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The problem of the automatic classification of superresolution ISAR images is addressed in the paper. We describe an ane-
choic chamber experiment involving ten-scale-reduced aircraft models. The radar images of these targets are reconstructed using
MUSIC-2D (multiple signal classification) method coupled with two additional processing steps: phase unwrapping and symme-
try enhancement. A feature vector is then proposed including Fourier descriptors and moment invariants, which are calculated
from the target shape and the scattering center distribution extracted from each reconstructed image. The classification is finally
performed by a new self-organizing neural network called SART (supervised ART), which is compared to two standard classifiers,
MLP (multilayer perceptron) and fuzzy KNN (K nearest neighbors). While the classification accuracy is similar, SART is shown
to outperform the two other classifiers in terms of training speed and classification speed, especially for large databases. It is also
easier to use since it does not require any input parameter related to its structure.
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1. INTRODUCTION

Our research work has been focused for several years on ISAR
techniques and automatic target recognition (ATR) using su-
perresolution radar imagery. The anechoic chamber of EN-
SIETA and the associated measurement facilities allow us to
obtain radar signatures for various scale-reduced targets and
to reconstruct their radar images using a turntable configura-
tion. The main advantage of this type of configuration is the
capability to achieve realistic measurements, to have a per-
fect control of the target configuration, and to simplify the
interpretation of the obtained results.

We have already presented in [1] some of our significant
results on both theoretical and practical aspects related to the
application of superresolution imagery techniques. Since a
critical point for the application of these methods is the esti-
mation of the number of scattering centers (the same as the
signal subspace dimension), we have also proposed in [2] a
discriminative learning-based algorithm to perform this task.

The objective of this paper is to investigate another as-
pect, which is considered with increasing interest in the ATR
field, that is, the automatic classification of ISAR images. This
is a very challenging task for radar systems, which are gen-
erally designed to perform target detection and localization.
The power of the backscattered signal, the receiver sensitivity,
and the signal-to-noise ratio are determinants for detecting

and localizing a radar target, but are much less important for
classifying it. On the other hand, the information related to
the target shape becomes essential whenever the goal is its
classification [3]. Two conditions have to be met in order to
define an imagery based-target classification procedure:

(1) the imaging method should be able to provide the in-
formation about the target shape with a maximum of
accuracy;

(2) the classification technique should be able to exploit
the information contained by the reconstructed image.

The accuracy of the target shape is closely related to the
available spatial resolution. It is mainly given by the fre-
quency bandwidth and the integration angle domain (spatial
frequency bandwidth) when the Fourier transform is used
for performing the imaging process [4]. Actually, the cross
range resolution is limited by the integration time, which
should be short enough to avoid image defocusing due to
scattering center migration or nonuniform rotation motion
[4]. Furthermore, the choice of the weighting window always
requires a trade-off between the spatial and the dynamic res-
olutions.

For all these reasons we have decided to work with
orthogonal subspace decomposition-based imaging tech-
niques, which are able to provide high resolution, even for
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very limited angular domains and frequency bandwidths.
These methods, also known as superresolution techniques,
are mainly based on the eigenanalysis of the data covari-
ance matrix and their use is advantageous especially for ma-
neuvering or very mobile targets. One such method, called
MUSIC-2D (multiple signal classification) [5], is used in this
paper because of its effectiveness and robustness. Indeed, the
maxima corresponding to the scattering centers are readily
found by the projection of a mode vector onto the noise sub-
space. The algorithm is not very sensitive to the subspace di-
mension estimation, while a statistical analysis indicates per-
formance close to the Cramer-Rao bound on location accu-
racy [6].

The capability of the classifier to exploit the information
in the reconstructed image is assessed primarily by the clas-
sification performance. The classifier performance level de-
pends on both its structure and training process parameter
choice. From this point of view, powerful nonlinear struc-
tures like neural networks or nonparametric methods are
very attractive candidates to perform the classification. At the
same time, the number of parameters required by the train-
ing process should be reduced as much as possible and their
values should not be critical for obtaining the optimal solu-
tion.

Hence, another objective of the paper is to evaluate the
performance of a classifier we have developed recently in the
framework of ATR using feature vectors extracted from ISAR
images. This classifier, called SART (supervised ART), has
the structure of a self-organizing neural network and com-
bines the principles of VQ (vector quantization) [7] and ART
(adaptive resonance theory) [8]. The training algorithm re-
quires only a few input parameters, whose values are not crit-
ical for the classifier performance. It converges very quickly
and integrates effective rules for rejecting outliers.

The rest of the paper is organized as follows. The ex-
periment setup and the principle of the imaging process are
presented in Section 2. The extraction of the feature vector
is explained through several examples in Section 3. SART
classifier structure and training algorithm are introduced
in Section 4, while Section 5 is devoted to the presentation
and discussion of the classification results obtained using the
proposed approach. Some conclusions are finally drawn in
Section 6 together with some ideas and projections related to
our future research work.

2. EXPERIMENT DESCRIPTION AND
IMAGE ACQUISITION

The experimental setup is shown in Figure 1. The central
part of the measurement system is the vector network ana-
lyzer (Wiltron 360) driven by a PC Pentium IV by means of a
Labview 7.1 interface. The frequency synthesizer generates a
frequency-stepped signal, whose frequency band can be cho-
sen between 2GHz and 18GHz. The frequency step value
and number are set in order to obtain a given slant range
resolution and slant range ambiguity window. The echo sig-
nal is passed through a low-noise amplifier (Miteq AMF-4D-

020180-23-10P) and then quadrature detection is used by the
network analyzer to compute the complex target signature.

The ten targets used in our experiment are shown in
Figure 2. They represent aircraft scale-reduced models (1 :
48) and are made of plastic with ametallic coating. These tar-
gets are placed on a dielectric turntable, which is rotated by a
multiaxis positioning control system (Newport MM4006). It
is also driven by the PC and provides a precision of 0.01◦.

Each target is illuminated in the acquisition phase with
a frequency-stepped signal. The data snapshot contains 31
frequency steps, uniformly distributed over the Ku band
Δ f = (12, 18) GHz, which results in a frequency increment
δ f = 200MHz. The equivalent effective center frequency
and bandwidth against full-scale targets are then obtained as
312.5MHz and 125MHz, respectively.

Ninety images of each target have been generated for as-
pect angles between 0◦ and 90◦, with an angular shift between
two consecutive images of 1◦. Each image is obtained from
the complex signatures recorded over an angular sector of
10◦, with an angular increment of 1◦.

After data resampling and interpolation the following
values are obtained for the slant range and cross range res-
olutions and ambiguity windows:

ΔRs
∼= 2.5 cm, Ws

∼= 0.75m,

ΔRc
∼= 7.4 cm, Wc

∼= 0.74 m.
(1)

The main steps involved in the radar target image recon-
struction using MUSIC-2D method are given below [1]:

(1) 2D array complex data acquisition;
(2) data preprocessing using the polar formatting algo-

rithm (PFA) [4];
(3) estimation of the autocorrelationmatrix using the spa-

tial smoothing method [9];
(4) eigenanalysis of the autocorrelation matrix and identi-

fication of the eigenvectors associated to the noise sub-
space using AIC or MDL method [10];

(5) MUSIC-2D reconstruction of the radar image by pro-
jecting the mode vector onto the noise subspace in
each point of the data grid.

The flowchart of the superresolution imaging algorithm
is shown in Figure 3. Each processing stage is illustrated with
a generic example for a better understanding of the opera-
tions involved in the reconstruction process.

The main idea is to estimate the scattering center posi-
tions by searching the maxima of the function below, which
is evaluated for a finite number of points (x, y):

PMUSIC-2D(x, y) = 1
a(x, y)HVnVH

n a(x, y)
. (2)

In the equation above Vn is the matrix whose columns
are the eigenvectors corresponding to the noise subspace,
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Figure 1: Measurement system configuration.

(a) Mirage (b) Tornado (c) Rafale (d) F-16 (e) DC-3

(f) F-14 (g) Harrier (h) Jaguar (i) F-117 (j) AH-64

Figure 2: Scale-reduced aircraft models measured in the anechoic chamber.
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Figure 3: Flowchart of the imaging process using MUSIC-2D method.

and a(x, y) stands for the mode vector:
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[
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j
4π
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))
· · ·
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(
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4π
c
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(y)
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))
· · ·

exp
(
j
4π
c

(
f (x)N1−1x + f

(y)
N2−1y

))]T
,

(3)

where f (x) = f cosβ and f (y) = f sinβ define the Carte-
sian grid obtained after resampling the polar grid ( f ,β) (fre-
quency and azimuth angle), which is actually used for data
acquisition.

3. FEATURE VECTORS

Two types of features, extracted from the reconstructed im-
ages, have been used in our experiment in order to obtain a
good separation of the 10 classes. The feature extraction pro-
cess is illustrated in Figure 4 for the case of the DC-3 aircraft,
at β = 0◦.

The image issued directly from the superresolution imag-
ing algorithm is called “rough reconstructed image.” A phase
unwrapping algorithm [11] and a symmetry enhancement
technique [12] are then applied in order to improve the qual-
ity of the reconstructed image and to make the extracted fea-
tures more robust. In Figure 4 the image processed in this
way is called “reconstructed image after phase correction.”

Our hypothesis is that the information about the target
type is mainly carried by its shape and scattering center dis-
tribution. The scattering centers are first extracted using a
running mask of 3×3 pixels and a simple rule: a new scatter-
ing center is detected whenever the value of the pixel in the
center of the mask is the largest compared to its neighbors.
The target shape is then extracted using active deformable
contours or “snakes” [13]. They are edge-attracted, elastic
evolving shapes, which iteratively reach a final position, rep-
resenting a trade-off between internal and external forces.
More specifically, we used the algorithm described in [14]
since it is much less dependent than other similar techniques
on the initial solution for extracting the target contour.

Two other examples are provided in Figure 5 for the case
of the Rafale aircraft, at β = 0◦ and β = 80◦. The ex-
tracted shape and scattering centers are now superimposed
on the reconstructed image in order to give a better insight
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(b) Reconstructed image after phase correction
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(d) Contour extraction

Figure 4: Example of contour and scattering center extraction (DC-3, β = 0◦).

concerning the information provided by the two types of fea-
tures.

Finally, some more examples of scattering center extrac-
tion are shown in Figure 6. The aspect angle is varied uni-
formly from 10◦ to 90◦ and for each angular position the
scattering center distribution obtained for a different target is
represented. It is thus possible to have a general, though not
complete, image of the scattering center distribution charac-
terizing each target without exhaustive use of graphical rep-
resentations.

The target shape and scattering center distribution ex-
tracted as shown above cannot be used directly for feeding
the classifier. Because of little a priori knowledge about tar-
get orientation, the feature vector should be rotation and
shift invariant. We propose such a feature vector combining
Fourier descriptors calculated from the target shape and mo-
ment invariants evaluated from the scattering center distri-
bution.

Indeed, Fourier descriptors [15] are invariant to the
translation of the shape and are not affected by rotations

or a different starting point. Let γ(l) = x(l) + j y(l) define
the curve of length L describing the target shape. The cor-
responding Fourier descriptors are then computed using the
following relationship:

FD(n)

= L

(2πn)2

m∑
k=1

b(k − 1)
(
e− j(2π/L)nl(k) − e− j(2π/L)nl(k−1)

)
,

(4)

where l(k) =∑k
i=1 |γ(i)−γ(i−1)|, with l(0) = 0, and b(k) =

(γ(k + 1)− γ(k))/|γ(k + 1)− γ(k)|.
Only the first 5 Fourier descriptors have been included in

the feature vector. Increasing their number makes the feature
vector more sensitive to noise without a significant improve-
ment of its discriminant capability.

Just like the Fourier descriptors, the moment invariants
do not depend on the target translation or rotation. Zernike
moment-based invariants [16] or moment invariants intro-
duced by Hu [17] have been the most widely used so far. In
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Figure 5: Examples of contour and scattering center extraction: (a) Rafale, β = 10◦, (b) Rafale, β = 80◦.

our experiment we have used the three-dimensional moment
invariants defined in [18], which have shown both good dis-
criminant capability and noise robustness:

J1 = μ200 + μ020 + μ002,

J2 = μ200μ020 + μ200μ002 + μ020μ002 − μ2110 − μ2101 − μ2011,

J3 = μ200μ020μ002 + 2μ110μ101μ011 − μ002μ
2
110

− μ020μ
2
101 − μ200μ

2
011,

(5)

where

μpqr =
Nsc∑
m=1

Ψ
(
xm, ym, zm

)(
xm − x̄

)p(
ym − ȳ

)q(
zm − z̄

)r
.

(6)

Nsc stands for the number of scattering centers, (x̄, ȳ, z̄)
represents the target centroid, while Ψ(xm, ym, zm) is the in-
tensity of themth scattering center.

Actually, our scattering center distributions are bidimen-
sional. So, J3 = 0, and only J1 and J2 are added to the feature
vector, which has 7 components in its final form. An exam-
ple is provided in Figure 7 to illustrate the rotation and shift
invariance of the feature vector.

4. SART CLASSIFIER

ART is basically a class of clustering methods. A clustering
algorithm maps a set of input vectors to a set of clusters ac-
cording to a specific similarity measure. Clusters are usually
internally represented using prototype vectors. A prototype
is typical of a group of similar input vectors defining a cluster.
Both the clusters and the associated prototypes are obtained
using a specific learning or training algorithm.

All classifiers are subject to the so-called stability-plas-
ticity dilemma [19]. A training algorithm is plastic if it retains
the potential to adapt to new input vectors indefinitely and it
is stable if it preserves previously learned knowledge.

Consider, for instance, the case of a backpropagation
neural network. The weights associated with the network
neurons reach stable values at the end of the training process
which is aimed to minimize the learning error and to max-
imize the generalization capability. The number of required
neurons is minimized because all of them pull together to
form the separating surface between each couple of classes.
However, the classification accuracy of those types of neural
networks will rapidly decrease whenever the input environ-
ment changes. In order to remain plastic, the network has
to be retrained. If just the new input vectors are used in this
phase, the old information is lost and the classification accu-
racy evaluated on the old input vectors will rapidly decrease
again. So, the algorithm is not stable and the only solution
is to retrain the network using each time the entire database.
It is obviously not a practical solution since the computation
burden increases significantly.

ART was conceived to provide a suitable solution to
the stability-plasticity dilemma [20]. Two unsupervised ART
neural networks were first designed: ART-1 [19] for bi-
nary input vectors and ART-2 [21] for continuous ones as
well. Several adaptations have then been proposed: ART-
3 [22], ART-2a [23], ARTMAP [24], fuzzy ART [25], and
fuzzy ARTMAP [26]. Some other unsupervised neural net-
works have also been inspired by ART principle such as
SMART (self-consistent modular ART) [27], HART (hier-
archical ART) [28], or CALM (categorizing and learning
model) [29].

SART (supervised ART) [30] is a classifier similar to ART
neural networks, but it is designed to operate in a supervised
framework. It has the capability to learn quickly using local
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(i) AH-64, β = 90◦

Figure 6: Examples of superresolution images after scattering center extraction.

approximations of each class distribution and its operation
does not depend on any chosen parameter. A prototype set
is first dynamically created and modified according to the al-
gorithm that will be described below. It is very similar to the
Q∗-algorithm [31], but provides a better generalization ca-
pability.

Let us denote by x
( j)
k the kth input vector belonging to

the class j and p
( j)
k the kth prototype associated to this class.

Each class Cj = {x( j)k }k=1,...,Nj is represented by one or several

prototypes {p( j)k }k=1,...,Pj which approximate themodes of the
underlying probability density function, with Nj and Pj be-
ing the number of vectors and of the prototypes correspond-
ing to the class j. These prototypes play the same role as the

codebook vectors for an LVQ (learning vector quantization)
neural network [32] or the hidden layer weight vectors for an
RBF (radial basis function) neural network [33].

The training algorithm starts by randomly setting one
prototype for each class. The basic idea is to create a new pro-
totype for a class whenever the actual set of prototypes is no
longer able to classify the training data set satisfactorily using
the nearest prototype rule:

∥∥x − p(i)l
∥∥ = min

j=1,...,M, k=1,...,Nj

∥∥x − p
( j)
k

∥∥ =⇒ x ∈ Ci. (7)

If, for example, the vector x previously classified does not
actually belong to the class Ci, but to another class, say Cr ,
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Figure 7: Rotation and shift invariance of the feature vector—example for AH-64 at (a,c) β = 90◦ and (b,d) β = 10◦. (a) Original target.
(b) Shifted and rotated target. (c) Feature vector extracted from the original target. (d) Feature vector extracted from the shifted and rotated
target.

then a new prototype p(r)Nr+1 = x will be added to the list of
prototypes of the class Cr .

Let card denote the cardinal number of a given set. Con-

sider A(i)
l the input vector set well classified with respect to

the prototype p(i)l . The prototypes are updated during each
epoch using themean of the samples which are correctly clas-
sified by each of them:

p(i)l = 1

card
{
A(i)
l

} ∑
xm∈A(i)

l

xm (8)

with

A(i)
l =

{
x(i)m | ∥∥x(i)m − p(i)l

∥∥ = min j=1,...,M, k=1,...,Nj

∥∥x(i)m − p
( j)
k

∥∥}.
(9)

A prototype is cancelled if it does not account for a min-
imum number of well-classified training vectors because this
suggests it is unduly influenced by outliers:

card
{
A(i)
l

} ≤ Nt =⇒ p(i)l is cancelled. (10)

This iterative learning process continues as long as the
number and the location of the prototypes change. The cor-
responding flowchart is shown on the left side of Figure 8.
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Figure 8: SART learning process flowchart.

An important property of the described algorithm is that
it needs no initial system parameter specifications and no
prespecified number of codebook or center vectors. Indeed,
unlike the RBF or LVQ neural network, the number and the
final values of the prototypes are automatically found during
the training process for the SART classifier.

The prototypes calculated in this way will be the weight
vectors of the hidden layer neurons of SART as indicated in
Figure 9. So, the number of the neurons on the hidden layer
is equal to the number of prototypes, denoted by L in this
figure.

Each hidden neuron computes the distance between the
test vector x and the associated prototype. This distance is
then normalized in order to take into account the different
spreads of the clusters represented by the prototypes:

d̃k = dk
dkmax

=
∥∥x− pk

∥∥
dkmax

, (11)

where

dkmax = max
xi∈Ak

∥∥xi − pk
∥∥. (12)

The outputs of the neurons from the hidden layer are fi-
nally calculated using the following relationship:

yk = f
(
d̃k
) = (1 + d̃2k

)−1
. (13)

The activation function f is close to a Gaussian one, but
is easier to compute. While its value can vary between 0 and
1 only the input vectors belonging to the neuron’s cluster are
able to produce values above 0.5. Indeed, it can be readily
seen that at the cluster boundaries the activation function
equals 0.5:

f
(
d̃k
) | dk=dkmax = f (1) = 0.5. (14)

Hence, f can also be seen as a cluster membership func-
tion since its value clearly indicates whether an input vector
is inside or outside the cluster.

The output layer of SART is a particular type of linear
neural network, called MADALINE (multiple adaptive linear
network) [32]. It is aimed at combining the hidden layer out-
puts {yk}k=1,...,L, such that only one output neuron represents
each class. Let tm and om denote the target and real outputs
for the mth neuron of this layer. The Widrow-Hoff rule [34]
used to train this layer can then be expressed in the following
form:

Δwmk = η
(
tm − om

)
yk,

Δbm = η
(
tm − om

)
,

(15)

where {wmk}m=1,...,M, k=1,...,L and {bm}m=1,...,M stand for the
weights and biases of the neurons from the output layer,M is
the number of classes, and η is the learning rate.

5. CLASSIFICATION RESULTS

A database containing 900 feature vectors has been gener-
ated by applying the approach described in Section 3 to the
superresolution images of the ten targets, reconstructed as
indicated in Section 2. SART classifier has then been used to
classify them. Two other classifiers have also been used for
comparison: a multilayer perceptron (MLP) [33] and a fuzzy
KNN (K nearest neighbor) classifier [35].

The results reported here have been obtained using the
LOO (leave one out) [36] performance estimation technique,
which provides an almost unbiased estimate of the classifica-
tion accuracy. According to this method, at each step all the
input vectors are included in the training set, except for one.
It serves to test the classifier when its training is finished. This
procedure is repeated so that each input vector plays once
and exclusively the role of the test set. The classifier will be
roughly the same each time since there is little difference be-
tween two training sets. At the end of the training process
the confusion matrix is directly obtained from these partial
results.
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Figure 9: SART neural network structure.

Table 1: Confusion matrix for MLP classifier.

Output class

Input class

Mirage Tornado Rafale F-16 DC-3 F-14 Harrier Jaguar F-117 AH-64

Mirage 81 1 2 2 0 0 2 1 0 1

Tornado 1 83 1 2 0 2 1 0 0 0

Rafale 3 0 82 2 0 0 1 1 0 1

F-16 1 1 3 82 0 0 2 1 0 0

DC-3 0 2 0 0 85 0 0 0 3 0

F-14 0 2 0 1 1 84 0 0 2 0

Harrier 2 0 1 2 0 0 83 2 0 0

Jaguar 1 0 1 1 0 0 3 83 0 1

F-117 0 1 0 0 2 2 0 0 85 0

AH-64 1 0 0 1 0 0 0 2 0 86

The training parameters for the 3 classifiers have been
chosen to maximize the mean classification rate. For the
fuzzy KNN classifier the training stage is equivalent to a
fuzzyfication procedure, where the membership coefficients
for each class are calculated for all the training vectors.

Let VK (x) be the Kth order neighborhood of the vector
x. We have used the following relationship to calculate the
membership coefficient of the training vector xl for the class
Cj :

ujl =
K (l)

j

KF
, K (l)

j = card
{
x
( j)
n | x( j)n ∈ VKF

(
xl
)}
. (16)

In the equation above x
( j)
n is the nth training vector of

the class Cj , KF defines the neighborhood value during the

training stage, while K (l)
j stands for the number of the near-

est neighbors of the vector xl belonging to the class Cj . In
our experiment we have used KF = 15. The same number
of nearest neighbors has also been considered to make the
decision in the classification phase.

The training process of SART has resulted with an op-
timum number of 47 prototypes. Consequently, SART neu-
ral network has been designed with 47 neurons on the hid-
den layer and 10 neurons on the output layer. A learning rate
η = 0.1 has been set for the output layer.

The same number of layers and neurons are considered
for theMLP. The activation function for both the hidden and
the output layer is of log-sigmoid type. MLP is trained using
the gradient descent with momentum and adaptive learning
rate backpropagation algorithm. The learning rate reference
value is 0.01, while the momentum constant is 0.9.

The classification results obtained with the 3 classifiers
are presented on Tables 1 to 4. Tables 1 to 3 give the confusion
matrix for each classifier. The kth diagonal element of such a
matrix indicates the number of images that are correctly clas-
sified for the class k. Any other element, corresponding, for
example, to the row k and the column j, gives the number
of images from the class k, which are classified in the class
j. Note that the sum of the elements of the row k equals the
number of images belonging to the class k (recall that each
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Table 2: Confusion matrix for fuzzy-KNN classifier.

Output class

Input class

Mirage Tornado Rafale F-16 DC-3 F-14 Harrier Jaguar F-117 AH-64

Mirage 80 1 1 3 0 0 2 3 0 0

Tornado 1 86 1 0 0 2 0 0 0 0

Rafale 2 0 82 3 0 0 1 2 0 0

F-16 3 1 4 81 0 0 0 1 0 0

DC-3 0 0 0 0 88 0 0 0 2 0

F-14 0 1 0 0 0 88 0 0 1 0

Harrier 2 0 0 0 0 0 85 3 0 0

Jaguar 2 0 0 1 0 0 2 84 0 1

F-117 0 2 0 0 1 2 0 0 85 0

AH-64 0 0 0 1 0 0 0 2 0 87

Table 3: Confusion matrix for SART classifier.

Output class

Input class

Mirage Tornado Rafale F-16 DC-3 F-14 Harrier Jaguar F-117 AH-64

Mirage 81 1 2 1 0 0 3 2 0 0

Tornado 1 85 1 0 0 2 0 0 1 0

Rafale 2 0 82 3 0 0 1 2 0 0

F-16 3 1 2 83 0 0 0 1 0 0

DC-3 0 0 0 0 87 1 0 0 2 0

F-14 0 1 0 0 0 88 0 0 1 0

Harrier 1 0 1 1 0 0 85 2 0 0

Jaguar 1 0 1 1 0 0 2 85 0 0

F-117 0 1 0 0 2 1 0 0 86 0

AH-64 1 0 0 1 0 0 0 2 0 86

Table 4: Mean classification rate for each classifier.

MLP KNNF SART

92.67% 94% 94.22 %

class contains 90 images). The classification rate for the class
k is then obtained as the ratio between the kth diagonal ele-
ment and the sum of the elements of the row k. The classifi-
cation rates obtained in this way for each classifier and each
class are illustrated in Figure 10. Finally, the mean classifica-
tion rates for the 3 classifiers are provided in Table 4. These
values are obtained by averaging the classification rates over
the 10 classes.

The 3 classifiers have also been compared in terms of
training and classification speed. The results indicated in
Figure 11 have been obtained on a PC Pentium IV, operat-
ing at 1800MHz. We have used 3 Gaussian classes having the
same number of training and test vectors. Both training and
classification times have been measured for 6 values of the
training/test vectors: 100, 500, 1000, 1500, 2000, and 2500, as
indicated in Figure 11.

Although the classification accuracy for SART, as sum-
marized in Table 4, is slightly better than that for the two
other classifiers tested, the performances of all three classi-
fiers are similar. Nevertheless, thanks to its neural network
structure, SART classification times are very close to those

obtained for the MLP and much shorter than those obtained
for the fuzzy KNN classifier. On the other hand, SART al-
ways learns faster than MLP and it learns faster than fuzzy
KNN too, whenever the number of training vectors is large
(over 1000 vectors in our experiment).

6. CONCLUSION

An end-to-end application is described in the paper for the
supervised self-organizing classification of superresolution
ISAR images. The proposed approach is suitable for the clas-
sification of radar targets measured in an anechoic chamber.

All the images are obtained using MUSIC-2D method,
which is an effective and easy-to-use orthogonal subspace
decomposition-based imaging technique. It is able to provide
superresolution and to accurately recover the scattering cen-
ter locations even for a small number of correlated samples.

The two types of features extracted from the recon-
structed images, Fourier descriptors and moment invariants,
ensure a good separation of imaged targets. Since these fea-
tures are invariant to the target position and orientation, the
database is highly compressed.

SART neural network, used for the classification stage,
combines the vector quantization and the adaptive reso-
nance theory principles, which results in a powerful self-
organizing neural network structure. The particular form of
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Figure 11: Training and classification speeds for fuzzy KNN, MLP, and SART classifiers.

the threshold function and the supervised procedure used to
determine the prototypes and the associated clusters allow
for an adaptive partition of the input space vectors. This re-
sults in a fast and fully automatic training process thus pro-
viding high classification rate, good generalization capability,
and reinforced protection against outliers. Furthermore, it is
effective and easy to use because it requires only a few input
parameters whose values are not critical for its performance.
SART has been compared to a multilayer perceptron and to a
fuzzy KNN classifier. While the mean classification rates pro-
vided by the 3 classifiers are close, SART learns more rapidly
than MLP and classifies much faster than Fuzzy KNN.

For future work we intend to address the classification
problem described in this paper when the pitch and roll mo-

tion components of the radar target are also considered. The
basic idea would be to train the classifier with a vector set
issued from a discretization of the whole three dimensional
angular domain rather than for azimuth aspects only. In this
way the recognition system should be able to classify the tar-
gets irrespective of their orientation in the three dimensional
space. Another interesting idea would be to extend this work
to higher frequencies, consistent with microwave frequencies
on full-sized targets (S-band or X-band, e.g.).
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