

some amount of motion than TS mode

RC Repetition coding
Highest resilience to errors of all the methods. Repetition of data is costly leading to low

The loss of either stream has no effect coding efficiency

on decoded quality

and error resilience. This set of modes examines a wide
range on the compression efficiency/error resilience spec-
trum, from most efficient single description coding to most
resilient repetition coding. Finally, these approaches are all
fairly simple both conceptually and from a complexity stand-
point. Conceptually, it is possible to quickly understand
where each one of these modes might be most or least ef-
fective, and in terms of complexity, the decoder in this sys-
tem is not much more complicated than the standard video
decoder. It is important to note that additional MD modes
of interest may be straightforwardly incorporated into the
adaptiveMD encoding framework and the associatedmodels
for determining the optimized MD mode selection. In addi-
tion, it is also possible to account for improved MD decoder
processing which may lead to reduce distortion from losses
(e.g., improved methods of error recovery where a damaged
description is repaired by using an undamaged description
[1, 11]), and thereby effect the end-to-end distortion estima-
tion performed as part of the adaptive MD encoding.

3. OPTIMIZEDMDMODE SELECTION

Each approach to MD coding trades off some amount of
compression efficiency for an increase in error resilience.
How efficiently each method achieves this tradeoff depends
on the quality of video desired, the current network condi-
tions, and the characteristics of the video itself. Most prior
research in MD coding involved the design and analysis of
novel MD coding techniques, where a single MD method is
applied to the entire sequence; this approach is taken so as
to evaluate the performance of each MD method. However,
it would be more efficient to adaptively select the best MD
method based on the situation at hand. Since the encoder in
this system has access to the original source, it is possible to
calculate the rate-distortion statistics for each coding mode
and select between them in an R-D optimized manner.

The main question then is how to make the decision be-
tween different modes. Lagrangian optimization techniques
can be used to minimize distortion subject to a bitrate con-
straint [12]. However, this approach assumes the encoder
has full knowledge of the end-to-end distortion experienced
by the decoder. When transmitted over a lossy channel, the

end-to-end distortion consists of two terms; (1) known dis-
tortion from quantization and (2) unknown distortion from
random packet loss. The unknown distortion from losses can
only be determined in expectation due to the random nature
of losses. Modifying the Lagrangian cost function to account
for the total end-to-end distortion gives the following:

J(λ) = D
quant
i + E

[
D̃loss

i

]
+ λRi. (1)

Here, Ri is the total number of bits necessary to code region
i, D

quant
i is the distortion due to quantization, and D̃loss

i is
a random variable representing the distortion due to packet
losses. Thus, the expected distortion experienced by the de-
coder can be minimized by coding each region with all avail-
able modes and choosing the mode which minimizes this La-
grangian cost.

Calculating the expected end-to-end distortion is not a
straightforward task. The quantization distortion D

quant
i and

bitrate Ri are known at the encoder. However, the channel
distortion D̃loss

i is difficult to calculate due to spatial and tem-
poral error propagation. In [13], the authors show how to es-
timate expected distortion in a pixel-accurate recursive man-
ner for SD and Bernoulli losses. In the next section, we dis-
cuss this approach and the extensions necessary to apply it to
the current problem of MD coding over multiple paths with
Gilbert (bursty) losses.

4. MODELING EXPECTED DISTORTION IN
MULTIPLE DESCRIPTION STREAMS

As discussed in Section 3, random packet losses force the en-
coder to model the network channel and estimate the ex-
pected end-to-end distortion. With an accurate model of ex-
pected distortion, the encoder can make optimized decisions
to improve the quality of the reconstructed video stream at
the decoder. A number of approaches have been suggested in
the past to estimate end-to-end distortion. The problem was
originally considered for optimizing intra/inter decisions in
single description streams to combat temporal error propa-
gation. Some early approaches to solving this problem in an
R-D optimized framework appear in [14, 15]. In [13], the au-
thors suggest a recursive optimal per-pixel estimate (ROPE)
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for optimal intra/inter mode selection. Here, the expected
distortion for any pixel location is calculated recursively as
follows. Suppose f in represents the original pixel value at lo-

cation i in frame n, and f̃ in represents the reconstruction of
the same pixel at the decoder. The expected distortion din at
that location can then be written as

din = E
[(

f in − f̃ in
)2] = f i

2

n − 2 f inE
[
f̃ in
]
+ E
[
f̃ i

2

n

]
. (2)

At the encoder, the value f in is known and the value f̃ in is a
random variable. So, the expected distortion at each location
can be determined by calculating the first and second mo-

ment of the random variable f̃ in.
If we assume the encoder uses full pixel motion estima-

tion, each correctly received pixel value can be written as f̃ in =
ê in + f̃

j
n−1, where f̃

j
n−1 represents the pixel value in the pre-

vious frame which has been used for motion,-compensated
prediction and ê in represents the quantized residual (in the
case of intra pixels, the prediction is zero and the residual is
just the quantized pixel value). The first moment of each re-
ceived pixel can then be recursively calculated by the encoder
as follows

E
[
f̃ i
n | received

]
= ê in + E

[
f̃
j
n−1
]
. (3)

If we assume the decoder uses frame copy error concealment,
each lost pixel is reconstructed by copying the pixel at the
same location in the previous frame. Thus, the first moment
of each lost pixel is

E
[
f̃ in | lost

]
= E

[
f̃ in−1

]
. (4)

The total expectation can then be calculated as

E
[
f̃ in
]
= P(received)E

[
f̃ in | received

]
+ P(lost)E

[
f̃ in | lost

]
.

(5)
The calculations necessary for computing the second mo-

ment of f̃ in can be derived in a similar recursive fashion.
In [16], this ROPE model is extended to a two-stream

multiple description system by recognizing the four possible
loss scenarios for each frame: both descriptions are received,
one or the other, description is lost, or both descriptions are
lost. For notational convenience, we will refer to these out-
comes as 11, 10, 01, and 00 respectively. The conditional ex-
pectations of each of these four possible outcomes are recur-
sively calculated andmultiplied by the probability of each oc-
curring to calculate the total expectation,

E
[
f̃ in
]
= P(11)E

[
f̃ in | 11

]
+ P(10)E

[
f̃ in | 10

]

+ P(01)E
[
f̃ in | 01

]
+ P(00)E

[
f̃ in | 00

]
.

(6)

Graphically, this can be depicted as shown in Figure 3(a).

The first moments of the random variables f̃ in−1 as calculated
in the previous frame are used to calculate the four interme-
diate expected outcomes which are then combined together
using (6) and stored for future frames. Again, the secondmo-
ment calculations can be computed in a similar manner.

These previous methods have assumed a Bernoulli-
independent packet loss model where the probability that
any packet is lost is independent of any other packet. How-
ever, the idea can be modified for a channel with bursty
packet losses as well. Recent work has identified the im-
portance of burst length in characterizing error resilience
schemes, and that examining performance as a function
of burst length is an important feature for comparing the
relative merits of different error-resilient coding methods
[11, 17, 18].

For this system, we have extended the MD ROPE ap-
proach to account for bursty packet loss. Here we use a two-
state Gilbert loss model, but the same approach could be
used for any multistate loss model including those with fixed
burst lengths. We use the Gilbert model to simulate the na-
ture of bursty losses where packet losses are more likely if the
previous packet has been lost. This can be represented by the
Markov model shown in Figure 2 assuming p0 < p1.

The expected value of any outcome in a multistate packet
loss model can be calculated by computing the expectation
conditioned on transitioning from one outcome to another
multiplied by the probability of making that transition. For
the two-state Gilbert model, this idea can be roughly de-
picted as shown in Figure 3(b). For example, assume TB

A rep-
resents the event of transitioning from outcome A at time
n−1 to outcome B at time n, and P(TB

A) represents the prob-
ability of making this transition. Then the expected value of
outcome 11 can be computed as shown in (7),

E
[
f̃ in | 11

]
= P

(
T11
11

) · E
[
f̃ in | T11

11

]
+ P
(
T11
10

) · E
[
f̃ in | T11

10

]

+ P
(
T11
01

) · E
[
f̃ in | T11

01

]
+ P
(
T11
00

) · E
[
f̃ in | T11

00

]
.

(7)

The remaining three outcomes can be computed in a similar
manner. Due to the Gilbert model, the probability of tran-
sitioning from any outcome at time n − 1 to any other out-
come at time n changes depending on which outcome is cur-
rently being considered. For instance, when computing the
expected value of outcome 00, the result when both streams
are lost, the probability that the previous outcome was 10,
01, or 00 is much higher than when computing the expected
value of outcome 11. Since the transitional probabilities vary
from outcome to outcome, it is not possible to combine the
four expected outcomes into one value as can be done in the
Bernoulli case. The four values must be stored separately for
future use as shown in Figure 3(b). Once again, the second
moment values can be computed using a similar approach.

The above discussion assumed full pixel motion vectors
and frame copy error concealment, but it is possible to ex-
tend this approach to subpixel motion vector accuracy and
more complicated error concealment schemes. As discussed
in [13], the main difficulty with this arises when comput-
ing the second moment of pixel values which depend on a
linear combination of previous pixels. The second moment
depends on the correlations between each of these previous
pixels and is difficult to compute in a recursive manner. We
have modified the above approach in order to apply it to
the H.264 video coding standard with quarter-pixel motion



Brian A. Heng et al. 5

p0

1− p1

0 11− p0 p1

State 0: packet received
State 1: packet lost

Average packet loss rate

= p0
1 + P0 − p1

Expected burst length

= 1
1− p1

Figure 2: Gilbert packet loss model. Assuming p0 < p1, the probability of each packet being lost increases if the previous packet was lost.
This causes bursty losses in the resulting stream.
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Figure 3: Conceptual computation of first moment values in MD ROPE approach: (a) Bernoulli case: the moment values from the previous
frame are used to compute the expected values in each of the four possible outcomes which are then combined to find the moment values
for the current frame; (b) Gilbert losses: due to the Gilbert model, the probability of transitioning from any one outcome at time n−1 to any
other outcome at time n changes depending on which outcome is currently being considered. Thus, the four expected outcomes cannot be
combined into one single value as was done in the Bernoulli case. Each of these four values must be stored separately for future calculations.

vector accuracy and more sophisticated error concealment
methods by using the techniques proposed in [19] for esti-
mation of cross-correlation terms. Specifically, each correla-
tion term E[XY] is estimated by

E[XY] = E[X]
E[Y]

E
[
Y 2]. (8)

Figure 4 demonstrates the performance of the above ap-
proach in tracking the actual distortion experienced at the
decoder. Here we have coded the Foreman and Carphone
test sequences at approximately 0.4 bits per pixel (bpp) with
the H.264 video codec using the SD approach mentioned in
Section 2. The channel has beenmodeled by a two path chan-
nel, where the paths are symmetric with Gilbert losses at an
average packet loss rate of 5% and expected burst length of 3
packets. The expected distortion as calculated at the encoder
using the above model has been plotted relative to the actual
distortion experienced by the decoder. This actual distortion
was calculated by using 1 200 different packet loss traces and
averaging the resulting squared-error distortion. As shown in
both of these sequences, the proposed model is able to track

the end-to-end expected distortion quite closely. Also shown
in this figure for reference is the quantization only distortion
(with no packet losses).

5. MD SYSTEMDESIGN AND IMPLEMENTATION

The system described in this paper has been implemented
based on the H.264 video coding standard using quarter-
pixel motion vector accuracy and all available intra- and in-
terprediction modes [20]. We have used reference software
version 8.6 for these experiments with modifications to sup-
port adaptive mode selection. Due to the in-loop deblocking
filter used in H.264, the current macroblock will depend on
neighboring macroblocks within the frame, including blocks
which have yet to be coded. This deblocking filter has been
turned off in our experiments to remove this causality issue
and simplify the problem.

The adaptive mode selection is performed on a mac-
roblock basis using the Lagrangian techniques discussed in
Section 3 with the expected distortion model from Section 4.
Note that this optimization is performed simultaneously for



6 EURASIP Journal on Applied Signal Processing

Quant only
Actual
Expected

0 50 100 150 200 250 300 350

Frame

26

28

30

32

34

36

38
P
SN

R
(d
B
)

(a) Foreman sequence

Quant only
Actual
Expected

0 50 100 150 200 250 300 350

Frame

27

29

31

33

35

37

39

41

P
SN

R
(d
B
)

(b) Carphone sequence

Figure 4: Comparison between actual and expected end-to-end PSNR: (a) Foreman sequence; (b) Carphone sequence. This figure demon-
strates the ability of this model to track the actual end-to-end distortion, where the expected and actual distortion curves are roughly on top
of each other. Also shown in this figure is the quantization only distortion which shows the distortion from compression and without any
packet loss.

both traditional coding decisions (e.g., inter versus intra cod-
ing) as well as for selecting one of the possible MD modes.

As mentioned in Section 2, the current system uses a
combination of four possible MD modes: single description
coding (SD), temporal splitting (TS), spatial splitting (SS),
and repetition coding (RC). Note that when coded in a non-
adaptive fashion, each method (SD,TS, SS, RC) is still per-
formed in an R-D optimized manner as mentioned above.
All of the remaining coding decisions, including inter ver-
sus intra coding, are made to minimize the end-to-end dis-
tortion. For instance, the RC mode is not simply a straight-
forward replica of the SD mode. The system recognizes the
improved reliability of the RC mode and elects to use far less
intra-coding allowingmore intelligent allocation of the avail-
able bits. Also, it was necessary to modify the H.264 codec to
support macroblock level adaptive interlaced coding in or-
der to accommodate the spatial splitting mode. The tempo-
ral splittingmode, however, was implemented using the stan-
dard compliant reference picture selection available inH.264.

The packetization of data differs slightly for each mode
(see Figure 5). In both the SD or TS approaches, all data for a
frame is placed into a single packet. The even frames are then
sent along one stream and the odd frames along the other.
While in the SS and RC approaches, data from a single frame
is coded into packets placed into both streams. For SS, even
lines are sent in one stream and odd lines in the other, while
for RC all data is repeated in both streams. Therefore, for
SD and TS each frame is coded into one large packet which is
sent in alternating streams, while for SS and RC each frame is
coded into two smaller packets and one small packet is sent
in each stream. Since the adaptive approach (ADAPT) is a
combination of each of these four methods, there is typically
one slightly larger packet and one smaller packet and these
alternate streams between frames.

Stream 1:

Stream 0:

Frame 2a

Frame 1a

(a) SD and TS

Stream 0:

Stream 1:

Frame 2b

Frame 2a

Frame 1a

Frame 1b

(b) SS and RC

Stream 0:

Stream 1:

2b

Frame 2a

Frame 1a

1b

(c) ADAPT

Figure 5: Packetization of data in MD modes: (a) SD and TS: data
sent along one path alternating between frames; (b) SS and RC: data
spread across both streams; (c) ADAPT: combination of the two re-
sulting in one slightly larger packet and one slightly smaller.

If a frame is lost in either the TS or SD method, no data
exists in the opposite stream at the same time instant, so the
missing data is estimated by directly copying from the previ-
ous frame. Note that here we copy from the most previous
frame in either description, not the previous frame in the
same description. In the SSmethod, if only one description is
lost, the decoder estimates the missing lines in the frame us-
ing linear interpolation, and if both are lost, it estimates the
missing frame by copying the previous frame. Similarly for
RC, if only one description is lost, the decoder can use the
data in the opposite stream, while if both are lost, it copies
the previous frame.
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Figure 6: Average distortion in each frame for ADAPT versus each nonadaptive approach. Coded at 0.4 bpp with balanced paths and 5%
average packet loss rate and expected burst length of 3: (a) Foreman sequence; (b) Carphone sequence.

6. EXPERIMENTAL RESULTS

The following results have been obtained using our modified
H.264 JM 8.6 codec (described above) with the Foreman and
Carphone video test sequences. Both sequences are 30 frames
per second at QCIF resolution. The Foreman sequence has
400 frames and the Carphone sequence has 382 frames.

To measure the actual distortion experienced at the de-
coder, we have simulated a Gilbert packet loss model with
packet loss rates and expected burst lengths as specified in
each section below. For each of the experiments, we have run
the simulation with 300 different packet loss traces and aver-
aged the resulting squared-error distortion. The same packet
loss traces were used throughout a single experiment to allow
for meaningful comparisons across the different MD coding
methods.

Each path in the system is assumed to carry 30 packets
per second where the packet losses on each path are mod-
eled as a Gilbert process. For wired networks, the probabil-
ity of packet loss is generally independent of packet size so
the variation in sizes should not generally affect the results
or the fairness of this comparison. When the two paths are
balanced or symmetric, the optimization automatically sends
half the total bitrate across each path. For unbalanced paths,
the adaptive system results in a slight redistribution of band-
width as is discussed later.

In each of these experiments, the encoder is run in one
of two different modes: constant bitrate encoding (CBR)
or variable bitrate encoding (VBR). In the CBR mode, the
quantizer and associated lambda value is adjusted on a mac-
roblock basis in an attempt to keep the number of bits used
in each frame approximately constant. Keeping the bitrate
constant allows a number of useful comparisons between
methods on a frame-by-frame basis such as those presented
in Figure 6. Unfortunately, the changes in quantizer level

must be communicated along both streams in the adaptive
approach which leads to some significant overhead. While
this signaling information is included in the bitstream, the
amount of signaling overhead is not currently incorporated
in the R-D optimization decision process, hence leading to
potentially suboptimal decisions with the adaptive approach.
We mention this since if all of the overhead was accounted
for in the R-D optimized rate control then the performance
of the adaptive method would be even slightly better than
shown in the current results. In the VBR mode, the quan-
tizer level is held fixed to provide constant quality. In this
case, there is no quantizer overhead and this approach yields
results closer to the optimal performance. Since the rates of
each mode may vary when in VBR mode (where the quan-
tizer is held fixed), it is not possible to make a fair compari-
son between different modes at a given bitrate. Therefore, in
experiments where we try to make fair comparisons among
different approaches at the same bitrate per frame, we op-
erate in CBR mode, for example, Figure 6, and we use VBR
mode to compute rate-distortion curves, like those shown in
Figure 9.

6.1. MD coding adapted to local video characteristics

We first evaluate the system’s ability to adapt to the charac-
teristics of the video source. The channel in this experiment
was simulated with two balanced paths each having 5% av-
erage packet loss rate and expected burst length of 3 packets.
The video was coded in CBR mode at approximately 0.4 bits
per pixel (bpp). Figure 6 demonstrates the resulting distor-
tion in each frame averaged over the 300 packet loss traces
for the adaptiveMDmethod and each of its nonadaptiveMD
counterparts.

The Foreman sequence contains a significant amount of
motion from frames 250 to 350 and is fairly stationary from
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frame 350 to 399. Notice how the SS/RCmethods work better
during periods of significant motion while the SD/TS meth-
ods work better as the video becomes stationary. The adap-
tive method intelligently switches between the two, main-
taining at least the best performance of any nonadaptive ap-
proach. Since the adaptive approach adapts on a macroblock
level, it is often able to do even better than the best nonadap-
tive case by selecting different MD modes within a frame
as well. Similar results can be seen with the Carphone se-
quence. The best performing nonadaptive approach varies
from frame to frame depending on the characteristics of the
video. The adaptive approach generally provides the best per-
formance of each of these.

Also shown in Figure 6 are the results from a typical video
coding approach which we will refer to as standard video
coding (STD). Here, R-D optimization is only performed
with respect to quantization distortion, not the end-to-end
R-D optimization used in the other approaches. Instead of
making inter/intra coding decisions in an end-to-end R-D
optimized manner as performed by SD, it periodically in-
tra updates one line of macroblocks in every other frame to
combat error propagation (this update rate was chosen since
the optimal intra refresh rate [21] is often approximately 1/p,
where p is the packet loss rate).

The adaptive MD approach is able to outperform opti-
mized SD coding by up to 2 dB for the Foreman sequence, de-
pending on the amount of motion present at the time. Note
that by making intelligent decisions through end-to-end R-D
optimization, the SD method examined here is able to out-
perform the conventional STD method by as much as 4 or
5 dB with the Foreman sequence. The adaptiveMD approach
outperforms optimized SD coding by up to 1 dB with the
Carphone sequence, and optimized SD coding outperforms
the conventional STD approach by up to approximately 3 dB.

In Figure 7, we illustrate how the mode selection varies as
a function of the characteristics of the video source. Specifi-
cally, we show the percentage of macroblocks using each MD
mode in each frame of the Foreman sequence. From this dis-
tribution of MD modes, one can roughly segment the For-
man sequence into three distinct regions: almost exclusively
SD/TS in the last 50 frames, mostly SS/RC from frames 250–
350, and a combination of the two during the first half. This
matches up with the characteristics of the video which con-
tains some amount of motion at the beginning, a fast camera
scan in the middle, and is nearly stationary at the end.

6.2. MD coding adapted to network conditions

In our second experiment, we examine how the system
adapts to the conditions of the network. The channel in this
experiment was simulated with two balanced paths each with
expected burst length of 3 packets. The video was coded in
CBR mode at approximately 0.4 bits per pixel (bpp) and the
average packet loss rate was varied from 0 to 10%. Figure 8
demonstrates the resulting distortion in the sequence for the
adaptive MDmethod and each of its nonadaptive MD coun-
terparts. These results were computed by first calculating
the meansquared-error distortion by averaging across all the
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Figure 7: Distribution of selected MD modes used in the adap-
tive method for each frame of the Foreman sequence illustrating
how mode selection adapts to the video characteristics: 5% average
packet loss rate, expected burst length 3.

frames in the sequence and across the 300 packet loss traces,
and then computing the PSNR.

Notice how the adaptive approach achieves a perfor-
mance similar to the SD approach when no losses occur,
but its performance does not fall off as quickly as the aver-
age packet loss rate is increased. Near the 10% loss rate, the
adaptive method adjusts for the unreliable channel and has
a performance closer to the RC mode. Note that the intra
update rate for the STD method was adjusted in the experi-
ment to be as close as possible to 1/p, where p is the packet
loss rate, as an approximation of the optimal intra update
frequency. Since this update rate could only be adjusted in
an integer manner, the STD curves above tend to have some
jagged fluctuations and in some cases the curves are not even
monotonically decreasing. As an example, an update rate of
1/p would imply that one should update one line of mac-
roblocks every 2.22 frames at 5% loss and every 1.85 frames
at 6% loss. These two cases have both been rounded to an
update of one line of macroblocks every 2 frames resulting in
the slightly irregular curves.

Table 2 shows the distribution of MDmodes in the adap-
tive approach at 0%, 5%, and 10% average packet loss rates.
As the loss rate increases, the system responds by switching
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Figure 8: PSNR versus average packet loss rate: (a) Foreman sequence; (b) Carphone sequence. Video coded at approximately 0.4 bpp. The
average packet loss rate for this experiment was varied from 0–10%, and the expected burst length was held constant at 3 packets.
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Figure 9: End-to-end R-D performance of ADAPT and nonadaptive methods: 5% packet loss rate, expected burst length 3: (a) Foreman
sequence; (b) Carphone sequence.

Table 2: Comparing the distribution of MD modes in the adaptive approach at 0%, 5%, and 10% average packet loss rates. (a) Foreman
sequence. (b) Carphone sequence.

MD mode 0% Loss 5% Loss 10% Loss

SD 70.87% 50.73% 43.57%

TS 18.13% 21.22% 18.97%

SS 10.81% 10.69% 10.15%

RC 0.19% 17.36% 27.31%

(a) Forman sequence.

MD mode 0% Loss 5% Loss 10% Loss

SD 67.49% 61.92% 57.51%

TS 17.29% 22.53% 20.68%

SS 15.13% 9.57% 9.19%

RC 0.09% 5.98% 12.63%

(b) Carphone sequence.
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Table 3: Percentage of macroblocks using each MDmode in the adaptive approach when sending over unbalanced paths.

MD mode
Even frames more Odd frames less

reliable path reliable path

SD 54.7% 48.3%

TS 26.5% 16.5%

SS 7.4% 12.9%

RC 11.4% 22.4%

(a) Forman sequence.

MD mode
Even frames more Odd frames less

reliable path reliable path

SD 64.6% 59.8%

TS 26.9% 18.0%

SS 5.9% 12.5%

RC 2.6% 9.7%

(b) Carphone sequence.

from lower redundancy methods (SD) to higher redundancy
methods (RC) in an attempt to provide more protection
against losses. It is interesting to point out that even at 0%
loss the system does not choose 100% SD coding. The adap-
tive approach recognizes that occasionally it can be more ef-
ficient to predict from two frames ago than from the prior
frame, so it chooses TS coding. Occasionally, it can be more
efficient to code the even and odd lines of a macroblock sep-
arately, so it chooses SS coding. The fact that it selects any
RC at 0% loss rate is a little counterintuitive, but this results
since coding a macroblock using RC changes the prediction
dependencies between macroblocks. The H.264 codec con-
tains many intra-frame predictions including motion vector
prediction and intra-prediction. In order for the RC mode
to be correctly decoded even when one stream is lost, the
adaptive system must not allow RC blocks to be predicted
in any manner from non-RC blocks. If RC blocks had been
predicted from SD blocks, for example, the loss of one stream
would affect the SD blocks which would consequently alter
the RC data as well. Occasionally, prediction methods like
motion vector prediction may not help and can actually re-
duce the coding efficiency for certain blocks. If this is extreme
enough, it can actually be more efficient to use RC, where the
prediction would not be used, even though the data is then
unnecessarily repeated in both descriptions.

6.3. End-to-end R-D performance

Figure 9 shows the end-to-end R-D performance curves of
each method. This experiment was run in VBR mode with
fixed quantization levels. To generate each point on these
curves, the resulting distortion was averaged across all 300
packet loss simulations, as well as across all frames of the se-
quence. The same calculation was then conducted at various
quantizer levels to generate each R-D curve. By switching be-
tweenMDmethods, ADAPT is able to outperform optimized
SD coding by up to 1 dB for the Foreman sequence and about
0.5 dB for the Carphone sequence. The ADAPT method is
able to outperform the STD coding approach by as much as
4.5 dB with the Foreman sequence and up to 3 dB with the
Carphone sequence. ADAPT is able to outperform TS, which
more or less performs the second best overall, by as much as
0.5 dB.

One interesting side result here is how well RC per-
forms in these experiments. Keep in mind that this is an
R-D optimized RC approach, not simply the half-bitrate SD

method repeated twice. The amount of intra coding used
in RC is significantly reduced relative to SD coding as the
encoder recognizes the increased resilience of the RCmethod
and chooses a more efficient allocation of bits.

6.4. Balanced versus unbalanced paths

In our final experiment, we analyze the performance of the
adaptive method when used with unbalanced paths where
one path is more reliable than the other. The channel con-
sisted of one path with 3% average packet loss rate and an-
other with 7%, both with expected burst lengths of 3 pack-
ets. The video in this experiment was coded at approximately
0.4 bpp in CBR mode. Table 3 shows the distribution of MD
modes in even frames of the sequence versus odd frames. The
even frames are those where the larger packet (see Figure 5)
is sent along the more reliable path and the smaller packet
is sent along the less reliable path. The opposite is true for
the odd frames. It is also interesting to compare the results
from Table 3 with those from Table 2 at 5% balanced loss.
The average of the even and odd frames fromTable 3matches
closely with the values from the balanced case in Table 2.

As shown in Table 3, the system uses more SS and RC in
the less reliable odd frames. These more redundant meth-
ods allow the system to provide additional protection for
those frames which are more likely to be lost. By doing so,
the adaptive system is effectively moving data from the less
reliable path into the more reliable path. Table 4 shows the
bitrate sent along each path in the balanced versus unbal-
anced cases. In this situation, the system is shifting between
5–6% of its total rate into the more reliable stream to com-
pensate for conditions on the network. Since the nonadap-
tive methods are forced to send approximately half their total
rate along each path, it is difficult to make a fair comparison
across methods in this unbalanced situation. We are consid-
ering ways to compensate for this. However, it is quite inter-
esting that the end-to-end R-D optimization is able to adjust
to this situation in such a manner.

7. CONCLUSIONS

This paper proposed end-to-end R-D optimized adaptive
MDmode selection for multiple description coding. This ap-
proach makes use of multiple MD coding modes within a
given sequence, making optimized decisions using amodel of
expected end-to-end distortion. The extended ROPE model
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Table 4: Percentage of total bandwidth in each stream for balanced and unbalanced paths.

Balanced paths Unbalanced paths

Stream 1 50.5% 55.4%

Stream 2 49.5% 44.6%

(a) Forman sequence.

Balanced paths Unbalanced paths

Stream 1 50.1% 55.9%

Stream 2 49.9% 44.1%

(b) Carphone sequence.

presented here is able to accurately predict the distortion ex-
perienced at the decoder taking into account both bursty
packet losses and the use of multiple paths. This allows the
encoder in this system to make optimized mode selections
using Lagrangian optimization techniques to minimize the
expected end-to-end distortion. We have shown how one
such system based on H.264 is able to adapt to local char-
acteristics of the video and to network conditions on multi-
ple paths and have shown the potential for this adaptive ap-
proach, which selects among a small number of simple com-
plementary MD modes, to significantly improve video qual-
ity. The results presented above demonstrate how this system
accounts for the characteristics of the video source, for ex-
ample, using more redundant modes in regions particularly
susceptible to losses, and how it adapts to conditions on the
network, for example, switching from more efficient meth-
ods to more resilient methods as the loss rate increases. The
results with this approach appear quite promising, and we
believe that adaptive MDmode selection can be a useful tool
for reliably delivering video over lossy packet networks.
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