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A new two-stage blind source separation (BSS) method for convolutive mixtures of speech is proposed, in which a single-input
multiple-output (SIMO)-model-based independent component analysis (ICA) and a new SIMO-model-based binary masking are
combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-
model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-
model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-
model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based
ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method
compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is
illustrated.
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1. INTRODUCTION

Blind source separation (BSS) is the approach taken to es-
timate original source signals using only the information of
the mixed signals observed in each input channel. Basically,
BSS is classified as an unsupervised filtering technique [1] in
that the source separation procedure requires no training se-
quences and no a priori information on the directions-of-
arrival (DOAs) of the sound sources. Owing to the attrac-
tive features of BSS, much attention has been given to BSS in
many fields of signal processing such as speech enhancement.
This technique will provide an indispensable basis of realiz-
ing noise-robust speech recognition and high-quality hands-
free telecommunication systems.

The early contributory studies of BSS are mainly based
on the utilization of high-order statistics [2, 3] or indepen-
dent component analysis (ICA) [4–6], where the indepen-
dence among source signals is used for separation. In recent
years, various methods have been presented for acoustic-
sound separation [7–11] in which the soundmixing model is
referred to as convolutive mixtures. In this paper, we also ad-
dress the BSS problem under highly reverberant conditions,

which often arise in many practical audio applications. The
separation performance of conventional ICA is far from be-
ing sufficient in the reverberant case because excessively long
separation filters are required but the unsupervised learning
of the filters is difficult. Therefore, the development of high-
accuracy BSS in a real-world application is a problem de-
manding prompt attention. One possible improvement is to
partly combine ICA with another signal enhancement tech-
nique; however, in conventional ICA, each of the separated
outputs is a monaural signal, which leads to the drawback
that many types of superior multichannel techniques cannot
be applied.

In order to attack this difficult problem, we propose a
novel two-stage BSS algorithm that is applicable to an ar-
ray of directional microphones. This approach resolves the
BSS problem into two stages: (a) a single-input multiple-
output (SIMO)-model-based ICA proposed by some of the
authors [12] and (b) a new SIMO-model-based binarymask-
ing in the time-frequency domain for the SIMO signals ob-
tained from the preceding SIMO-model-based ICA. Here,
the term “SIMO” represents the specific transmission system
in which the input is a single source signal and the outputs
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are its transmitted signals observed at multiple microphones.
SIMO-model-based ICA enables us to separate the mixed
signals, not into monaural source signals but into SIMO-
model-based signals from independent sources as if these
sources were at the microphones. Thus, the separated sig-
nals of SIMO-model-based ICA can maintain the rich spa-
tial qualities of each sound source. After SIMO-model-based
ICA, the residual components of interference, which often
appear at the output of SIMO-model-based ICA as well as of
the conventional ICA, can be efficiently removed by the fol-
lowing binary masking. The experimental results show the
proposed method’s efficacy under realistic reverberant con-
ditions. The proposed method can achieve enhanced inter-
ference reduction while keeping the distortion low for the
target signals, compared with many existing BSS methods.

In the similar context of a technique that combines ICA
and binary masking, Kolossa and Orglmeister have proposed
the method [13] in which conventional binary masking [14–
16] is cascaded after conventional monaural-output ICA as
a postprocessing for residual interference reduction. Indeed
themethod is slightly more effective in obtaining further sep-
aration performances than ICA, especially when the ICA part
has an insufficient performance. However, unlike our pro-
posed method, it will be revealed that the existing combi-
nation method produces very large sound distortions in the
resultant signals, and thus yields a deterioration. This draw-
back is not acceptable in several acoustical sound applica-
tions, for example, speech recognition, because the recogni-
tion rate is affected by the separated sounds’ distortions.

It should be emphasized that the proposed two-stage
method has another important property, that is, applicability
to real-time processing. In general, ICA-based BSS methods
require enormous calculations, but binary masking needs
very low computational complexities. Therefore, because of
the introduction of binary masking into ICA, the proposed
combination can function as a real-time system. In this pa-
per, we also discuss the real-time implementation issue on
the proposed BSS, and evaluate the “real-time” separation
performance for speechmixtures under real reverberant con-
ditions.

The rest of this paper is organized as follows. In Sections 2
and 3, the formulation for the general BSS problems and the
principle of the proposed method are explained. In Sections
4-5, various signal separation experiments are described to
assess the proposed method’s superiority to conventional
BSS methods. Following the discussion on the results of the
experiments, we present our conclusions in Section 7.

2. MIXING PROCESS AND CONVENTIONAL BSS

2.1. Mixing process

In this study, the number of microphones is K and the num-
ber of multiple sound sources is L, where we deal with the
case of K = L.

Multiple mixed signals are observed at the microphone
array, and these signals are converted into discrete-time series
via an A/D converter. By applying the discrete-time Fourier

X( f ) = A( f )S( f )
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Figure 1: Blind source separation procedure performed in frequen-
cy-domain ICA.

transform, we can express the observed signals, in which
multiple source signals are linearlymixed with additive noise,
as follows in the frequency domain:

X( f ) = A( f )S( f ) +N( f ), (1)

whereX( f ) = [X1( f ), . . . ,XK ( f )]T is the observed signal vec-
tor, and S( f ) = [S1( f ), . . . , SL( f )]T is the source signal vector.
Also,A( f ) = [Akl( f )]kl is the mixing matrix, where [X]i j de-
notes the matrix which includes the element X in the ith row
and the jth column. Here, N( f ) is the additive noise term
which generally represents, for example, a background noise
and/or a sensor noise. The mixing matrix A( f ) is complex-
valued because we introduce a model to deal with the rela-
tive time delays among the microphones and room reverber-
ations.

2.2. Conventional ICA-based BSS

In frequency-domain ICA (FDICA) [7–10], first, the short-
time analysis of observed signals is conducted by a frame-
by-frame discrete Fourier transform (DFT) (see Figure 1).
By plotting the spectral values in a frequency bin for each
microphone input frame by frame, we consider these val-
ues as a time series. Hereafter, we designate the time series
as X( f , t) = [X1( f , t), . . . ,XK ( f , t)]T.

Next, we perform signal separation using the complex-
valued unmixing matrix W( f ) = [Wlk( f )]lk, so that the
L time-series output Y( f , t) = [Y1( f , t), . . . ,YL( f , t)]T be-
comes mutually independent; this procedure can be given as

Y( f , t) =W( f )X( f , t). (2)

We perform this procedure with respect to all frequency bins.
The optimalW( f ) is obtained by many types of ICA. For

example, second-order ICA has the following iterative updat-
ing equation [9]:

W[i+1]( f ) = −η
∑

τ

α( f ) off-diag
(
Ryy( f , τ)

)

· · ·W[i]( f )Rxx( f , τ) +W[i]( f ),
(3)

where η is the step-size parameter, off-diag[X] is the oper-
ation for setting every diagonal element of the matrix X to
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zero, [i] is used to express the value of the ith step in the it-
erations, and α( f ) = (

∑
τ ‖Rxx( f , τ)‖2)−1 is a normalization

factor (‖ · ‖ represents the Frobenius norm). Rxx( f , τ) and
Ryy( f , τ) are the cross-power spectra of the input x( f , t) and
the output y( f , t), respectively, which are calculated around
the multiple time indices τ.

On the other hand, higher-order ICA typically involves
the following updating [7]:

W[i+1]( f ) = η
[
I− 〈

Φ
(
Y( f , t)

)
YH( f , t)

〉
t

]
W[i]( f )

+W[i]( f ),
(4)

where I is the identity matrix, 〈·〉t denotes the time-averag-
ing operator, and Φ(·) is the appropriate nonlinear vector
function [17]. After the iterations, the source permutation
and the scaling indeterminacy problem can be solved, for ex-
ample, by the methods outlined in [8, 10].

The ICA-based BSS approach seems to be a very flexible
and effective technique for the source separation because it
does not need a priori information except for the assump-
tion of sources’ independence. However, it has an inherent
disadvantage in that there is difficulty with the poor and slow
convergence of nonlinear optimization [18, 19], particularly
when we are confronted with very complex convolutive mix-
tures as in the case of reverberant acoustic conditions. Fur-
thermore, ordinary ICA-based BSS algorithms require huge
computational complexities. The disadvantages reduce the
applicability of the approach to the general audio applica-
tions which often need real-time processing.

2.3. Conventional binary-mask-based BSS

Binary masking [14–16] is one of the alternative approaches
aimed at solving the BSS problem, but is not based on ICA.
We estimate a binary mask by comparing the amplitudes of
the observed signals, and pick up the target sound compo-
nent which arrives at the better microphone closer to the tar-
get sound (this is easier even for the far-field sources when we
use directional microphones whose directivities are steered
distinctly from each other). This procedure is performed in
time-frequency regions; it allows the specific regions where
the target sound is dominant to pass and mask the other
regions. Under the assumption that the lth sound source is
close to the lth microphone and K = L = 2, the lth separated
signal is given by

Ŷl( f , t) = ml( f , t)Xl( f , t), (5)

whereml( f , t) is the binary mask operation which is defined
as ml( f , t) = 1 if |Xl( f , t)| > |Xk( f , t)| (k �= l); otherwise
ml( f , t) = 0.

This method requires very low computational complex-
ities, thereby making it well applicable to real-time process-
ing. The method, however, needs an assumption of sparse-
ness in the sources’ spectral components; that is, there should
be no overlaps in the time-frequency components of the
sources. However, strictly speaking, the assumption does not
hold in a usual audio application, and in that case themethod
often produces very harmful noise, so-called musical noise.

In particular, for the speech-speech mixing, the breach of the
sparseness assumption can be partly mitigated [20], but it
still retains the overlapped spectral components greater than
several dozens of percent. This yields a considerable signal
distortion, which will be experimentally shown in Section 4.

3. PROPOSED TWO-STAGE BSS ALGORITHM

3.1. What is SIMO-model-based ICA?

In a previous study, SIMO-model-based ICA (SIMO-ICA)
was proposed by some of the authors [12], who showed
that SIMO-ICA enables the separation of mixed signals into
SIMO-model-based signals at microphone points.

In general, the observed signals at the multiple micro-
phones can be represented as a superposition of the SIMO-
model-based signals as follows:

X( f ) = [
A11( f )S1( f ), . . . ,AK1( f )S1( f )

]T

+
[
A12( f )S2( f ), . . . ,AK2( f )S2( f )

]T

...

+
[
A1L( f )SL( f ), . . . ,AKL( f )SL( f )

]T
,

(6)

where [A1l( f )Sl( f ), . . . ,AKl( f )Sl( f )]T is a vector which cor-
responds to the SIMO-model-based signals with respect to
the lth sound source; the kth element corresponds to the kth
microphone’s signal.

The aim of SIMO-ICA is to decompose the mixed obser-
vations X( f ) into the SIMO components of each indepen-
dent sound source; that is, we estimate Akl( f )Sl( f ) for all
k and l values (up to the permissible time delay in separa-
tion filtering). SIMO-ICA has the advantage that the sepa-
rated signals still maintain the spatial qualities of each sound
source, in comparison with conventional ICA-based BSS
methods. Clearly, this attractive feature makes SIMO-ICA
highly applicable to high-fidelity acoustic signal processing,
for example, binaural sound separation [21].

3.2. Motivation and strategy

Owing to the fact that SIMO-model-based separated signals
are still one set of array signals, there exist new applications
in which SIMO-model-based separation is combined with
other types of multichannel signal processing. In this pa-
per, hereinafter we address a specific BSS consisting of di-
rectional microphones in which each microphone’s directiv-
ity is steered to a distinct sound source, that is, the lth mi-
crophone steers to the lth sound source. Thus, the outputs
of SIMO-ICA are the estimated (separated) SIMO-model-
based signals, and they keep the relation that the lth source
component is the most dominant in the lth microphone.
This finding has motivated us to combine SIMO-ICA and
binary masking. Moreover, we propose to extend the simple
binary masking to a new binary masking strategy, so-called
SIMO-model-based binary masking (SIMO-BM). That is, the
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Figure 2: Input and output relations in (a) proposed two-stage BSS and (b) simple combination of conventional ICA and binary masking.
This corresponds to the case of K = L = 2.

masking function is determined by all the information re-
garding the SIMO components of all sources obtained from
SIMO-ICA. The configuration of the proposed method is
shown in Figure 2(a). SIMO-BM, which subsequently fol-
lows SIMO-ICA, enables us to remove the residual compo-
nent of the interference effectively without adding enormous
computational complexities. This combination idea is also
applicable to the realization of the proposed method’s real-
time implementation.

It is worth mentioning that the novelty of this strategy
mainly lies in the two-stage idea of the unique combina-
tion of SIMO-ICA and SIMO-model-based binary mask-
ing. To illustrate the novelty of the proposed method, we
hereinafter compare the proposed combination with a sim-
ple two-stage combination of conventional monaural-output
ICA and conventional binary masking (see Figure 2(b)) [13].

In general, conventional ICAs can only supply the source
signals Yl( f , t) = Bl( f )Sl( f , t)+El( f , t) (l = 1, . . . ,L), where
Bl( f ) is an unknown arbitrary filter and El( f , t) is a resid-
ual separation error which is mainly caused by an insuffi-
cient convergence in ICA. The residual error El( f , t) should
be removed by binary masking in the subsequent postpro-
cessing stage. However, the combination is very problematic
and cannot function well because of the existence of spec-
tral overlaps in the time-frequency domain. For instance,
if all sources have nonzero spectral components (i.e., when
the sparseness assumption does not hold) in the specific fre-
quency subband and are comparable (see Figures 3(a) and
3(b)), that is,

∣∣B1( f )S1( f , t) + E1( f , t)
∣∣ � ∣∣B2( f )S2( f , t) + E2( f , t)

∣∣,
(7)

the decision in binary masking for Y1( f , t) and Y2( f , t)
is vague and the output results in a ravaged (highly dis-
torted) signal (see Figure 3(c)). Thus, the simple combina-
tion of conventional ICA and binary masking is not suited
for achieving BSS with high accuracy.

On the other hand, our proposed combination con-
tains the special SIMO-ICA in the first stage, where the
SIMO-ICA can supply the specific SIMO signals corre-
sponding to each of the sources, Akl( f )Sl( f , t), up to the
possible residual error Ekl( f , t) (see Figure 4). Needless to
say that the obtained SIMO components are very benefi-
cial to the decision-making process of the masking func-
tion. For example, if the residual error Ekl( f , t) is smaller
than the main SIMO component Akl( f )Sl( f , t), the binary
masking between A11( f )S1( f , t)+E11( f , t) (Figure 4(a)) and
A21( f )S1( f , t) + E21( f , t) (Figure 4(b)) is more acoustically
reasonable than the conventional combination because the
spatial properties, in which the separated SIMO component
at the specific microphone close to the target sound still
maintains a large gain, are kept; that is,

∣∣A11( f )S1( f , t) + E11( f , t)
∣∣ >

∣∣A21( f )S1( f , t) + E21( f , t)
∣∣.
(8)

In this case, we can correctly pick up the target signal can-
didate A11( f )S1( f , t) + E11( f , t) (see Figure 4(c)). When the
target components Ak1( f )S1( f , t) are absent in the target-
speech silent duration, if the errors have a possible amplitude
relation of |E11( f , t)| < |E21( f , t)|, then our binary mask-
ing forces the period to be zero and can remove the resid-
ual errors. Note that unlike the simple combination method
[13] our proposed binary masking is not affected by the
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Figure 3: Examples of spectra in simple combination of ICA and binary masking. (a) ICA’s output 1; B1( f )S1( f , t) + E1( f , t), (b) ICA’s
output 2; B2( f )S2( f , t) + E2( f , t), and (c) result of binary masking between (a) and (b); Ŷ1( f , t).
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Figure 4: Examples of spectra in proposed two-stage method. (a) SIMO-ICA’s output 1; A11( f )S1( f , t) + E11( f , t), (b) SIMO-ICA’s output
2; A21( f )S1( f , t) + E21( f , t), and (c) result of binary masking between (a) and (b); Ŷ1( f , t).

amplitude balance among sources. Overall, after obtaining
the SIMO components, we can introduce SIMO-BM for the
efficient reduction of the remaining error in ICA, even when
the complete sparseness assumption does not hold.

3.3. Illustrative example

To illustrate the proposed theory with examples, we per-
formed a preliminary experiment in which the binary mask
is applied to the ideal solutions of the two types of ICAs
(SIMO-ICA and the simple conventional ICA) under a real
acoustic condition which will be described in Section 4.
First we consider the case in which binary masking is di-
rectly applied to straight-pass components of each source
(A11( f )S1( f , t) and A22( f )S2( f , t)). The following resultant
outputs are calculated:

Ŷ1( f , t) = m1( f , t)A11( f )S1( f , t), (9)

where m1( f , t) = 1 if |A11( f )S1( f , t)| > |A22( f )S2( f , t)|;

otherwisem1( f , t) = 0, and

Ŷ2( f , t) = m2( f , t)A22( f )S2( f , t), (10)

wherem2( f , t) = 1 if
∣∣A22( f )S2( f , t)

∣∣ >
∣∣A11( f )S1( f , t)

∣∣; (11)

otherwise m2( f , t) = 0. As a result, a large distortion of
about 5 dB was observed, which means that the simple
combination of ICA and binary masking is likely to in-
volve sound distortion. On the other hand, when bi-
nary masking is applied to the SIMO components of
S1( f , t)(A11( f )S1( f , t) and A21( f )S1( f , t)) for picking up
source 1, we obtain

Ŷ1( f , t) = m1( f , t)A11( f )S1( f , t), (12)

where m1( f , t) = 1 if |A11( f )S1( f , t)| > |A21( f )S1( f , t)|;
otherwise m1( f , t) = 0. Also, for picking up source 2, we
obtain

Ŷ2( f , t) = m2( f , t)A22( f )S2( f , t), (13)
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where m2( f , t) = 1 if |A22( f )S2( f , t)| > |A12( f )S2( f , t)|;
otherwise m2( f , t) = 0. This processing yields a small dis-
tortion of less than 1 dB. Thus, the proposed idea, the use of
binary masking after obtaining SIMO components of each
source, is well suited to the realization of low-distortion BSS.

In summary, the novelty of the proposed two-stage idea
is attributed to the introduction of the SIMO-model-based
framework into both separation and postprocessing, and this
offers the realization of a robust BSS. The detailed algorithm
is described in the next subsection.

3.4. Algorithm: SIMO-ICA in 1st stage

Time-domain SIMO-ICA [12] has recently been proposed
by some of the authors as a means of obtaining SIMO-
model-based signals directly in ICA updating. In this study,
we extend time-domain SIMO-ICA to frequency-domain
SIMO-ICA (FD-SIMO-ICA). FD-SIMO-ICA is conducted
for extracting the SIMO-model-based signals corresponding
to each of the sources. FD-SIMO-ICA consists of (L − 1)
FDICA parts and a fidelity controller, and each ICA runs in
parallel under the fidelity control of the entire separation
system (see Figure 5). The separated signals of the lth ICA
(l = 1, . . . ,L− 1) in FD-SIMO-ICA are defined by

Y(ICAl)( f , t) =
[
Y (ICAl)
k ( f , t)

]
k1 =W(ICAl)( f )X( f , t),

(14)

whereW(ICAl)( f ) = [W (ICAl)
i j ( f )]i j is the separation filterma-

trix in the lth ICA.
Regarding the fidelity controller, we calculate the follow-

ing signal vector Y(ICAL)( f , t), in which all the elements are to
be mutually independent:

Y(ICAL)( f , t) =
(
I−

L−1∑

l=1
W(ICAl)( f )

)
X( f , t)

= X( f , t)−
L−1∑

l=1
Y(ICAl)( f , t).

(15)

Hereafter, we regard Y(ICAL)( f , t) as an output of a virtual
“Lth” ICA. The word “ virtual” is used here because the Lth
ICA does not have its own separation filters unlike the other
ICAs, and Y(ICAL)( f , t) is subject toW(ICAl)( f ) (l=1, . . . ,L−
1). By transposing the second term (−∑L−1

l=1 Y(ICAl)( f , t)) on
the right-hand side to the left-hand side, we can show that
(15) suggests a constraint that forces the sum of all ICAs’
output vectors

∑L
l=1 Y(ICAl)( f , t) to be the sum of all SIMO

components
[∑L

l=1 Akl( f ) Sl( f ,t)
]
k1(= X( f , t)).

If the independent sound sources are separated by (14),
and simultaneously the signals obtained by (15) are also mu-
tually independent, then the output signals converge towards
unique solutions, up to the permutation and the residual er-
ror, as

Y(ICAl)( f , t) = diag
[
A( f ) PT

l

]
PlS( f , t) + El( f , t), (16)

where diag[X] is the operation for setting every off-diagonal
element of the matrix X to zero, El( f , t) represents the resid-
ual error vector, and Pl (l = 1, . . . ,L) are exclusively-selected

permutation matrices [22] which satisfy

L∑

l=1
Pl = [1]i j . (17)

For a proof of this, see Appendix A. Obviously, the solu-
tions provide necessary and sufficient SIMO components,
Akl( f )Sl( f , t), for each lth source. Thus, the separated sig-
nals of SIMO-ICA can maintain the spatial qualities of each
sound source. For example, in the case of L = K = 2, one
possibility is given by

[
Y (ICA1)
1 ( f , t),Y (ICA1)

2 ( f , t)
]T

= [
A11( f )S1( f , t) + E11( f , t),A22( f )S2( f , t)

+ E22( f , t)
]T
,

(18)

[
Y (ICA2)
1 ( f , t),Y (ICA2)

2 ( f , t)
]T

= [
A12( f )S2( f , t) + E12( f , t),A21( f )S1( f , t)

+ E21( f , t)
]T
,

(19)

where P1 = I and P2 = [1]i j − I.
In order to obtain (18), the natural gradient of Kullback-

Leibler divergence on probability density functions of (15)
with respect to W(ICAl)( f ) should be added to the existing
nonholonomic iterative learning rule [8] of the separation
filter in the lth ICA(l = 1, . . . ,L− 1). The new iterative algo-
rithm of the lth ICA part (l = 1, . . . ,L− 1) in FD-SIMO-ICA
is given as (see Appendix B)

W
[ j+1]
(ICAl)( f )

=W
[ j]
(ICAl)( f )− α

×
[{

off-diag
〈
Φ
(
Y
[ j]
(ICAl)( f , t)

)
Y
[ j]
(ICAl)( f , t)

H
〉

t

}

·W[ j]
(ICAl)( f )

−
{
off-diag

〈
Φ

(
X( f , t)−

L−1∑

l′=1
Y
[ j]
(ICAl′)( f , t)

)

·
(
X( f , t)−

L−1∑

l′=1
Y
[ j]
(ICAl′)( f , t)

)H〉

t

}

·
(
I−

L−1∑

l′=1
W

[ j]
(ICAl′)( f )

)]
,

(20)

where α is the step-size parameter, and we define the non-
linear vector function Φ(·) as [tanh(|Yl( f , t)|)ej·arg(Yl( f ,t))]l1
[17]. Also, the initial values of W(ICAl)( f ) for all l values
should be different.

After the iterations, we should solve two types of per-
mutation problems, namely, (1) frequency-inside permuta-
tion specific to SIMO-ICA, and (2) inter-frequency permuta-
tion which commonly arises in FDICA. As for the frequency-
inside permutation, the separated signals should be classi-
fied into the SIMO components of each source because the
permutation corresponding to Pl possibly arises, even within
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Figure 5: Input and output relations in proposed two-stage BSS which consists of FD-SIMO-ICA and SIMO-BM, where K = L = 2 and
exclusively selected permutation matrices are given by P1 = I and P2 = [1]i j − I in (16).

each frequency bin f . This can be easily achieved using a
cross-correlation between time-shifted separated signals,

C(l, l′, k, k′) = max
n

〈
Y (ICAl)
k ( f , t)Y (ICAl′)

k′ ( f , t − n)
〉

t
,

(21)

where l �= l′ and k �= k′. The large value of C(l, l′, k, k′) in-
dicates that Y (ICAl)

k ( f , t) and Y (ICAl′)
k′ ( f , t) are SIMO compo-

nents from the same source. As for the inter-frequency per-
mutation, we can solve this problem between different f ’s by
comparing the amplitude differences of the SIMO compo-
nents in our scenario with directional microphones.

Note that there exists an alternative method [8] of ob-
taining the SIMO components in which the separated signals
are projected back onto the microphones by using the inverse
of W( f ) after conventional ICA. The difference and advan-
tage of SIMO-ICA relative to the projection-back method are
described in Appendix C.

3.5. Algorithm: SIMO-BM in 2nd stage

After FD-SIMO-ICA, SIMO-model-based binary masking is
applied (see Figure 5). Here, we consider the case of (18).
The resultant output signal corresponding to source 1 is de-
termined in the proposed SIMO-BM as follows:

Ŷ1( f , t) = m1( f , t)Y
(ICA1)
1 ( f , t), (22)

wherem1( f , t) is the SIMO-model-based binary mask opera-
tion which is defined asm1( f , t) = 1 if

∣∣Y (ICA1)
1 ( f , t)

∣∣

> max
[
c1
∣∣Y (ICA2)

2 ( f , t)
∣∣, c2

∣∣Y (ICA2)
1 ( f , t)

∣∣,

c3
∣∣Y (ICA1)

2 ( f , t)
∣∣
]
;

(23)

otherwisem1( f , t) = 0. Here, max[·] represents the function
of picking up themaximum value among the arguments, and
c1, . . . , c3 are the weights for enhancing the contribution of
each SIMO component to the masking decision process. For

example, in the case of [c1, c2, c3] = [0, 0, 1], (23) becomes
|Y (ICA1)

1 ( f , t)| > |Y (ICA1)
2 ( f , t)|, that is,

∣∣A11( f )S1( f , t)+E11( f , t)
∣∣ >

∣∣A22( f )S2( f , t)+E22( f , t)
∣∣.
(24)

This yields the simple combination of conventional ICA and
conventional binary masking as described in Section 3.2.
Otherwise, if we set [c1, c2, c3] = [1, 0, 0], (23) is turned to
|Y (ICA1)

1 ( f , t)| > |Y (ICA2)
2 ( f , t)|, that is,

∣∣A11( f )S1( f , t)+E11( f , t)
∣∣ >

∣∣A21( f )S1( f , t)+E21( f , t)
∣∣.
(25)

This equation is identical to (8), where we can utilize bet-
ter (acoustically reasonable) SIMO information regarding
each source as described in Sections 3.2 and 3.3. If we
change another pattern of ci, we can generate various SIMO-
model-based maskings with different separation and distor-
tion properties.

The resultant output corresponding to source 2 is given
by

Ŷ2( f , t) = m2( f , t)Y
(ICA1)
2 ( f , t), (26)

wherem2( f , t) is defined asm2( f , t) = 1 if
∣∣Y (ICA1)

2 ( f , t)
∣∣

> max
[
c1
∣∣Y (ICA2)

1 ( f , t)
∣∣, c2

∣∣Y (ICA2)
2 ( f , t)

∣∣,

c3
∣∣Y (ICA1)

1 ( f , t)
∣∣
]
;

(27)

otherwisem2( f , t) = 0.
The extension to the general case of L = K > 2 can be

easily implemented. Hereafter we consider one example in
which the permutation matrices are given as

Pl =
[
δin(k,l)

]
ki, (28)

where δi j is the Kronecker’s delta function, and

n(k, l) =
⎧
⎨
⎩
k + l − 1 (k + l − 1 ≤ L),

k + l − 1− L (k + l − 1 > L).
(29)
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In this case, (16) yields

Y(ICAl)( f , t) =
[
Akn(k,l)( f )Sn(k,l)( f , t) + Ekn(k,l)( f , t)

]
k1.
(30)

Thus, the resultant output for source 1 in SIMO-BM is given
by

Ŷ1( f , t) = m1( f , t)Y
(ICA1)
1 ( f , t), (31)

wherem1( f , t) is defined asm1( f , t) = 1 if

∣∣Y (ICA1)
1 ( f , t)

∣∣

> max
[
c1
∣∣Y (ICAL)

2 ( f , t)
∣∣, c2

∣∣Y (ICAL−1)
3 ( f , t)

∣∣,

c3
∣∣Y (ICAL−2)

4 ( f , t)
∣∣, . . . , cL−1

∣∣Y (ICA2)
L ( f , t)

∣∣,

. . . , cLL−1
∣∣Y (ICA1)

L ( f , t)
∣∣
]
;

(32)

otherwisem1( f , t) = 0. The other sources can be obtained in
the same manner.

3.6. Real-time implementation

Several recent research studies [23, 24] have dwelt on the is-
sue of real-time implementation of ICA. The methods used,
however, require high-speed personal computers, and a BSS
implementation on a small-size LSI still receives much atten-
tion in industrial applications.

We have already built a pocket-size real-time BSS mod-
ule, where the proposed two-stage BSS algorithm can
work on a general-purpose DSP (TEXAS INSTRUMENTS
TMS320C6713; 200MHz clock, 100 kB program size, 1MB
working memory) as shown in Figure 6. Figure 7 shows a
configuration of a real-time implementation for the pro-
posed two-stage BSS. Signal processing in this implementa-
tion is performed in the following manner.

(1) Inputted signals are converted to time-frequency se-
ries by using a frame-by-frame fast Fourier transform
(FFT).

(2) SIMO-ICA is conducted using current 3-seconds-
duration data for estimating the separation matrix,
which is applied to the next (not current) 3-seconds-
samples. This staggered relation is due to the fact
that the filter update in SIMO-ICA requires substan-
tial computational complexities (the DSP performs at
most 100 iterations) and cannot provide the optimal
separation filter for the current 3-seconds-data.

(3) SIMO-BM is applied to the separated signals obtained
by the previous SIMO-ICA. Unlike SIMO-ICA, binary
masking can be conducted just in the current segment.

(4) The output signals from SIMO-BM are converted to
the resultant time-domain waveforms by using an in-
verse FFT.

Although the separation filter update in the SIMO-ICA
part is not real-time processing but includes a latency of 3
seconds, the entire two-stage system still seems to run in

Figure 6: Overview of pocket-size real-time BSS module, where
proposed two-stage BSS algorithm works on TEXAS INSTRU-
MENTS TMS320C6713 DSP.

Separated signal reconstruction with inverse FFT

SIMO-
BM

SIMO-
BM

SIMO-
BM

SIMO-
BM

SIMO-
BM

SIMO-
BM

SIMO-
BM

SIMO-
BM

Permutation solver Permutation solver

Real-time filtering Real-time filtering

W( f ) W( f ) W( f )

� � � � � �

� � �

� � �
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Left-channel input

Right-channel input

Time

Figure 7: Signal flow in real-time implementation of proposed
method.

real-time because SIMO-BM can work in the current seg-
ment with no delay. Generally, the latency in conventional
ICAs is problematic and reduces the applicability of such
methods to real-time systems. In the proposedmethod, how-
ever, the performance deterioration due to the latency prob-
lem in SIMO-ICA can be mitigated by introducing real-time
binary masking.
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4. SOUND SEPARATION EXPERIMENT

4.1. Experimental conditions

In this section, computer-simulation-based BSS experiments
are discussed to investigate the basic properties of the pro-
posed method. We use realistic (measured) room impulse
responses recorded in a reverberant room (Figure 8) for the
generation of convolutive mixtures. The reverberation time
in this room is 200 milliseconds. We neglect the additive
noise term N( f ) in (1).

First, to evaluate the feasibility for general hands-free
applications, we carried out sound-separation experiments
with two sources and two directional microphones (Sony
stereo microphone ECM-DS70P). Two speech signals are as-
sumed to arrive from different directions, θ1 and θ2, where
we prepare three kinds of source direction patterns as fol-
lows: (θ1, θ2) = (−40◦, 50◦), (−40◦, 30◦), or (−40◦, 10◦). Two
kinds of sentences, spoken by two male and two female
speakers selected from the ASJ continuous speech corpus for
research [25], are used as the original speech samples. Us-
ing these sentences, we obtain 12 combinations with respect
to speakers and source directions, where the power ratio be-
tween every pair of the sound sources is set to 0 dB. The sam-
pling frequency is 8 kHz and the length of each sound sam-
ple is limited to 3 seconds. The DFT size of W( f ) is 1024.
We used a null-beamformer-based initial value [10] which is
steered to (−60◦, 60◦). This experiment corresponds to the
offline test, and the number of iterations in the ICA part is
500. The step-size parameter was optimized for each method
to obtain the best separation performance.

4.2. Experimental evaluation of
separation performance

We compare the following methods.

(A) Conventional binary-mask-based BSS that is given in
Section 2.3.

(B) Conventional second-order-ICA-based BSS given in
Section 2.2, where scaling ambiguity can be properly
solved by method used in [8]. Also, permutation is
solved by [10]. In this study, we estimate Rxx( f , τ) and
Ryy( f , τ) at three time instances with each 1 second
data,

(C) Conventional higher-order-ICA-based BSS given in
Section 2.2 with scaling ambiguity solver [8]. Also,
permutation is solved by [9].

(D) Simple combination of conventional higher-order ICA
and binary masking.

(E) Proposed two-stage BSS method with [c1, c2, c3] =
[1, 0, 0.1] ; this parameter was determined in the pre-
liminary experiment (performed via various ci’s with
0.1 step) and gave the best performance (high separa-
tion but low distortion).

Noise reduction rate (NRR) [10], defined as the output
signal-to-noise ratio (SNR) in dB minus the input SNR in
dB, is used as the objective measure of separation perfor-
mance. The SNRs are calculated under the assumption that

Loudspeakers
(height:1 m)

Directional
microphones
(height:1 m)

S2( f )S1( f )
θ1 θ2

1m

2m

2
m

5
m

4.8m

5.8m

X1( f ) X2( f )

Sony
stereo microphone

Figure 8: Layout of reverberant room used in computer-simula-
tion-based BSS experiment, where room impulse responses are
recorded for generation of convolutive mixtures. The reverberation
time is 200 milliseconds.

the speech signal of the undesired speaker is regarded as
noise. The input SNR is defined as

ISNR[dB] = 1
L

L∑

l=1
10 log10

〈∣∣All( f )Sl( f , t)
∣∣2〉

t〈∣∣Xl( f , t)− All( f )Sl( f , t)
∣∣2〉

t

,

(33)

and the output SNR is calculated as a ratio between the
target component power in the output signal and the
interference component power. We obtain these components
by inputting SIMO-model-based signals [A1l( f )Sl( f , t), . . . ,
AKl( f )Sl( f , t)] for each source to the separation system,
where the separation filter matrices and binary-mask pat-
terns estimated in the preceding blind process with X( f , t)
are used.

Figure 9(a) shows the results of NRR under different
speaker configurations. These scores are the averages of 12
speaker combinations. From the results, we can confirm that
employing the proposed two-stage BSS can improve the sep-
aration performance regardless of the speaker directions, and
the proposed BSS outperforms all of the conventional meth-
ods. Since the NRR of the SIMO-ICA part in the proposed
method was almost the same as that of conventional higher-
order ICA, we conclude that the NRR improvements greater
than 3 dB can be gained by introducing SIMO-BM.

Since the NRR score indicates only the degree of interfer-
ence reduction, we could not evaluate the sound quality, that
is, the degree of sound distortion, in the previous paragraph.
To assess the distortion of the separated signals, we measure
cepstral distortion (CD) [26], which indicates the distance be-
tween the spectral envelopes of the original source signal and
the target component in the separated output. CD does not
take into account the degree of interference reduction, un-
like NRR; thus, CD and NRR are complementary scores. CD
is given by

CD[dB] ≡ 1
J

J∑

j=1
Db

√√√√√
p∑

i=1
2
(
Cout (i, j)− Cref (i, j)

)2
, (34)
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Figure 9: (a) Results of NRR and (b) results of CD under different speaker configurations andmethods, where background noise is neglected.
Each score is an average for 12 speaker combinations.

where J denotes the number of speech frames, Cout (i, j) is
the ith FFT-based cepstrum of the target component in the
separated output at the jth frame, Cref (i, j) is the cepstrum
of an original source signal,Db = 20/log 10 indicates the con-
stant value for converting the distance scale to the decibel
scale, and the number of liftering points p is 10. CD decreases
as the distortion is reduced.

Figure 9(b) shows the results of CD (average of 12
speaker combinations) for all speaker directions. As can be
confirmed, the CDs of both conventional ICA and the pro-
posed method are smaller than those of binary masking and
its simple combination with ICA. This means that (a) the
conventional binary-mask-based methods (A) and (D) in-
volve significant distortion due to the inappropriate time-
variant masking arising in the nonsparse frequency subband,
(b) but the proposed method cannot be affected by such
inappropriateness. It should be mentioned that the simple
combination of conventional ICA and binary masking still
shows deterioration, and this result is well consistent with
the discussion provided in Section 3.2.

These results provide promising evidence that the pro-
posed combination of SIMO-ICA and SIMO-BM is well ap-
plicable to low-distortion sound segregation, for example,
hands-free telecommunication via mobile phones.

4.3. Speech recognition experiment

Next, to evaluate the applicability to speech enhancement, we
performed large-vocabulary speech recognition experiments
utilizing the proposed BSS as a preprocessing for noise re-
duction. Table 1 shows the parameter settings in the speech
recognition. Sound source 1 (S1( f )) produces 200 sentences
of the test sets, and source 2 (S2( f )) produces a different sen-
tence as the interference with a 0 dB mixing condition. Thus,
the separation task is to segregate source 1 from the mixtures
and recognize it.

Figure 10 shows the results of word recognition perfor-
mance (word accuracy) for each method, where we can see

Table 1: Parameters of speech recognition experiment.

Database
JNAS [27], 306 speakers

(150 sentences/speaker)

Task 20 k newspaper dictation

Acoustic model Phonetic tied mixture [28] (clean model)

12-order MFCCs [29],

Feature vectors 12-order ΔMFCCs,

1-order Δ energy

Training data
260 speakers’ utterances

(150 sentences/speaker)

Testing data 46 speakers’ utterances (200 sentences)

Decoder Julius [30] ver.3.4.2

Sampling frequency 16 kHz

Frame length 25 milliseconds

Frame shift 10 milliseconds

the proposed method’s superiority. The score of the pro-
posed method is obviously better than the scores of bi-
nary masking and its simple combination with ICA, and
significantly outperforms conventional ICA. Thus, the pro-
posedmethod is potentially beneficial to noise-robust speech
recognition as well as hands-free telephony.

This experiment addressed adverse-condition speech
recognition, where the target speech was distorted by im-
proper spectral masking (i.e., artificial spectral hole) as well
as contaminated by additive noise. In such a condition, our
proposed method is preferable because of the low-distortion
property. As an altenative solution, it is reported that miss-
ing feature theory can be applicable to the distorted speech
[31, 32]. By introducing missing feature theory, we may gain
more on the speech recognition accuracy; it still remains as a
future work.
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Figure 10: Result of word accuracy for different speaker allocations
and methods. The recognition task is 20k-word newspaper dicta-
tion. Julius decoder [30] is used, where a phonetic tied mixture
model was trained via 260 speakers selected from JNAS database
[27]. Test sets include 46 speakers’ utterances (200 sentences).
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Figure 11: Layout of reverberant room used in computer-simula-
tion-based BSS experiment, where 36 loudspeakers simulate heavy
background noise. The reverberation time is 200 milliseconds.

5. SPEECH SEPARATION EXPERIMENT UNDER
NOISY CONDITIONS

In this section, we consider a specific BSS problem under
heavily noisy conditions to assess the proposedmethod’s effi-
cacy in a more challenging situation. As for the additive noise
termN( f ) in (1), we create and record a diffuse noise consist-
ing of 36 independent speech signals emitted by surround-
ing loudspeakers as shown in Figure 11. We add the noise to
the two-source two-microphone simulation described in the
previous section, where the ratio of mixed two source signals
and the noise is set to 20 dB. The other conditions are the
same as those of Section 4.1.

We compare the followingmethods: (A) the conventional
binary-mask-based BSS given in Section 2.3, (B) the con-
ventional higher-order-ICA-based BSS given in Section 2.2,
(C) the simple combination of conventional ICA and binary
masking, and (D) the proposed two-stage BSS method with
various ci parameters.

The results of NRR and CD are shown in Figure 12,
where each score is averaged among 12 speaker combina-
tions. We can confirm the following findings. For (θ1, θ2) =
(−40◦, 50◦), conventional binary masking outperforms the
other methods. This is because all the ICA-based methods
are harmfully influenced by the separation error due to the
background noise, but binary masking is robust against the
noise, particularly when the sources are widely apart. For
(θ1, θ2) = (−40◦, 30◦) or (−40◦, 10◦), however, the proposed
method is superior to the othermethods. In comparison with
the conventional methods under the same CD level, the pro-
posed method can obtain further NRR improvements with
the appropriate ci parameter settings, for example, c3 = 0.5
for (−40◦, 30◦) and c3 = 0.2 for (−40◦, 10◦). Thus, the slight
addition of c3 is preferable in the heavily noisy environment,
and can provide higher-quality output signals.

6. REAL-TIME SEPARATION EXPERIMENT FOR
MOVING SOUND SOURCE

In this section, we discuss a real-recording-based BSS ex-
periment performed using actual devices in a real acous-
tic environment. We carried out real-time sound separa-
tion using source signals recorded in the real room illus-
trated in Figure 13, where two loudspeakers and the real-time
BSS system (Figure 6) are set. The reverberation time in this
room is 200 milliseconds, and the levels of background noise
and each of the sound sources measured at the array origin
are 39 dB(A) and 65 dB(A), respectively. Two speech signals,
whose length is limited to 32 seconds, are assumed to arrive
from different directions, θ1 and θ2, where we fix source 1 in
θ1 = −40◦, and move source 2 as follows:

(1) in the 0–10 seconds duration, source 2 is set to θ2 =
50◦,

(2) in the 10–11 seconds duration, source 2 moves from
θ2 = 50◦ to 30◦,

(3) in the 11–21 seconds duration, source 2 is settled in
θ2 = 30◦,

(4) in the 21–22 seconds duration, source 2 moves from
θ2 = 30◦ to 10◦,

(5) in 22–32 seconds duration, source 2 is fixed in θ2 =
10◦.

The rest of the experimental conditions are the same as those
of the previous experiment described in Section 4.1.

It was difficult to evaluate an accurate NRR in this real
environment because we never know the target and inter-
ference components separately. In order to calculate NRRs
approximately, first, we recorded each sound source individ-
ually for making the reference in the SNR calculations, and
then we immediately recorded the mixed sounds which are
to be processed in the BSS system. We can estimate SNRs by
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Figure 12: (a) Results of NRR and (b) results of CD under different speaker allocations and methods, where background noise (36 indepen-
dent speech signals) is added with 20 dB SNR. Each score is an average for 12 speaker combinations.
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Figure 13: Layout of reverberant room used in real-recording-
based experiment the reverberation time is 200 milliseconds.

memorizing the separation filter matrices and binary mask
patterns along the time axis, and combining them with the
individual sound sources.

We compare four methods as follows: (A) the conven-
tional binary-mask-based BSS, (B) the conventional higher-
order-ICA-based BSS, (C) the simple combination of con-
ventional ICA and binary masking, and (D) the proposed
two-stage BSS method. In the proposed method, we set
[c1, c2, c3] = [1, 0, 0.4], which gives the best performance
(high NRR but low CD) under this background noise con-
dition.

Figure 14 shows the averaged segmental NRR for 12
speaker combinations, which was calculated along the time
axis at 0.5 seconds intervals. The first 3 seconds duration is
spent on the initial filter learning of ICA inmethods (B), (C),
and (D), and thus the valid ICA-based separation filter is ab-
sent here. Therefore, in the period of 0–3 seconds, we simply

applied binary masking in methods (C) and (D). The succes-
sive duration (in the period of 3–32 seconds) shows the sep-
aration results for the open data sample, which is to be evalu-
ated in this experiment. From Figure 14, we can confirm that
the proposed two-stage BSS (D) outperforms other methods
throughout almost the entire duration of 3–32 seconds. It is
worth noting that conventional ICA shows appreciable de-
teriorations especially in the 2nd source’s moving periods,
that is, around 10 seconds and 21 seconds, but the proposed
method can mitigate the degradations. On the basis of these
results, we can assess the proposed method to be beneficial to
many practical real-time BSS applications.

7. CONCLUSION

We proposed a new BSS framework in which SIMO-ICA
and a new SIMO-BM are efficiently combined. SIMO-ICA
is an algorithm for separating the mixed signals, not into
monaural source signals but into SIMO-model-based signals
of independent sources without losing their spatial qualities.
Thus, after SIMO-ICA, we can introduce the novel SIMO-
BM and succeed in removing the residual interference com-
ponents.

In order to evaluate its effectiveness, many separation
experiments were carried out under a 200-milliseconds-
reverberation-time condition. The experimental results re-
vealed that the SNR can be considerably improved by the
proposed two-stage BSS algorithm with no increase in signal
distortion. In addition, we found that the proposed method
outperforms the combination of conventional ICA and bi-
nary masking as well as of a simple ICA and binary mask-
ing. The efficacy of the proposed method was confirmed
in various separation tasks, that is, an offline test, a noisy-
environment test, and an online test using a DSP module ap-
plied for real recording data.



Yoshimitsu Mori et al. 13

0 3 6 9 12 15 18 21 24 27 30

Time (s)

0

5

10

15

20

25

N
oi
se

re
du

ct
io
n
ra
te
(d
B
)

Binary mask
High-order ICA + binary mask
Higher-order ICA
Proposed method

θ1 = �40Æ

θ2 = 50Æ θ2 = 30Æ θ2 = 10ÆMoving Moving

Figure 14: Results of segmental NRR calculated along time axis
at 0.5 seconds intervals, where real-recording data and real-time
BSS are used. Each line is an average for 12 speaker combinations.
The levels of background noise and sound source are 39 dB(A) and
65 dB(A), respectively.

As described in Section 3, there is a possibility, in theory,
that the proposed method can deal with the case of K = L >
2. However, only the results for K = L = 2 were shown in
this paper. Therefore, further study for K = L > 2 and a
method of estimating the number of sources remain as open
problems for the future.

Although the proposed method does not require the ac-
curate DOAs of sources in advance, it is still needed to set
the array in the proper direction towards the sources. The
proposed method has an inherent limitation that the sep-
aration performance degrades if the sources are located at
the same side of the array, as in the case of conventional bi-
nary masking. This is due to the fact that the binary mask-
ing in the second stage cannot utilize the original assump-
tion on the source amplitude difference between directional
microphones, that is, the left/right-hand-side microphone
has a large gain corresponding to the left/right source. For
example, in our experiment with (θ1, θ2) = (−80◦,−10◦),
the NRR scores of binary masking, conventional ICA, and
the proposed method are 8.9, 14.6, and 11.1 dB, respectively.
Further improvement is requisite in a future work.

APPENDICES

A. UNIQUE SOLUTION IN FD-SIMO-ICA

In this section, we will prove (16) under the condition that
the residual error El( f , t) = 0. Please note that the original
version of this proof has been presented in our previous work
[12] with a time-domain representation, but we hereafter
show the modified version with a frequency-domain repre-
sentation for the readers’ convenience.

Theorem A.1. The output signals converge towards unique
SIMO solutions (16) up to the permutation Pl(l = 1, . . . ,L),
given by (17), if and only if the independent sound sources are
separated as defined by (14) and simultaneously the signals ob-
tained using (15) are mutually independent.

Proof. The necessity is obvious. The sufficiency is shown be-
low. LetDl be arbitrary diagonal polynomial matrices andQl

be arbitrary permutation matrices. The general expression of
the lth ICA’s output is given by

Y(ICAl)( f , t) = DlQlS( f , t). (A.1)

If Ql are not exclusively selected matrices, that is,

L∑

l=1
Ql �= [1]i j , (A.2)

then there exists at least one element of
∑L

l=1 Y(ICAl)( f , t)
which does not include all of the components of Sl( f , t) (l =
1, . . . ,L). This obviously makes the left-hand side of the next
equation, which consists of (14) and (15):

X( f , t)−
L∑

l=1
Y(ICAl)( f , t) ≡ [0]m1, (A.3)

nonzero because the observed signal vector X( f , t) includes
all of the components of Sl( f , t) in each element. Accord-
ingly, Ql should be the Pl specified by (17), and we obtain

Y(ICAl)( f , t) = DlPlS( f , t). (A.4)

In (A.4) under (17), the arbitrary diagonal matrices Dl can
be substituted with diag[BPT

l ], where B = [Bij]i j is a single
arbitrary matrix, because all diagonal entries of diag[BPT

l ]
for all l’s are also exclusive. Thus,

Y(ICAl)( f , t) = diag
[
BPT

l

]
PlS( f , t). (A.5)

Substituting (A.5) into (15) leads to the following equation:

diag
[
BPT

L

]
PLS( f , t) = X( f , t)−

L−1∑

l=1
diag

[
BPT

l

]
PlS( f , t),

(A.6)

and consequently

L∑

l=1
diag

[
BPT

l

]
PlS( f , t)−X( f , t)

=
[ L∑

l=1
BklSl( f , t)

]

k1

−
[ L∑

l=1
Akl( f )Sl( f , t)

]

k1

=
[ L∑

l=1

{
Bkl − Akl( f )

}
Sl( f , t)

]

k1

= [0]k1.

(A.7)

Equation (A.7) is satisfied if and only if Bkl = Akl( f ) for all
values of k and l. Thus, (A.5) results in (16). This completes
the proof of the theorem.

B. DERIVATION OF (20)

Here, Kullback-Leibler divergence between the joint prob-
ability density function (PDF) of Y( f , t) and the product
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of marginal PDFs of Yl( f , t) is defined by KLD(Y( f , t)).
The gradient of KLD(Y(ICAL)( f , t)) with respect toW(ICAl)( f )
should be added to the iterative learning rule of the separa-
tion filter in the lth ICA (l = 1, . . . ,L−1). We obtain the par-
tial differentiation (standard gradient) of KLD(Y(ICAL)( f , t))
with respect toW(ICAl)( f ) (l = 1, . . . ,L− 1) as

∂KLD(Y(ICAL)( f , t))
∂W(ICAl)( f )

=
[
∂KLD(Y(ICAL)( f , t))

∂W (ICAL)
i j ( f )

· ∂W
(ICAL)
i j ( f )

∂W (ICAl)
i j ( f )

]

i j

=
[
∂KLD(Y(ICAL)( f , t))

∂W (ICAL)
i j ( f )

· (−1)
]

i j

,

(B.1)

where W (ICAL)
i j ( f ) is the element of W(ICAL)( f ). By replac-

ing ∂KLD(Y(ICAL)( f , t))/∂W(ICAL)( f ) with its natural gradi-
ent [33], we modify (B.1) as

− ∂KLD(Y(ICAL)( f , t))
∂W(ICAL)( f )

·WH
(ICAL)( f )W(ICAL)( f )

=
{
I− 〈

Φ
(
Y(ICAL)( f , t)

) · YH
(ICAL)( f , t)

〉
t

}

·W(ICAL)( f ).

(B.2)

By inserting (15) and the relation of W(ICAL)( f ) = I −∑L−1
l=1 W(ICAl)( f ) into (B.2), we obtain

{
I−

〈
Φ

(
X( f , t)−

L−1∑

l=1
Y(ICAl)( f , t)

)

·
(
X( f , t)−

L−1∑

l=1
Y(ICAl)( f , t)

)H〉

t

}

·
(
I−

L−1∑

l=1
W(ICAl)( f )

)
.

(B.3)

In order to deal with non-i.i.d. signals, we apply the nonholo-
nomic constraint [34] to (B.3). The natural gradient with the
nonholonomic constraint is given as

−
{
off-diag

〈
Φ

(
X( f , t)−

L−1∑

l=1
Y(ICAl)( f , t)

)

·
(
X( f , t)−

L−1∑

l=1
Y(ICAl)( f , t)

)H〉

t

}

·
(
I−

L−1∑

l=1
W(ICAl)( f )

)
.

(B.4)

Thus, the new iterative algorithm of the lth ICA part (l =
1, . . . ,L − 1) in SIMO-ICA is given by adding (B.4) into the
existing ICA equation, and we obtain (20).

C. DIFFERENCE BETWEEN SIMO-ICA AND
PROJECTION-BACKMETHOD

In the projection-back (PB) method, the following operation
is performed after (4):

Y (k)
l ( f , t) =

{
W( f )−1

[ l−1︷ ︸︸ ︷
0, . . . , 0,Yl( f , t),

L−l︷ ︸︸ ︷
0, . . . , 0

]T}

k

= (
detW( f )

)−1
Δlk · Yl( f , t),

(C.1)

where Y (k)
l ( f , t) represents the lth resultant separated source

signal which is projected back onto the kth microphone, {·}k
denotes the kth element of the argument, andΔkl is a cofactor
of the matrixW( f ).

This method is simpler than SIMO-ICA, but its inver-
sion often fails and yields harmful results because the in-
vertibility of every W( f ) cannot be guaranteed [35]. Also,
there exists another improper issue for the combination of
ICA and binary masking as shown below. In PB, spatial in-
formation (amplitude difference between directional micro-
phones) in the target signal is just similar to that in the in-
terference because the projection operator (detW( f ))−1Δlk

is applied to not only the target signal component but also
the interference component in Yl( f , t). For example, similar
to Section 3.2, (C.1) leads to

Y (k)
l ( f , t) = (

detW( f )
)−1

Δlk ·
(
Bl( f )Sl( f , t) + El( f , t)

)

= (
detW( f )

)−1
Δlk · Bl( f )Sl( f , t)

+
(
detW( f )

)−1
Δlk · El( f , t),

(C.2)

where we can assume that |(detW( f ))−1Δll| is the largest
value among |(detW( f ))−1Δlk| (k = 1, . . . ,K) for the lth
source in our directional-microphone-use scenario. Thus,
when the target signal component Sl( f , t) is not silent, bi-
nary masking can approximately extract Sl( f , t) component
because the first term in the right-hand side in (C.2) be-

comes the most dominant just in k = l among Y (k)
l ( f , t)

for all k. However, the problem is that, when Sl( f , t) is al-
most silent, binarymasking has to pick up (i.e., cannotmask)
the undesired El( f , t) component because the second term in
the right-hand side in (C.2) also becomes the most domi-
nant in k = l. This fact yields the negative result that the
PB method is not available to a residual-noise reduction pur-
pose via the combination of SIMO-model-based signals and
binary masking. In contrast to the PB method, SIMO-ICA
holds the applicability to the combination with binary mask-
ing because the separation filter of SIMO-ICA cannot al-
ways be represented in the PB form, that is, we are often
confronted with the case that the residual-noise component
in the k( �= l)th microphone has the largest amplitude even

among Y (k)
l ( f , t).
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[20] S. Rickard and Ö. Yilmaz, “On the approximate W-disjoint
orthogonality of speech,” in Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’02), vol. 1, pp. 529–532, Orlando, Fla, USA, May
2002.

[21] T. Takatani, S. Ukai, T. Nishikawa, H. Saruwatari, and K.
Shikano, “A self-generator method for initial filters of SIMO-
ICA applied to blind separation of binaural sound mixtures,”
IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, vol. E88-A, no. 7, pp. 1673–
1682, 2005.

[22] A. Poularikas, The Handbook of Formulas and Tables for Signal
Processing, CRC Press, Boca Raton, Fla, USA, 1999.

[23] R. Mukai, H. Sawada, S. Araki, and S. Makino, “Blind source
separation for moving speech signals using blockwise ICA and
residual crosstalk subtraction,” IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences,
vol. E87-A, no. 8, pp. 1941–1948, 2004.

[24] H. Buchner, R. Aichner, andW. Kellermann, “A generalization
of blind source separation algorithms for convolutive mixtures
based on second-order statistics,” IEEE Transactions on Speech
and Audio Processing, vol. 13, no. 1, pp. 120–134, 2005.

[25] T. Kobayashi, S. Itabashi, S. Hayashi, and T. Takezawa, “ASJ
continuous speech corpus for research,” The Journal of The
Acoustic Society of Japan, vol. 48, no. 12, pp. 888–893, 1992
(Japanese).

[26] J. J. R. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete-Time
Processing of Speech Signals, Wiley-IEEE Press, New York, NY,
USA, 2000.

[27] K. Itou, M. Yamamoto, K. Takeda, et al., “JNAS: Japanese
speech corpus for large vocabulary continuous speech recog-
nition research,” The Journal of The Acoustic Society of Japan,
vol. 20, no. 3, pp. 199–206, 1999.

[28] A. Lee, T. Kawahara, K. Takeda, and K. Shikano, “A new pho-
netic tied-mixture model for efficient decoding,” in Proceed-
ings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’00), vol. 3, pp. 1269–1272, Istanbul,
Turkey, June 2000.



16 EURASIP Journal on Applied Signal Processing

[29] S. B. Davis and P. Mermelstein, “Comparison of paramet-
ric representations for monosyllabic word recognition in con-
tinuously spoken sentences,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 28, no. 4, pp. 357–366, 1980.

[30] A. Lee, T. Kawahara, and K. Shikano, “Julius—an open source
real-time large vocabulary recognition engine,” in Proceed-
ings of 7th European Conference on Speech Communication
and Technology (EUROSPEECH ’01), pp. 1691–1694, Aalborg,
Danemark, September 2001.

[31] M. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Robust au-
tomatic speech recognition withmissing and unreliable acous-
tic data,” Speech Communication, vol. 34, no. 3, pp. 267–285,
2001.

[32] D. Kolossa, A. Klimas, and R. Orglmeister, “Separation and ro-
bust recognition of noisy, convolutive speech mixtures using
time-frequency masking and missing data techniques,” in Pro-
ceedings of IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA ’05), pp. 82–85, New Paltz,
NY, USA, October 2005.

[33] A. Cichocki and S. Amari, Adaptive Blind Signal and Image
Processing: Learning Algorithms and Applications, John Wiley
& Sons, West Sussex, UK, 2002.

[34] S. Choi, S. Amari, A. Cichocki, and R. Liu, “Natural gradi-
ent learning with a nonholonomic constraint for blind decon-
volution of multiple channels,” in Proceedings of 1st Interna-
tional Workshop on Independent Component Analysis and Blind
Source Separation (ICA ’99), pp. 371–376, Aussois, France, Jan-
uary 1999.

[35] T. Nishikawa, H. Saruwatari, and K. Shikano, “Stable learning
algorithm for blind separation of temporally correlated acous-
tic signals combining multistage ICA and linear prediction,”
IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, vol. E86-A, no. 8, pp. 2028–
2036, 2003.

Yoshimitsu Mori was born in Gifu, Japan,
in 1981. He received the B.E. degree in
electronic engineering from Nagoya Insti-
tute of Technology in 2004 and received the
M.E. degree in electronic engineering form
Nara Institute of Science and Technology
(NAIST) in 2006. He is now a Ph.D. student
at Graduate School of Information Science,
NAIST. His research interests include array
signal processing and blind source separa-
tion. He is a Member of the IEICE and the Acoustical Society of
Japan.

Hiroshi Saruwatari was born in Nagoya,
Japan, on 27 July, 1967. He received the B.E.,
M.E. and Ph.D. degrees in electrical engi-
neering from Nagoya University, Nagoya,
Japan, in 1991, 1993, and 2000, respectively.
He joined Intelligent Systems Laboratory,
SECOM CO., LTD., Mitaka, Tokyo, Japan,
in 1993, where he was engaged in the re-
search and development on the ultrasonic
array system for the acoustic imaging. He is
currently an Associate Professor of Graduate School of Information
Science, Nara Institute of Science and Technology. His research in-
terests include array signal processing, blind source separation, and

sound field reproduction. He received the Paper Awards from IE-
ICE in 2000 and 2006. He is a Member of the IEEE, the VR Society
of Japan, the IEICE, and the Acoustical Society of Japan.

Tomoya Takatani was born in Hyogo,
Japan, in 1977. He received the B.E. degree
in electronics from Doshisha University in
2001 and received the M.E. and Ph.D. de-
grees in electronic engineering form NAIST
in 2003 and 2006. His research interests
include array signal processing and blind
source separation. He is aMember of the IE-
ICE and the Acoustical Society of Japan.

Satoshi Ukai was born in Shiga, Japan, in
1980. He received the B.E. degree in elec-
tronic engineering from Kobe University in
2003 and received the M.E. degree in elec-
tronic engineering formNAIST in 2005. His
research interests include array signal pro-
cessing and blind source separation. He is a
Member of the Acoustical Society of Japan.

Kiyohiro Shikano received the B.S., M.S.,
and Ph.D. degrees in electrical engineer-
ing from Nagoya University in 1970, 1972,
and 1980, respectively. He is currently a
Professor of Nara Institute of Science and
Technology (NAIST), where he is direct-
ing Speech and Acoustics Laboratory. From
1972, he worked at NTT Laboratories,
where he was engaged in Speech Recogni-
tion Research. During 1986–1990, he was
the Head of Speech Processing Department at ATR Interpreting
Telephony Research Laboratories. During 1984–1986, he was a Vis-
iting Scientist in CarnegieMellon University. He received the IEICE
(Institute of Electronics, Information and Communication Engi-
neers of Japan) Yonezawa Prize in 1975, IEEE Signal Processing So-
ciety 1990 Senior Award in 1991, the Technical Development Award
from ASJ (Acoustical Society of Japan) in 1994, IPSJ (Informa-
tion Processing Society of Japan) Yamashita SIG Research Award
in 2000, Paper Award from the Virtual Reality Society of Japan in
2001, IEICE Paper Award in 2005 and 2006, and IEICE Inose Best
Paper Award in 2005. He is a Fellow Member of IEICE and IPSJ.
He is a Member of ASJ, Japan VR Society, IEEE, and International
Speech Communication Association.

Takashi Hiekata was born in Kobe, Japan,
in 1969. He received the B.E., M.E. de-
grees in Computer and Systems engineer-
ing from Kobe University in 1992 and 1994,
respectively. He joined Production Systems
Research Laboratory, KOBE STEEL, LTD.,
Kobe, Japan, where he was engaged in the
research and development on the digital sig-
nal processing. He is a Member of the IE-
ICE, and the Acoustical Society of Japan
(ASJ).



Yoshimitsu Mori et al. 17

Youhei Ikeda was born in Osaka, Japan,
in 1975. He received the B.E. degree in in-
dustrial engineering from Osaka Prefecture
University in 1999 and the M.E. degree in
information and science from Nara Insti-
tute of Science and Technology (NAIST)
in 2001. He joined Production Systems
Research Laboratory, KOBE STEEL, LTD.,
Kobe, Japan, where he was engaged in the
research and development on the digital sig-
nal processing. He is a Member of the IEICE.

Hiroshi Hashimoto was born in Hyogo,
Japan, in 1966. He received the B.E., M.E.
degrees in electrical engineering from Kobe
University in 1989 and 1991, respectively.
He joined Production Systems Research
Laboratory, KOBE STEEL, LTD., Kobe,
Japan, where he was engaged in the research
and development on the digital signal pro-
cessing.

Takashi Morita was born in Tottori, Japan,
in 1962. He received the B.E. and M.E.
degrees in control engineering from Os-
aka University in 1984 and 1986, respec-
tively. He joined Production Systems Re-
search Laboratory, KOBE STEEL, LTD.,
Kobe, Japan, where he was engaged in the
research and development on the digital sig-
nal processing.


	Introduction
	Mixing Process and Conventional BSS
	Mixing process
	Conventional ICA-based BSS
	Conventional binary-mask-based BSS

	Proposed Two-Stage BSS Algorithm
	What is SIMO-model-based ICA?
	Motivation and strategy
	Illustrative example
	Algorithm: SIMO-ICA in 1st stage
	Algorithm: SIMO-BM in 2nd stage
	Real-time implementation

	Sound Separation Experiment
	Experimental conditions
	Experimental evaluation of separation performance
	Speech recognition experiment

	Speech Separation Experiment under Noisy Conditions
	Real-Time Separation Experiment for Moving Sound Source
	Conclusion
	APPENDICES
	Unique Solution in FD-SIMO-ICA
	Derivation of (20)
	Difference between SIMO-ICA and Projection-Back Method
	Acknowledgments
	REFERENCES

