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Protein interactions are of biological interest because they orchestrate a number of cellular processes such as metabolic pathways
and immunological recognition. Recently, methods for predicting protein interactions using domain information are proposed
and preliminary results have demonstrated their feasibility. In this paper, we develop two domain-based statistical models (neu-
ral networks and decision trees) for protein interaction predictions. Unlike most of the existing methods which consider only
domain pairs (one domain from one protein) and assume that domain-domain interactions are independent of each other, the
proposed methods are capable of exploring all possible interactions between domains and make predictions based on all the do-
mains. Compared to maximum-likelihood estimation methods, our experimental results show that the proposed schemes can
predict protein-protein interactions with higher specificity and sensitivity, while requiring less computation time. Furthermore,
the decision tree-based model can be used to infer the interactions not only between two domains, but among multiple domains
as well.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Proteins play an essential role in nearly all cell functions such
as composing cellular structure, promoting chemical reac-
tions, carrying messages from one cell to another, and act-
ing as antibodies. The multiplicity of functions that proteins
execute in most cellular processes and biochemical events is
attributed to their interactions with other proteins. It is thus
critical to understand protein-protein interactions (PPIs) in-
volved in a pathway or a cellular process in order to better
understand protein functions and the underlined biological
processes. PPI information can also help predict the func-
tion of uncharacterized proteins based on the classification
of known proteins within the PPI network. Furthermore, a
complete PPI map may directly contribute to drug develop-
ment as almost all drugs are directed against proteins.

The recent development of high throughput technolo-
gies has provided experimental tools to identify PPIs sys-
tematically. These methods include two-hybrid system [1],
mass spectrometry [2], protein chips [3], immunoprecipita-
tion [4], and gel-filtration chromatography [5]. Protein in-
teractions can also be measured by biophysical methods such
as analytical ultracentrifugation [6], calorimetry [7], and op-
tical spectroscopy [8]. Among those experimental methods,
the two-hybrid system is mature and accurate enough to be

used for obtaining the full protein interaction networks of
Saccharomyces cerevisiae [9, 10]. However, such techniques
are tedious and labor-intensive. In addition, the number of
possible protein interactions within one cell is enormous,
a potentially limiting factor for experimental analyses. The
need for faster and cheaper techniques has prompted exten-
sive research in seeking complementary in silicomethods that
are capable of accurately predicting interactions.

A number of computational approaches for protein in-
teraction discovery have been developed over the years.
These methods differ by the information they used for pro-
tein interaction prediction. Some earlier methodologies fo-
cus on estimating the interaction sites by recognizing spe-
cific residue motifs [11] or by using features and proper-
ties related to interface topology, solvent accessible surface
area, and hydrophobicity [12]. Some computational tech-
niques are based on genomic sequence analysis, for exam-
ple, analyzing correlated mutations in amino acid sequences
between interacting proteins [13], searching for conserva-
tion of gene neighborhoods and gene order [14], using the
gene fusion method or “Rosetta Stone” [15, 16], employ-
ing genomic context to infer functional protein interactions
[17], and exploring the principle on similarity of phyloge-
netic trees for protein interaction prediction [18, 19]. Protein
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structural information is also used to predict protein interac-
tions. Lu et al. [20] employ multimeric threading algorithm
to assign quaternary structures and to predict protein inter-
actions. Several papers propose to predict protein interaction
sites based on profiles of a residue and its neighbors [21–
23]. Bock and Gough introduced a method to predict pro-
tein interactions based on the primary structure and associ-
ated physicochemical properties [24]. There are also meth-
ods that integrate interaction information from many differ-
ent sources [25–27].

Recently, methods for predicting protein interactions us-
ing domain information are developed and preliminary re-
sults have demonstrated their feasibility [26, 28–34]. The
domain-based methods are motivated by the fact that
protein-protein interactions are the results of physical in-
teractions between their domains. In [33, 35], homology
searches and clustering of domain profile pairs are used for
protein interaction prediction. Kim et al. introduced a sta-
tistical domain-based algorithm called “potentially interact-
ing domain pair (PID)” [32]; it is similar to the associa-
tion method except in how scores are calculated for all pos-
sible domain pairs. Deng et al. [28] propose a probabilistic
approach that employs the maximum likelihood estimation
(MLE). Ng et al. [36] infer domain interactions from data
collected through three different sources: experimental pro-
tein interaction data, intermolecular relationship data from
protein complexes, and predict data by Rosetta Stone. Those
domain-based techniques only consider single-domain pair
interactions; however, protein-protein interactions could be
the result of multiple-domain pairs or groups of domains in-
teracting with each other. Han et al. [29, 30] introduced a do-
main combination-based method, which considers all possi-
ble domain combinations as the basic units of a protein. The
domain combination interaction probability is also based on
the number of interacting protein pairs containing the do-
main combination pair and the number of domain combi-
nations in each protein. Thus, the method still suffers from
a general limitation of the association method, that is, ignor-
ing other domain-domain interaction information between
the protein pairs. It assumes that one domain combination
is independent of another. Furthermore, the domain combi-
nation method is computationally more expensive than the
MLE method because all possible domain combinations are
considered instead of just single-domain pairs. For example,
if a protein containsm domains and the other contains n do-
mains, (2m−1)×(2n−1) possible domain combination pairs
between the two proteins have to be considered instead of
m× n single-domain pairs in the MLE method.

Even though there are a number of progresses made
toward protein interaction prediction using current com-
putational methods, they still have a limited range of ap-
plicability: the specificity and sensitivity are normally low.
In this paper, we develop two domain-based statistical ap-
proaches to predict protein-protein interactions. In the pro-
posed methods, instead of considering single-domain pair as
the basic unit of protein interactions, all the possible domain
combinations will contribute to the protein interactions.
In addition, the proposed models do not need to make the

assumption that domain pairs are independent of each other.
We compare the methods to the MLE method, better results
(in terms of the specificity and sensitivity) are obtained. Fur-
thermore, the decision tree-based model can be used to infer
domain-domain interactions for each predicted protein pair.

The paper is organized into four sections. Section 2 in-
troduces our predictive systems and methods. The experi-
mental results are presented in Section 3. Finally, conclusions
are drawn in Section 4.

2. SYSTEMANDMETHODS

We formulate protein-protein interaction prediction prob-
lems as two-class classification problems: each protein pair
is a sample belonging to either “interaction” class (the two
proteins interact with each other) or “noninteraction” class
(the two proteins do not interact with each other). Each pro-
tein pair is characterized by the domains of two proteins. In
Section 2.1, we discuss how each sample is represented in
terms of domains. In Section 2.2, we introduce a forward-
pruning decision tree-basedmodeling, and in Section 2.3, we
briefly discuss a neural network-based modeling.

2.1. Feature representation

Among all proteins in our data set, there are 4293 unique
Pfam domains (for details, refer to Section 3.1). For ease of
implementation, each domain is labeled with a number be-
tween 1 and 4293. Each protein is represented by a vector
of 4293 binary numbers where each binary number is as-
sociated with the 4293 domains. For example, if a protein
has a domain with label 5, then the 5th number of the fea-
ture vector is 1, otherwise 0. In order to represent a protein
pair, two vectors of binary numbers corresponding to each
protein are concatenated to form the final input feature vec-
tor (see Figure 1). The domain labels in the second protein
are increased by 4293 to distinguish domain labels between
two proteins. Now, we have 8586 features and one class la-
bel, where 0 and 1 represent noninteracting and interacting,
respectively.

Most domain-based approaches consider how often a
specific domain pair appears in the protein pairs that are in-
teracted with each other. The hypothesis is that the more of-
ten the domain pairs appear in the interacted protein pairs,
the more likely the two domains are interacted with each
other. These methods, however, ignore the possible associ-
ations between different domain pairs (by assuming that all
domain pairs are independent of each other). Furthermore,
the traditional methods cannot handle cases whenmore than
two domains are involved in protein interactions (which are
highly possible). In our proposed models, the representation
of each protein pair as a vector consisting of domains allows
us to take all the possible combinations of domains into con-
sideration. For example, in neural networks, each domain is
associated with an input neuron and every domain (input)
may contribute to the output of the neural networks differ-
ently, depending on the neuronal network weights.
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Protein 1 Protein 2

1 2 3 4 · · · 4293 4294 4295 4296 4297 · · · 8586

0 1 0 0 · · · 0 1 0 0 0 · · · 0

Protein 1 has domain 2

Protein 2 has domain 1

Figure 1: Feature representation for a pair of proteins.

2.2. Forward-pruning decision tree

Decision tree is one of the most popular classification meth-
ods. A decision tree is a tree consisting of two types of nodes:
decision nodes and class nodes. A class node is a leaf node of
a tree, which specifies a class. A decision node, also known
as a nonleaf node, specifies a test to be carried out on a sin-
gle attribute. An edge branches out from a decision node is
associated with an attribute value.

Decision tree construction usually involves constructing
and pruning. In the constructing phase, a decision tree is
built level by level from a given training data set starting at
the root. At each decision node, we need to select the best
splitting attribute based on the measure called “goodness of
split,” which assesses how well the attributes discriminate be-
tween classes. A number ofmeasures were developed to select
attributes for splitting. We use the information gain [19, 37]
as the “goodness of split” measure, which is based on the clas-
sic formula from information theory. The information gain
measures the theoretical information content of a code by∑

i pi log(pi), where pi is the probability of the ith message.
Let D = [X1,X2, . . . ,Xn] represent the n training samples

and let Xi = [x(i)1 , x(i)2 , . . . , x(i)m , yi] represent the ith sample
withm attributes x belonging to the class yi. In our problem,
yi = 1 represents for the “interaction” class and 0 for the
“noninteraction” class. Assume that the numbers of samples
in the “interaction” class and the “noninteraction” class are
n1 and n2, respectively. The information needed to classify
samples given only the decision class totals as a whole is

H(C) = −(P(y = 0) logP(y = 0) + P(y = 1) logP(y = 1)
)
,

(1)

where P(y) is the class probability among all samples (P(y =
1) = n1/n and P(y = 0) = n2/n). The information needed
to classify samples, given knowledge of the attribute xi, is de-
fined as

H
(
C | x) =

2∑

i=1
P(x = xi)H

(
C | x = xi

)
, (2)

where P(x = xi) is the probability of the attribute x taking
the value xi (in our case, x can only take ones (x1 = 1) and
zeros (x2 = 0)).

The information needed given each attribute value,
H(C | x = xi), is defined by

H
(
C | x = xi

)

= −(P(y = 0 | x = xi
)
logP

(
y = 0 | x = xi

)

− P
(
y = 1 | x = xi

)
logP

(
y = 1 | x = xi

))
,

(3)

where P(y = yj | x = xi) is the conditional probability of jth
class given attribute value xi. Finally, the information gain
(IG) measure for an attribute x can be calculated with (1)
and (2):

IG(x) = H(C)−H
(
C | x). (4)

During the tree construction phase, at each decision
node, the attribute with the largest information gain and
which has never been selected in the branch will be selected.
The information gain for each attribute is calculated by (4)
based on training samples classified at the decision node.
After the attribute is selected, it splits the training samples
according to the attribute values. Each decision node keeps
splitting until all training samples at the node belong to the
same decision class or no more attribute is left for splitting.
The decision class associated with majority of the training
samples at each leaf node is assigned as the prediction.

In order for the decision tree to work successfully and to
avoid overfitting problems, branches with little statistical sig-
nificance have to be pruned or removed. Traditionally, prun-
ing methods begin with a full tree constructed from a set of
training data, and remove tree branches in the bottom-up
fashion. It has worked well for problems with a handful of
attributes. However, for our problem, we have approximately
9000 attributes, and a full tree is expected to be extremely
large. Therefore, pruning after building the full tree may not
be a practical idea.

A forward-pruning technique that prunes during tree
construction was implemented. It stops building the tree if
certain conditions are met. First, we reserved 2/3 of the train-
ing data set as training and 1/3 as validation data set. The
decision tree is then built with the training data set, and be-
fore each splitting attribute is selected, classification error for
that particular decision node is calculated over the validation
data set. Among all validation samples that go through the
branch and reach the node for classification, the classifica-
tion error is just the proportion of misclassified samples. If
the error is less than or equal to a prespecified threshold, the
node stops splitting and becomes a leaf node. Thismakes sure
that branches with little statistical validity are not pursued.

2.3. Neural network

Artificial neural network is biologically inspired, and it solves
problems by example mapping. A neural network learns
from a collective behavior of the simple processing elements
called neurons. The processing elements are connected by
weighted connections. The weights on the connections con-
tain the network knowledge. Each neuron performs limited
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Figure 2: Simple neural network structure.

operations and works in parallel with other neurons to solve
problems quickly.

Typically, a neural network has three layers: input, hid-
den, and output layers. The input layer is used to encode in-
stance presented to the network for processing. The process-
ing elements in the input layer are called input nodes, which
may represent an attribute or feature value in the instance.
In our application, each input neuron represents a domain.
The hidden layer makes the network nonlinear through its
hidden units. The output layer contains output units, which
assign values to the input instance. The simple view of a neu-
ral network structure is depicted in Figure 2.

The nodes between layers are fully connected. For exam-
ple, each hidden node is connected to all input nodes, and
each output node is connected to all hidden nodes. There
are no connections between nodes in the same layer. All con-
nections point to the same direction from the input toward
the output layer. The weights associated with each connec-
tion are real numbers in the range of [0, 1]. The connection
weights are initialized to random small real numbers and are
adjusted during network training. This structure can capture
various combinations between domains, instead of only two
domains at a time. Each domain will contribute to the net-
work output, depending on the weights associated with the
nodes. The network predicts a protein pair to be interact-
ing if the output node value is larger than or equal to certain
threshold. Normally, the threshold is set to be 0.5. In our ex-
periment, we implement a multilayer feed-forward network
using the delta rule.

3. EXPERIMENTAL RESULTS

3.1. Data sources

Protein-protein interaction data for the yeast organism were
collected from the database of interacting proteins (DIP)
[38], Deng et al. [28], and Schwikowski et al. [39]. The data
set used by Deng et al. [28] is a combined interaction data
experimentally obtained through two-hybrid assays on Sac-
charomyces cerevisiae by Uetz et al. [10] and Ito et al. [9].
Schwikowski et al. [39] gathered their data from yeast two-
hybrid, biochemical, and genetic data.

We obtained 15409 interacting protein pairs for the yeast
organism from DIP, 5719 pairs from Deng et al. [28], and
2238 pairs from Schwikowski et al. [39]. The data sets were
then combined by removing the overlapping interaction
pairs. Because domains are the basic units of protein interac-
tions, proteins without domain information cannot provide

any useful information for our prediction. Therefore, we ex-
cluded the pairs where at least one of the proteins has no
domain information. To further reduce noises in our data,
pairs with both proteins containing only one domain, which
only occurred once among all proteins, were also excluded.
Finally, we have 9834 protein interaction pairs among 3713
proteins, and it is separated evenly (4917 pairs each) into
training and testing data sets. Negative samples are generated
by randomly picking a pair of proteins. A protein pair is con-
sidered to be a negative sample if the pair does not exist in
the interaction set. Total of 8000 negative samples were gen-
erated and also separated into two halves. The final training
and testing data set both have 8917 samples, 4917 positive
and 4000 negative samples.

The protein domain information was gathered from
Pfam [40], a protein domain family database, which contains
multiple sequence alignments of common domain families.
Hidden Markov model profiles were used to find domains in
new proteins. The Pfam database consists of two parts: Pfam-
A and Pfam-B. Pfam-A is manually curated, and Pfam-B is
automatically generated. Both Pfam-A and Pfam-B families
are used here. In total, there are 4293 Pfam domains defined
by the set of proteins.

3.2. Evaluation criteria

To evaluate the neural network and decision tree-based
methods for predicting PPIs, we use both specificity and sen-
sitivity. The specificity SP is defined as the percentage of
matched noninteractions between the predicted set and the
observed set over the total number of noninteractions. The
sensitivity, denoted by SN, is defined as the percentage of
matched interactions over the total number of observed in-
teractions.

SP = # of true negative PPI
# of observed negative PPI

,

SN = # of true positive PPI
# of observed positive PPI

.
(5)

3.3. Predicting PPI

Training

In order to predict protein-protein interactions, our mod-
els need to be trained first with the training data set. In our
neural network structure, 8586 input nodes are fed to the
hidden layer. Values of the hidden neurons are then fed to
the output layer with 1 output node. The number of hid-
den neurons and training cycles can greatly impact how well
a network is trained; therefore, in order to make appropri-
ate choices on the parameters, we have tested the network
with various numbers of hidden neurons and training cy-
cles. The training errors were plotted against different num-
ber of training cycles for different number of hidden neurons
(see Figure 3). As shown in Figure 3, networks with differ-
ent number of hidden neurons all converge. Most of them
actually converge after 1000 training cycles. The difference is
in the starting training errors and how fast a convergence is
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Figure 3: Comparing different number of neurons.

reached. Based on the results, we have chosen 50 hidden neu-
rons and 2000 training cycles.

A decision tree is constructed over a set of training data
with satisfied threshold for forward-pruning set to 0.01.
Then the tree is used to classify samples in the test data set.

The results of our methods are compared with the max-
imum likelihood estimation (MLE) results [14]. The MLE
method is trained with false positive rate fp = 1.0E − 5 and
false negative rate fn = 0.85 over our training data.

Test results

To classify a new protein pair as either interacting or nonin-
teracting, the pair is first converted to a feature vector as de-
scribed in Section 2.1 and then used as input in the modes.
Prediction is made based on the result generated by the mod-
els. For neural network, the output is a real number between
0 and 1. If the output is greater than or equal to a certain
threshold (0.5), then the pair is said to be interacting. This
threshold can be changed to produce an ROC curve for the
neural network. In our decision tree model, the classification
decision is either 0 for noninteracting or 1 for interacting.
The decision tree ROC curve is constructed by tree chop-
ping. When a decision tree is chopped to a certain height,
its prediction accuracy in terms of specificity and sensitiv-
ity would change and consequently producing a point on the
ROC curve.

Figure 4 compares the ROC curves of the three meth-
ods: neural network, decision tree, and MLE. As shown in
Figure 4, both the neural network and decision tree outper-
form the MLE method. Table 1 shows the prediction results
that each of the three methods can achieve over the test data
set. From Table 1, we can see that with comparable sensitiv-
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Figure 4: Results comparison for DT, NN, and MLE (specificity
versus sensitivity on test data).

ities fixed at approximately the same level 78%, both of our
methods can achieve above 60% in specificity, and MLE can
only achieve specificity of 37.53%. Clearly from Figure 4, the
neural network gives the best performance, and decision tree
performs almost as well. Note that the training data set for
decision tree is only 2/3 of the training data set used for the
neural network andMLE. Therefore, with a full training data
set, accuracy of decision tree is expected to be better.

Computational speed

Among the three methods, neural network-based system is
the fastest, as the neural network’s running time mainly de-
pends on the number of input nodes, hidden neurons, out-
put nodes, and training cycles. Number of output nodes can
be ignored in complexity calculation since it is one. Although
the number of input nodes is extremely large, there are many
zeros that do not involve in any calculation. Only the ones
are considered by the network, so this is reduced to a quite
small number mostly between 1 and 20. Therefore, the neu-
ral network’s computation timemainly depends on the num-
ber of hidden neurons and training cycles. The decision tree
runs much slower than the neural network, however, is much
faster than MLE methods. MLE takes the longest to run be-
cause it calculates interaction probability for all possible pro-
tein pairs, domain pairs, and protein pairs to be observed as
interacting. For each type of pairs, there are several million
possibilities, and it performs the calculations for a number of
iterations. When running the models on an Intel Dual Xeon
2.6GHz computer, it took approximately 20 minutes to train
the neural network and several hours for the decision tree
model. A single MLE iteration took several hours to execute,
and many iterations are required for the likelihood function
to converge.

The running time for training the models may not be a
big issue if the number of training samples (protein pairs)
is not very large. Once the models are trained, the running
times for tests are very fast. However, as more and more in-
teracted protein pairs are discovered, the running time for
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Table 1: Confusion matrix comparing DT, NN, and MLE.

Decision tree Neural network MLE

True positive (TP) 3899 3813 3850

False positive (FP) 1488 1368 2499

True negative (TN) 2512 2632 1501

False negative (FN) 1018 1104 1067

Specificity (SP) 62.80% 65.80% 37.53%

Sensitivity (SN) 79.30% 77.55% 78.30%

Table 2: Examples of discovered interacting domain pairs.

Domain I Function Domain II Function

SH3 (PF00018)
Often indicative of a protein

Pkinase (PF00069) ATP bindinginvolved in signal transduction

related to cytoskeletal organism

WD40 (PF00400)
Serves as a rigid scaffold

Cpn60 TCP1 (PF00118) Immunodominant antigen
for protein interactions

Cyclin N (PF00134) Regulates cyclin-dependent kinases Pkinase (PF00069) ATP binding

EMP24 GP25L
Protein carrier activity

EMP24 GP25L
Protein carrier activity

(PF01105) (PF01105)

Ras (PF00071) GTP binding GDI (PF00996) Regulation of GTPase activity

Histone (PF00125) DNA binding WD40 (PF00400)
Serves as a rigid scaffold for

protein interactions

RRM 1 (PF00076) Nucleic acid binding LSM (PF01423) Pre-mRNA splicing factor activity

Proteasome (PF00227) Endopeptidase activity Proteasome (PF00227) Endopeptidase activity

MLE methods may become an issue, as it may take several
months to train the model.

3.4. Inferring domain-domain interactions

With the decision tree method, we can also infer domain in-
teractions. For each correctly predicted protein-protein in-
teraction pairs, we can derive domains involved in the deci-
sion process by looking at the branch the protein pair took to
reach the prediction. The branch of the decision tree contains
all domains from both proteins that contribute to the cor-
rect classification. Among those involved domains, domains
of two proteins with value of 1 indicate their existence in the
protein pairs. Thus, these domains are interacted with each
other. Apparently, we can retrieve more than two domains
from each branch. This is attractive, as in some protein-
protein interactions it is highly possible that more than two
domains interact with each other. Most of the existing meth-
ods can only identify domain pairs.

Table 2 lists some of the domain interacting pairs iden-
tified by the decision tree. We also found that those do-
main pairs are considered to be interacting pairs with a high
confidence by the InterDom, a database of putative inter-
acting domains, developed by Ng et al. [34]. For example,
SH3 (PF00018) and Pkinase (PF00069) are derived from
a protein-protein interaction only involving single-domain

proteins. A protein is considered as a single-domain protein
if it has only one domain and the domain accounts for at least
50% of the protein length. The domain interactions derived
from single-domain protein interactions are usually consid-
ered to be highly likely. The domain SH3 is also found to
interact with Pkinase Tyr by Pfam [40]. The Pfam domain-
domain interactions are determined by mapping Pfam do-
mains onto the PDB structures, and interaction bonds are
then identified. Pkinase and Pkinase Tyr are both members
of the protein kinase superfamily clan.

For each protein-protein interaction pair, there may be
more than two domains involved. Using the decision tree,
some domain combinations that could have involved in in-
teraction are also identified. A domain combination is de-
fined as two or more domains functioning as a whole during
interaction. We list some of the identified domain combina-
tions in Table 3. As an example, domains PF00172 (Zn clus)
and PB043568 (row 5) are discovered to bind together and
interact as a whole unit with the PF00183 (HSP90) do-
main in another protein. We found that the PF00172 and
PB043568 domains are the only domains existed in protein
HAP1. The HAP1 protein is discovered to form biochemi-
cally distinctive higher-order complex with the HSP82 pro-
tein in the absence of heme [3]. The HSP82 protein contains
two domains, which are HSP90 (PF00183) and HATPase C
(PF02518). Neither one of the two domains is identified to
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Table 3: Examples of domain combinations discovered.

Domains in protein I Domains in protein II

PB000001; PB051691 PF00018

PF00400; PB000886 PB012950

PF00400; PB054726 PF01237

PF00400; PB000886 PF00393

PF00172; PB043568 PF00183

PF01399; PB014525 PF00009

form an interacting domain pair with Zn clus (PF00172) by
iPfam [23]; therefore, our hypothesis formed from the pre-
diction results is that the Zn clus domain (PF00172) forms a
domain combination with PB043568 and interacts with the
HSP90 (PF00183) as a whole.

4. CONCLUSION

Proteins perform biological functions by interacting with
other molecules. It is hypothesized that proteins interact
with each other through specific intermolecular interactions
that are localized to specific structural domains within each
protein. Often, protein domains are structurally conserved
among different families of proteins. Thus, understanding
protein interactions at the domain level gives detailed func-
tional insights onto proteins. Most of the existing domain-
based computational approaches for predicting protein in-
teraction assume that domain pairs are independent of each
other and consider the interactions between two domains
only. In this paper, we develop decision tree and neural
network-based models to predict protein-protein interac-
tions. These systems are capable of utilizing all the possi-
ble interactions between domains. For example, in the neu-
ral network-based method, all domains will contribute to
the prediction of protein-protein interactions with differ-
ent weights (e.g., the weights for domains that are not in-
cluded in the protein pairs may be zeros). We compared our
results with the maximum likelihood estimation method.
The experimental results have shown that both methods can
predict protein-protein interactions with higher specificity
and sensitivity than the MLE method. Computationally, the
MLE method needs extensive computation time and runs
much slower than ourmethods. In addition, the decision tree
method is particularly useful because domain-domain inter-
actions can be inferred from the domains involved in pre-
dicting protein interactions, especially, this method allows
for discovering interactions of domain combinations.
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