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We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image
frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a
Markov random field (MRF), and a maximum a posteriori (MAP) estimation technique is used for the restoration. We show that
with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transforms. We
also apply the preconditioned conjugate gradient method to restore high-resolution images in the aperiodic boundary condition.
Computer simulations are given to illustrate the effectiveness of the proposed approach.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Image sequence super-resolution refers to methods that in-
crease spatial resolution by fusing information from a se-
quence of images (with partial overlap in successive elements
or frames in, e.g., video), acquired in one or more of sev-
eral possible ways. For brevity, in this context, either the term
super-resolution or high resolution is used to refer to any algo-
rithm which produces an increase in resolution from multi-
ple low-resolution degraded images. At least, two nonidentical
images are required to construct a higher-resolution version.
The low-resolution frames may be displaced with respect to
a reference frame (Landsat images, where there is a consid-
erable distance between camera and scene), blurred (due to
causes like optical aberration, relative motion between cam-
era and object, atmospheric turbulence), rotated and scaled
(due to video camera motion like zooming, panning, tilting),
and, furthermore, those could be degraded by various types
of noise like signal-independent or signal-dependent, multi-
plicative or additive.

Due to hardware cost, size, and fabrication complex-
ity limitations, imaging systems like charge-coupled device
(CCD) detector arrays often provide only multiple low-
resolution degraded images. However, a high-resolution im-
age is indispensable in applications including health diagno-
sis and monitoring, military surveillance, and terrain map-
ping by remote sensing. Other intriguing possibilities in-

clude substituting expensive high-resolution instruments like
scanning electronmicroscopes by their cruder, cheaper coun-
terparts and then applying technical methods for increasing
the resolution to that derivable withmuchmore costly equip-
ment. Resolution improvement by applying tools from digi-
tal signal processing technique has, therefore, been a topic of
very great interest [1–15]. The attainment of image super-
resolution was based on the feasibility of reconstruction of
two-dimensional bandlimited signals fromnonuniform sam-
ples [16] arising from frames generated by microscanning,
that is, subpixel shifts between successive frames, each of
which provides a unique snapshot of a stationary scene.

In 1990, Kim et al. [8] proposed a weighted recur-
sive least-squares algorithm based on sequential estima-
tion theory in the Fourier transform or wavenumber do-
main for filtering and interpolating with the objective of
constructing a high-resolution image from a registered se-
quence of undersampled, noisy, and blurred frames, dis-
placed horizontally and vertically from each other (suf-
ficient for Landsat-type-imaging). Kim and Su [17] in-
corporated explicitly the deblurring computation into the
high-resolution image reconstruction process since separate
deblurring of input frames would introduce the undesir-
able phase and high wavenumber distortions DFT of those
frames. A discrete-cosine-transform (DCT) -based approach
in the spatial domain with regularization, but without the
recursive updating feature of [8], was recently considered in
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[11] and an optimization-theory-based approach with reg-
ularization was given in [5]. Bose et al. adapted a recursive
total least-squares (TLSs) algorithm to tackle high-resolution
reconstruction from low-resolution noisy sequences with
displacement error during image registration [18]. A theory
was advanced, through variance analysis, to assess the ro-
bustness of this TLS algorithm for image reconstruction [19].
Specifically, it was shown that with appropriate assumptions,
the image reconstructed using the TLS algorithm has min-
imum variance with respect to all unbiased estimates. The
most recent activities following the paper published in 1990
[8] in this vibrant area are summarized in some typical pa-
pers [20] (galactical image, X-ray image, satellite image of
hurricane, city aerial image, CAT-scan of thoracic cavity),
[21] (digital electron microscopy), [22] (super-resolution in
magnetic resonance imaging) that serve to offer credence to
the immense scope, diversity of applications, and the impor-
tance of the subject matter.

A different approach towards super-resolution from that
in [8] was suggested in 1991 by Irani and Peleg [6], who
used a rigid model instead of a translational model in the im-
age registration process and then applied the iterative back-
projection technique from computer-aided tomography. A
summary of these and other research during the last decade
is contained in a recent paper [23]. Mann and Picard [24]
proposed the projective model in image registration because
their images were acquired with a video camera. The projec-
tive model was subsequently used by Lertrattanapanich and
Bose [25] for video mosaicing and high resolution.

An image acquisition system composed of an array of
sensors, where each sensor has a subarray of sensing elements
of suitable size, has recently been popular for increasing the
spatial resolution with high signal-to-noise ratio beyond the
performance bound of technologies that constrain the man-
ufacture of imaging devices. The technique for reconstruct-
ing a high-resolution from data acquired by a prefabricated
array of multisensors was advanced by Bose and Boo [1],
and this work was further developed by applying total least
squares to account for error not only in observation but also
due to error in estimation of parameters modeling the data
[26]. The method of projection onto convex sets (POCS)
has been applied to the problem of reconstruction of a high-
resolution image from a sequence of undersampled degraded
frames. Sauer and Allebach applied the POCS algorithm to
this problem subject to the blur-free assumption [27]. Stark
and Oskoui [13] applied POCS in the blurred but noise-free
case. Patti et al. [14] formulated a POCS algorithm to com-
pute an estimate from low-resolution images obtained by ei-
ther scanning or rotating an image with respect to the CCD
image acquisition sensor array or mounting the image on a
moving platform [5].

Nonuniform spacing of the data samples in frames is
at the heart of super-resolution, and this may be coupled
with presence of data dropouts or missing data. In early re-
search, Ur and Gross [28] discussed a nonuniform inter-
polation scheme based on the generalized sampling theo-
rem of Papoulis and Brown [28] while Jacquemod et al. [7]
proposed interpolation followed by least-squares restoration.
Thewavelet basis offers considerable promise in the fast inter-

polation of unevenly spaced data. Motivated by the promise
of wavelets, a couple of papers on wavelet super-resolution
have appeared [29–31]. These papers use only first generation
wavelets and also do not subscribe to the need for selecting
the mother wavelet to optimize performance.

In this paper, we focus on the problem of reconstructing
a high-resolution image from several blurred low-resolution
image frames. The image frames consist of decimated,
blurred, and noisy versions of the high-resolution image
[32, 33]. The high-resolution image is modeled as a Markov
random field (MRF), and amaximum a posteriori (MAP) es-
timation technique is used for the restoration. We propose to
use the preconditioned conjugate gradient method [34] in-
stead to optimize the MAP objective function. We show that
with the periodic boundary condition, the high-resolution
image can be restored efficiently by using fast Fourier trans-
forms (FFTs). In particular, an n-by-n high-resolution image
can be restored by using two-dimensional FFTs inO(n2 logn)
operations. We remark that such approach has been pro-
posed and studied by Bose and Boo [1] for high-resolution
image reconstruction. Here, we consider amore general blur-
ring matrix in the image reconstruction. By using our results,
we construct a preconditioner for solving the linear system
arising from the optimization of the MAP objective function
when other boundary conditions are considered. Both the-
oretical and numerical results show that the preconditioned
conjugate gradient method converges very quickly, and also
the high-resolution image can be restored efficiently by the
proposed method.

In our proposed method, we have assumed that the blur
kernel is known.However, when the blur kernel is not known,
the problem of multiframe blind deconvolution occurs. A
promising approach to multiframe blur identification was
proposed by Biggs andAndrews [35]. Their iterative blind de-
convolution method uses the popular Richardson-Lucy algo-
rithm. Further generalization of the result in [35] to include
not only multiple blur identifications but also support esti-
mation of blurs (the blur supports were assumed to be either
known a priori or determined by trial and error) has recently
been completed in [36] and used in blind super-resolution.
The problem of super-resolved depth recovery from defo-
cused images by blur parameter estimation in the task of im-
age super-resolution has been reported in [37].

The outline of the paper is as follows. In Section 2, we
briefly give a mathematical formulation of the problem. In
Section 3, we study how to use fast Fourier transforms to
restore high-resolution images efficiently. Finally, numerical
results and concluding remarks are given in Section 4.

2. MATHEMATICAL FORMULATION

In this section, we give an introduction to the mathematical
model for the high-resolution image restoration. Let us con-
sider the low-resolution sensor plane with m-by-m sensors
elements. Suppose that the downsampling parameter is q in
both the horizontal and vertical directions. Then the high-
resolution image is of size qm-by-qm. The high-resolution
image Z has intensity values Z = [zi, j], for i = 0, . . . , qm− 1,
j = 0, . . . , qm− 1. The high-resolution image is first blurred
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by a different, but known linear space-invariant blurring
function. They have the following relation:

ẑi, j = h(i, j)∗ zi, j , (1)

where h(i, j) is a blurring function and “∗” denotes the dis-
crete convolution.

The low-resolution image Y has intensity values Y =
[yi, j], for i = 0, . . . ,m − 1, j = 0, . . . ,m − 1. The relation-

ship between Y and ̂Z can be written as follows:

yi, j = 1
q2

(i+1)m
∑

l=im+1

( j+1)m
∑

k= jm+1

ẑl,k. (2)

We consider the low-resolution intensity to be the average of
the blurred high-resolution intensities over a neighborhood
of q2 pixels.

Let z be a vector of size q2m2-by-1 containing the inten-
sity of the high-resolution image Z in a chosen lexicographi-
cal order. Let yi be them2-by-1 lexicographically ordered vec-
tor containing the intensity value of the blurred, decimated,
and noisy image Yi. Then, the matrix form can be written as
(far-field imaging)

yi = DHiz + ni, (3)

where D is a (real-valued) decimation matrix of size m2-by-
q2m2,Hi is a real-valued blurringmatrix (due to atmospheric
turbulence, e.g.) of size q2m2-by-q2m2, and ni is an m2-by-
1 noise vector. The decimation matrix D has the form (q
nonzero elements, each of value 1/q2 in each row)

D = 1
q2

⎛

⎜

⎜

⎜

⎜

⎝

1 · · · 1 0
1 · · · 1

. . .
0 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎠

. (4)

The noise vector ni is assumed to be zero-mean independent
and identically distributed of the form

P
(

ni
) = 1

(2π)m2/2σm2 e
−(1/2σ2)nTi ni . (5)

By using a MAP estimation technique [33], we find that the
cost function of this model is given by

min
z

{ p
∑

i=1

∥

∥yi −DHiz
∥

∥

2
2 + α‖Lz‖22

}

, (6)

where p is the number of observed low-resolution images, α
is a regularization parameter, and L is the first-order finite-
difference matrix, and LTL is the discrete Laplacian matrix.
In the above formulation, the noise variance term is absorbed
in the regularization parameter α. The minimization of the
cost function (6) is equivalent to the solving of the following
linear system:

( p
∑

i=1
HT

i D
TDHi + αLTL

)

z =
p
∑

i=1
HT

i D
Tyi. (7)

In the next section, we will discuss the coefficient matrix of
the linear system (7) and suggest an algorithm to solve the
above system efficiently.
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Figure 1: Example of Theorem 1 form = 4 and q = 2.

3. ANALYSIS FOR PERIODIC BLURRINGMATRICES

In this section, we discuss the linear system (7) for periodic
blurring matrices, that is, the blurring matrix Hi under the
periodic boundary condition. Then the linear system (7) be-
comes

( p
∑

i=1
CT
i D

TDCi + αLTc Lc

)

z =
p
∑

i=1
CT
i D

Tyi, (8)

where Ci is a block-circulant-circulant-block (BCCB) blur-
ring matrix and LTc Lc is a Laplacian matrix in BCCB struc-
ture.

Notice that CT
i D

TDCi is singular for all i sinceDCi is not
of full rank, and LTc Lc is positive semidefinite but it has only
one zero eigenvalue. The corresponding eigenvector is equal
to 1 = (1, . . . , 1)T , that is,

( p
∑

i=1
CT
i D

TDCi + αLTc Lc

)

1 =
( p
∑

i=1
CT
i D

TDCi

)

1 �= 0. (9)

This shows that the coefficient matrix
∑p

i=1 C
T
i D

TDCi +
αLTc Lc is nonsingular. Therefore, the system (8) can be
uniquely solved and the high-resolution image can be re-
stored.

3.1. Decomposition of coefficientmatrix

In this subsection, we discuss the coefficient matrix of the
linear system (8). Similar to the previous case, the coefficient
matrix consists of two parts: the blurred down/upsampling
matrix

∑p
i=1 C

T
i D

TDCi and the regularization matrix αLTc Lc.
Since the regularization matrix αLTc Lc is a BCCB matrix,

we can use the tensor product R2 = Fmq ⊗ Fmq (where Fmq is
the complex-valued discrete Fourier transformmatrix of size
mq-by-mq) to diagonalize LTc Lc,

ΛLc = R2LTc LcR
∗
2 . (10)
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Figure 2: The structure of the matrix RSR∗ + αΛLc .

Note that the asterisk superscript denotes complex conjugate
transpose of the matrix.

The first part
∑p

i=1 C
T
i D

TDCi of the coefficientmatrix has
a multilevel structure so that it cannot be diagonalized di-
rectly by R2 = Fmq ⊗ Fmq. However, we can permute this
matrix into the circulant-block matrix

E = P1

( p
∑

i=1
CT
i D

TDCi

)

PT
1 =

⎛

⎜

⎜

⎜

⎜

⎝

A1,1 A1,2 . . . A1,q

A2,1 A2,2 . . . A2,q
...

...
. . .

...
Aq,1 Aq,2 . . . Aq,q

⎞

⎟

⎟

⎟

⎟

⎠

, (11)

where P1 is a permutation matrix and Ai, j is of size qm2-by-
qm2. Each Ai, j can be partitioned into q-by-q BCCB matri-
ces, that is,

Ai, j =

⎛

⎜

⎜

⎜

⎜

⎝

B1,1 B1,2 . . . B1,q

B2,1 B2,2 . . . B2,q
...

...
. . .

...
Bq,1 Bq,2 . . . Bq,q

⎞

⎟

⎟

⎟

⎟

⎠

, (12)

where Bi, j is of size m2-by-m2. It follows that the matrix E
in (11) can be block-diagonalized by the tensor product of
the complex-valued discrete Fourier transform matrix R1 =
Iq2 ⊗ Fm ⊗ Fm. Then, we have the block-diagonal matrix S =
R1ER∗1 . The system (7) becomes

(

RSR∗ + αΛLc

)

R2z = R2

p
∑

i=1
CT
i D

Tyi, (13)

where R = R2(R1P1)∗. Next, we will show that the matrix R
is a sparse matrix.

Theorem 1. Let Fn be the n-by-n discrete Fourier matrix and
let In be the identity matrix of size n-by-n. Then,

R2P∗1 R
∗
1

⎧

⎨

⎩

�= 0, a− l = 0(modm), x − y = 0(modm),

= 0 otherwise,

(14)
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Figure 3: The structure of the matrix RSR∗ + αΛLc after permuta-
tion.

(a) (b)

Figure 4: (a) The cameraman and (b) the bridge.

where R1 = Iq2 ⊗ Fm ⊗ Fm, R2 = Fmq ⊗ Fmq, and P1 is a
permutation matrix. For those nonzero entries, they are given
by

m2e(−2πi[(a−1)(k−1)+(x−1)(t−1)])/mq. (15)

Here x and y are the row and column indices of the matrix
R2P∗1 R

∗
1 , respectively, with l = r(b,m + 1) + 1, with b =

ymodm2 for y �= m2 otherwise b = m2, a = r(x, qm + 1) + 1,
k = r(y,m2 + 1) + 1, t = kmod q for k = nq otherwise t = q,
and r(c,d) denotes the integral part of c/d.

The proof of this theorem is given in the appendix. This
theorem shows that R is a sparse matrix. Figure 1 demon-
strates the sparsity of the matrix R whenm = 4 and q = 2.

The dot represents the nonzero entries in the matrix R.
By using Theorem 1, the nonzero entries of the matrix R can
be precomputed with a low computational cost.

According to Theorem 1, the structure of R can be de-
scribed as follows. The matrix R can be considered as a q-
by-q2 block matrix and the size of each block matrix is qm2-
by-m. Each block matrix has the same structure. In particu-
lar, each block matrix can be again considered as anm-by-m
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(a) (b) (c) (d)

Figure 5: The formation of observed low-resolution image: (a) the original image; (b) the blurred image; (c) the decimated and blurred
image; (d) the decimated and blurred noisy image.

(a) (b) (c)

Figure 6: (a) The blurred low-resolution image with γ = 5 and noise level = 40dB, (b) and its restored images with α = 0.1 (relative error
= 0.11903), and (c) α = 0.5 (relative error = 0.12252).

block matrix and the size of each block is qm-by-m. In this
level, all the blocks are just zero matrices except the main di-
agonal blocks. Such diagonal block matrices are q-by-1 block
with block-diagonal matrix of sizem-by-m. According to this
nice structure, there are at most m nonzero entries in each
row and each column of R, and it implies that R is a sparse
matrix.

3.2. The computational algorithm

By using Theorem 1 and the fact that S is a block-diagonal
matrix, it is clear that the matrix R∗SR is sparse, and there-
fore the matrix R∗SR + αΛLc is also sparse. In Figure 2, we
present a structure of the resultant matrix for m = 8 and
q = 2.

We find that the resultant matrix can be partitioned into
q-by-q block matrices of size qm2-by-qm2. Due to the struc-
ture of R, each block matrix is a banded matrix with band-
width (q − 1)m + 1. Then, we can permute those nonzero
entries of the resultant matrix such that the permuted matrix
becomes a block-diagonal matrix. Each blockmatrix is of size
q2-by-q2. Therefore, the linear system (8) can be expressed as
a block-diagonalized system of decoupled subsystems. Thus,
linear equations can be computed by solving a set of m2 de-
coupled q2-by-q2 matrix equations. We show the resultant

matrix in Figure 3 after permutation of Figure 2. We sum-
marize the algorithm as follows:

(i) input {Yi}, {Ci}, q, and α;
(ii) compute S and ΛLc ;
(iii) compute R by using Theorem 1;
(iv) compute RSR∗ + αΛLc ;
(v) compute the inverse of RSR∗ + αΛLc ;
(vi) output the reconstructed high-resolution image Z.

Table 1 shows the computational cost of each matrix
computation of the above algorithm.

We note that m � q, therefore for an qm-by-qm high-
resolution image, the complexity of the proposed algorithm
is O(q2m2 log qm) operations.

4. APERIODIC BLURRINGMATRICES

For the aperiodic boundary condition, we denote that Ti is
the block-Toeplitz-Toeplitz-block matrix, and denote LTe Le
to be the discrete Laplacian matrix with the zero boundary
condition. Then, the system (7) becomes

( p
∑

i=1
TT
i D

TDTi + αLTe Le

)

z =
p
∑

i=1
TT
i D

Tyi. (16)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Nine blurred low-resolution images with γ = 3.4, 3.8, 4.2, 4.6, 5, 5.4, 5.8, 6.2, 6.6 and noise level = 40dB.

In this case, we employ a circulant matrix Ci to approximate
the Toeplitz matrix Ti. Similarly, we use LTc Lc to be the dis-
crete Laplacian matrix with the periodic boundary condition
to approximate LTe Le. Then, the preconditioner is given by

( p
∑

i=1
CT
i D

TDCi + αLTc Lc

)

z =
p
∑

i=1
CT
i D

Tyi, (17)

which is exactly the linear system in (8). Therefore, we can
use the same decomposition as before. Also, as the precondi-
tionedmatrix is symmetric positive definite, we can apply the
preconditioned conjugate gradient method with the above
preconditioner to solve the system (16) efficiently.

The problem of approximation of a block-Toeplitz ma-
trix by a block-circulant matrix has been analyzed in
[38]. The equidistribution property of multidimensional se-
quences is used to show that sequences of BTTB (block-

Toeplitz-Toeplitz-blocks) and BCCB (block-circulant-circu-
lant-blocks) matrices are asymptotically equivalent in a cer-
tain sense.

5. NUMERICAL RESULTS

In this section, we will discuss numerical results. A 128-by-
128 image is taken to be the original high-resolution image,
and the desired high-resolution image is restored from sev-
eral 64-by-64 noisy, blurred, and undersampled images, that
is, we take the downsampling parameter q = 2. Two original
128-by-128 images “cameraman” and “bridge” are shown in
Figure 4.

We assume the blur to be a Gaussian blur which is given
by

Hi, j = e−D
2(i, j)/2γ. (18)
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Table 1: The computation cost of the proposed algorithm.

Computed matrix Size Operations

S q2m2 × 1 O
(

q2m2 log(m)
)

ΛLc q2m2 × 1 O
(

q2m2 log(qm)
)

RSR∗ q2m2 × q2m2 O
(

q4m2
)

RSR∗ + αΛLc q2m2 × q2m2 O(qm)
(

RSR∗ + αΛLc

)−1
q2m2 × q2m2 O

(

m2q6
)

Total —
O
(

q4m2 + q6m2 + q2m2 log(m)
+q2m2 log(qm)

)

(a) (b)

Figure 8: (a) The restored images with α = 0.02 (relative error =
0.10536) and (b) α = 0.08 (relative error = 0.11042).

The size of the blurring kernel for this model is 29, that is, 29
pixels of the image will be affected by the blurring matrix. All
blurred images are simulated by using FFT multiplication.

5.1. Periodic blurringmatrices

We first discuss the results for the periodic case. Figure 5
shows the high-resolution image z, the blurred image Hiz,
the decimated and blurred image DHiz, and the decimated
and blurred noisy image DHiz + ni. Figure 6 shows that the
super-resolution image is obtained by the single observed
image. The optimal regularization parameter is α = 0.1 and
its relative error is 0.11903. We also show another restored
image with α = 0.5 for comparison and its relative error is
0.12252. The optimal regularization parameter α is chosen
such that it minimizes the relative error of the reconstructed
high-resolution image zr(α) to the original image z, that is, it
minimizes

∥

∥z− zr(α)
∥

∥

2

‖z‖2 . (19)

In Figures 7 and 8, nine low-resolution images and their
corresponding restored images are shown. The optimal reg-
ularization parameter α = 0.02, and the relative error is
0.10536. Another restored image with α = 0.08 is shown
for the comparison and the relative error is 0.11042. Table 2
shows further results for periodic blurring matrices. The re-
sults show that if we input more low-resolution images, we

can get more accurate high-resolution image and lower opti-
mal regularization parameter α as more information is pro-
vided.

5.2. Aperiodic blurringmatrices

We have discussed in Section 4 employing the precondi-
tioned conjugate gradient method with circulant precondi-
tioners to solve (16). Here, we show the results for aperiodic
blurring matrices.

Figure 9 shows the restored image from a single image.
The optimal regularization parameter is α = 0.09 and the
relative error is 0.12448. The numbers of conjugate gradient
iterations with and without using preconditioner are 96 and
177, respectively. Another restored image with α = 0.15 and
its relative error is 0.12535 is shown. The numbers of con-
jugate gradient iterations with and without using precondi-
tioners are 75 and 145, respectively. Figures 10 and 11 show
other examples where the super-resolution image is obtained
by seven low-resolution images. The optimal regularization
parameter is α = 0.02 and the relative error is 0.11289. The
numbers of conjugate gradient iterations with and without
using preconditioner are 194 and 301. Another restored im-
age with α = 0.1 and its relative error is 0.11838 is shown.
The numbers of conjugate gradient iterations with and with-
out using preconditioners are 89 and 166. We find that the
use of circulant preconditioner can speed up the conjugate
gradient method, and therefore the high-resolution restored
image can be obtained more efficiently.

6. THE COMPARISON BETWEEN TWO
SUPER-RESOLUTION IMAGINGMODELS

In this section, we compare the model in (3) with another
super-resolution imaging model [33] (near-field imaging):

yi = H′
iDz + ni, (20)

where D is a decimation matrix of size m2-by-q2m2, H′
i is

a blurring matrix (due to, say, optical aberration) of size
m2-by-m2, and ni is an m2-by-1 noise vector. The high-
resolution image can be reconstructed by the minimization
of the following objective function:

min
z

{ p
∑

i=1

∥

∥yi −H′
iDz
∥

∥

2
2 + α‖Lz‖22

}

. (21)
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(a) (b) (c)

Figure 9: (a) The low-resolution image with γ = 5 and noise level = 40dB, (b) its corresponding restored images with α = 0.09 (relative
error = 0.12448 and PCG iterations = 96), and (c) α = 0.15 (relative error = 0.12535 and PCG iterations = 75).

Table 2: The optimal regularization parameters and the corresponding relative errors.

Number of input images

Noise level

30 dB 40 dB 50 dB

Optimal Relative Optimal Relative Optimal Relative

α error α error α error

1 1.2 0.13300 0.1 0.11903 0.01 0.10666

3 0.4 0.12577 0.04 0.11263 0.005 0.10119

5 0.2 0.12204 0.02 0.10943 0.003 0.09815

7 0.2 0.12000 0.02 0.10710 0.003 0.09620

9 0.1 0.11856 0.02 0.10536 0.003 0.09481

Table 3: The comparison of both models in the periodic case.

Number of input images

Model in (3) Model in (20)

Optimal
Relative error

Optimal
Relative error

α α

1 1.1 0.1836 0.060 0.1834

2 0.3 0.1493 0.010 0.1478

3 0.2 0.1507 0.008 0.1491

4 0.1 0.1503 0.005 0.1487

5 0.1 0.1531 0.005 0.1509

We remark that under the same blurring function, the sizes
of blurringmatricesH′

i andHi in these twomodels are differ-
ent, and the numbers of pixels affected by these two blurring
matrices are also different.

Table 3 shows the results for these two imaging mod-
els. We find that the relative errors using the model in (3)
are slightly larger than those using the model in (20). Fig-
ures 12 and 13 show five observed low-resolution images in
these twomodels with the same blurring functions. Figure 14
shows the restored images for these two models. The optimal
regularization parameters are α = 0.005 and α = 0.1 for
(20) and (3), respectively. Their relative errors are 0.1531 and

0.1509 for (3) and (20), respectively. We see that both super-
resolution imaging models give about the same relative er-
rors. Visually, the quality of both restored images is about the
same. This observation is also true for other cases in the table.

In the summary, we have studied super-resolution
restoration from several decimated, blurred, and noisy im-
age frames. Also, we have developed algorithms to restore the
high-resolution image. Experimental results demonstrated
that the method is quite effective and efficient. Model for
both near-field and far-field image blur still remains to be
tackled—a difficult problem because of noncommutativity
of relevant operators in the models.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 10: Seven blurred images with γ = 3.8, 4.2, 4.6, 5, 5.4, 5.8, 6.2 and noise level = 40dB.

(a) (b)

Figure 11: (a) The restored images with α = 0.02 (relative error = 0.11289 and PCG iterations = 194) and (b) α = 0.1 (relative error
= 0.11838 and PCG iterations = 89).

APPENDIX

Proof of Theorem 1. We can partition F∗m as follows:

F∗m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1

1 e2πi/m · · · e2πi(m−1)/m
...

...
. . .

...

1 e2πi(m−1)/m · · · e2πi(m−1)(m−1)/m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1,1 f1,2 · · · f1,m

f2,1 f2,2 · · · f2,m
...

...
. . .

...

fm,1 fm,2 · · · fm,m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A.1)

where f j,k = e2πi( j−1)(k−1)/m. Then the matrix R∗1 = (Iq2 ⊗
Fm ⊗ Fm)∗ is equal to

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F∗m ⊗ F∗m 0 · · · 0

0 F∗m ⊗ F∗m · · · 0

0 0
. . . 0

0 0 · · · F∗m ⊗ F∗m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.2)

After the permutation, the matrix becomes

P∗ × R∗1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H1,1 H1,2 · · · H1,q2

H2,1 H2,2 · · · H2,q2

...
...

. . .
...

Hmq,1 Hmq,2 · · · Hmq,q2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

Q1 Q2 · · · Qq

)

,

(A.3)
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(a) (b) (c)

(d) (e)

Figure 12: Five blurred images for the model in (3), with γ = 20, 5, 13, 10, 18 and noise level = 40dB.

(a) (b) (c)

(d) (e)

Figure 13: Five blurred images for the model in (20), with γ = 20, 5, 13, 10, 18 and noise level = 40dB.
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(a) (b)

Figure 14: (a) The restored images with α = 0.1 (relative error = 0.15311) for the model in (3) and (b) α = 0.005 (relative error = 0.15090)
for the model in (20).

whereQk is a matrix of size q2m2× qm2 for k = 1, . . . , q, that
is,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H1,(k−1)q+1 · · · H1,kq

H2,(k−1)q+1 · · · H2,kq
...

. . .
...

Hmq,(k−1)q+1 · · · Hmq,kq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Hi, j =
⎧

⎪

⎨

⎪

⎩

(

˜hn+1,1 · · · ˜hn+1,m2

)

, i = k(mod q),

0 otherwise,

(A.4)

where n is an integral part of i/(q + 1) and ˜hn+1,y =
e2nπi(l−1)/m(h1 h2 · · · hmq)

T with

hi =
⎧

⎪

⎨

⎪

⎩

fn̂+1,y , i = t(mod q),

0 otherwise,

t =
⎧

⎪

⎨

⎪

⎩

jmod q, j �= ñq,

q, j = ñq,

(A.5)

for n̂ is an integral part of i/(q + 1) and n = 0, . . . ,m− 1, l is
an integral part of (y/(m + 1) + 1).

For Fmq, we can partition as follows:

Fmq =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1

1 e−2πi/mq · · · e−2πi(mq−1)/mq

...
...

. . .
...

1 e−2πi(mq−1)/mq · · · e−2πi(mq−1)(mq−1)/mq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

g1 g2 · · · gmq

)T
,

(A.6)

where gi is the ith row vector of Fmq.

We note that R2 = Fmq ⊗ Fmq and it becomes

Fmq ⊗ Fmq

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g1 g1 · · · g1
g2 g2 · · · g2
...

...
. . .

...

gmq gmq · · · gmq

g1 e−2πi/mqg1 · · · e−2πi(mq−1)/mqg1
g2 e−2πi/mqg2 · · · e−2πi(mq−1)/mqg2
...

...
. . .

...

gmq e−2πi/mqgmq · · · e−2πi(mq−1)/mqgmq,
...

...
. . .

...

g1 e−2πi(mq−1)/mqg1 · · · e−2πi(mq−1)(mq−1)/mqg1
g2 e−2πi(mq−1)/mqg2 · · · e−2πi(mq−1)(mq−1)/mqg2
...

...
. . .

...

gmq e−2πi(mq−1)/mqgmq · · · e−2πi(mq−1)(mq−1)/mqgmq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

G1,1 G1,2 · · · G1,qm

G2,1 G2,2 · · · G2,qm
...

...
. . .

...

Gqm,1 Gqm,2 · · · Gqm,qm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

G1 G2 · · · Gq

)T
,

(A.7)

where

Gi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

G(i−1)m+1,1 G(i−1)m+1,2 · · · G(i−1)m+1,qm

G(i−1)m+2,1 G(i−1)m+2,2 · · · G(i−1)m+2,qm
...

...
. . .

...

Gim,1 Gim,2 · · · Gim,qm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ Cm2q×m2q2 ,

G j,k = e−2πi( j−1)(k−1)/mq
(

g1 g2 · · · gmq

)T

∈ Cmq×mq.

(A.8)
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Then, we have

R2 × P∗ × R∗1 =
(

G1 G2 · · · Gq

)T (

Q1 Q2 · · · Qq

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

G1Q1 G1Q2 · · · G1Qq

G2Q1 G2Q2 · · · G2Qq

...
...

. . .
...

GqQ1 GqQ2 · · · GqQq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

G jQk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

G( j−1)m+1,1 G( j−1)m+1,2 · · · G( j−1)m+1,qm

G( j−1)m+2,1 G( j−1)m+2,2 · · · G( j−1)m+2,qm

...
...

. . .
...

G jm,1 G jm,2 · · · G jm,qm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H1,(k−1)q+1 · · · H1,kq

H2,(k−1)q+1 · · · H2,kq

...
. . .

...

Hmq,(k−1)q+1 · · · Hmq,kq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m
∑

i=1
G( j−1)m+1,(i−1)q+kH(i−1)q+k,(k−1)q+1 · · ·

m
∑

i=1
G( j−1)m+1,(i−1)q+kH(i−1)q+k,kq

m
∑

i=1
G( j−1)m+2,(i−1)q+kH(i−1)q+k,(k−1)q+1 · · ·

m
∑

i=1
G( j−1)m+2,(i−1)q+kH(i−1)q+k,kq

...
. . .

...
m
∑

i=1
G jm,(i−1)q+kH(i−1)q+k,(k−1)q+1 · · ·

m
∑

i=1
G jm,(i−1)q+kH(i−1)q+k,kq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

m
∑

i=1
G jm+s,(i−1)q+kH(i−1)q+k,(k−1)q+t = G jm+s,kHk,(k−1)q+t +G jm+s,q+kHq+k,(k−1)q+t + · · · +G jm+s,(m−1)q+kH(m−1)q+k,(k−1)q+t,

(A.9)

where s = 1, . . . ,m and t = 1, . . . , q.
Denoting a = jm+s and c = (k−1)q+t for j, k = 1, . . . , q,

we have

Ga,uq+kHuq+k,c

= e−2πi(a−1)(uq+k−1)/mq
(

g1 g2 · · · gmq

)T

×
(

˜hu+1,1 ˜hu+1,2 · · · ˜hu+1,m2

)

= e−2πi(a−1)(uq+k−1)/mq

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g1˜hu+1,1 g1˜hu+1,2 · · · g1˜hu+1,m2

g2˜hu+1,1 g2˜hu+1,2 · · · g2˜hu+1,m2

...
...

. . .
...

gmq
˜hu+1,1 gmq

˜hu+1,2 · · · gmq
˜hu+1,m2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(A.10)

For each entry, we have

e−2πi(a−1)(uq+k−1)/mqgx˜hu+1,y

= e−2πi(a−1)(uq+k−1)/mq

×
(

1 e−2πi(x−1)/mq · · · e−2πi(x−1)(mq−1)/mq
)

,

e2uπi(l−1)/m
(

h1 h2 · · · hmq

)T

= e−2πi(a−1)(uq+k−1)/mqe2uπi(l−1)/m,
(

e−2πi(x−1)(t−1)/mqht + e−2πi(x−1)(q+t−1)/mqhq+t

+ · · · + e−2πi(x−1)((m−1)q+t−1)/mqh(m−1)q+t
)

= e−2πi(a−1)(uq+k−1)/mqe2uπi(l−1)/me−2πi(x−1)(t−1)/mq,
(

1 + e−2πi(x−1)q/mqe2πi(y−1)/m

+ · · · + e−2πi(x−1)(m−1)q/mqe2πi(m−1)(y−1)/m
)

= e−2πi[uq(a−l)+(a−1)(k−1)+(x−1)(t−1)]/mq

×(1 + e2πi(x−y)/m + · · · + e2πi(m−1)(x−y)/m
)

= e−2πiu(a−l)/me−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq

×(1 + ω + · · · + ωm−1), ω = e2πi(x−y)/m,

= e−2πiu(a−l)/me−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq
m−1
∑

v=0
ωv

= me−2πiu(a−l)/me−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq

for x − y = 0(modm).
(A.11)
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Adding the same entry for different matrixGa,uq+kHuq+k,c, we
get

m−1
∑

u=0
me−2πui(s−l)/me−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq

= me−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq
m−1
∑

u=0
e−2πui(s−l)/m

= me−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq
m−1
∑

u=0
αu

(where α = e−2πi(a−l)/m)

= m2e−2πi[(a−1)(k−1)+(x−1)(t−1)]/mq

for a− l = 0modm.
(A.12)

The result follows.
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