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The adaptive local polynomial Fourier transform is employed for improvement of the ISAR images in complex reflector geometry
cases, as well as in cases of fast maneuvering targets. It has been shown that this simple technique can produce significantly
improved results with a relatively modest calculation burden. Two forms of the adaptive LPFT are proposed. Adaptive parameter
in the first form is calculated for each radar chirp. Additional refinement is performed by using information from the adjacent
chirps. The second technique is based on determination of the adaptive parameter for different parts of the radar image. Numerical
analysis demonstrates accuracy of the proposed techniques.
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1. INTRODUCTION

The inverse synthetic aperture radar (ISAR) has attracted
wide interest within scientific andmilitary community. Some
ISAR applications are already well known and studied. How-
ever, many important issues remain to be addressed. For ex-
ample, suitable enhancement technique for the fast maneu-
vering radar targets or targets with fast moving parts is not
yet known. Also, standard approaches based on the Fourier
transform (FT) fail to resolve influence of close reflectors.
There are several techniques for improvement of the ISAR
radar image in the case of fast maneuvering targets or in
the case of objects with complex reflector geometry. Here we
mention only two groups of such enhancement techniques as
follows:

(i) techniques that adopt transform parameters for as-
sumed parametric target motion model [1],

(ii) techniques where reflection signal components are
parametrized, while the signal components caused by
reflectors are estimated by using some of well devel-
oped parametric spectral estimation tools [2, 3].

Both of these techniques have some advantages, but also
some drawbacks for specific applications. The first group
of techniques is strongly based on radar target geometry
with assumed motion model. These techniques could be-
come inaccurate in the case of a changingmotionmodel. The
second group of techniques is tested on simulated examples.

However, its application in real scenarios, where signal com-
ponents are caused by numerous scatterers, could be very
difficult. Namely, there are no appropriate methods for pa-
rameters estimation of signals with a very large number of
components.

In this paper we propose a modification of the first
group of research techniques. The adaptive local polynomial
Fourier transform (LPFT) is used. Adaptive coefficients are
calculated for each considered chirp in the radar signal mix-
ture. It is important to note that the proposed technique does
not assume any particular model of radar target motion. The
adaptive parameters are estimated for each scattering point
independently. Based on the analysis of the signal obtained
from the target we consider some simplifications in the pro-
cess of calculation of the adaptive transform. In this way we
keep the calculation burden within reasonable limits. Two
techniques for enhancement of the radar image by using the
LPFT are considered. The first one is based on information
obtained from each chirp separately and on possible refine-
ment by combining results from various chirps. The second
technique is based on detection of regions of interest in the
range/cross-range plane and on determination of the optimal
LPFT for each detected region.

The paper is organized as follows. The target and radar
signal modeling is discussed in Section 2. The proposed
methods are introduced in Section 3. Simulation study is
given in Section 4.



2 EURASIP Journal on Applied Signal Processing

2. RADAR SIGNALMODEL

Consider a radar signal consisting ofM continuous wave co-
herent pulses:

vM(t) =
M−1∑

m=0
v0
(
t −mTr

)
, (1)

where v0(t) is basic impulse limited within the interval
−Tr/2 ≤ t < Tr/2. The linear frequency modulated (FM)
signal is used in our simulations as a basic impulse: v0(t) =
exp( jπBt2/Tr), where B is bandwidth control parameter
while Tr is pulse repetition time. Alternative radar model
used in practice has radar pulses with stepped frequen-
cies. Defocusing effect considered in this paper and time-
frequency (TF) signatures of obtained radar signals have sim-
ilar behavior for these two forms of radar signals [4, 5].

Signal emitted toward radar target can be written as

u(t) = e j2π f0tvM(t), (2)

where f0 is radar operating frequency. Received signal, re-
flected from single reflector target at distance d(t), is delayed
for 2d(t)/c, with c being propagation rate:

uR(t) = σu
(
t − 2d(t)

c

)
. (3)

Demodulation of received signal can be performed by multi-
plying received with transmitted signal u(t):

q(t) = σu∗
(
t − 2d(t)

c

)
u(t)

= σ exp
(
j4π
c

f0d(t)
)M−1∑

m=0
v∗0

(
t − 2d(t)

c
−mTr

)

×
M−1∑

m=0
v0
(
t −mTr − T0

)
.

(4)

Parameter T0 is used in radar imaging for compensation of
target distance. For properly selected T0 and after highpass
filtering, the signal q(t) can be approximately written as

q(t) ≈ σ exp
(
j4π
c

f0d(t)
)

×
M−1∑

m=0
v∗0

(
t − 2d(t)

c
−mTr

)
v0
(
t −mTr

)

=
M−1∑

m=0
q(m, t),

(5)

where

q(m, t) = σ exp
(
j4π
c

f0d(t)
)
v∗0

(
t − 2d(t)

c
−mTr

)
v0
(
t −mTr

)
, t ∈

[(
m− 1

2

)
Tr ,
(
m +

1
2

)
Tr

)
,

= σ exp
(
j4π
c

f0d(t)
)
exp

(
j4πB
cTr

d(t)
(
t −mTr

))
exp

(
− jπB

Tr

(
2d(t)
c

)2)
.

(6)

Keeping in mind B � f0, we can neglect exp(− jπB(2d(t)/
c)2/Tr) with respect to other two components. The value of
q(m, t) can approximately be written as

q(m, t)

≈ σ exp
(
j4π
c

f0d(t)
)
exp

(
j4πB
cTr

d(t)
(
t −mTr

))
.

(7)

This signal is commonly given in the form

q(m, τ) ≈ σ exp
(
j4π
c

f0d
(
τ +mTr

))

× exp
(
j4πBd
cTr

(
τ +mTr

)
τ
)
,

(8)

where t = τ + mTr . Parameter τ ∈ [−Tr/2,Tr/2) is re-
ferred to as fast-time, while m = 0, 1, . . . ,M − 1, is called
slow-time coordinate. Commonly, in actual radar systems,

signals are discretized in fast-time coordinate with sampling
rate Ts = Tr/N , τ = nTs, where n ∈ [−N/2,N/2). However,
due to notational simplicity we will keep continuous fast-
time coordinate. Classical radar setup assumes that the radar
target position is a linear function of time d(t) = D0 + Vt.
Then the radar model produces

q(m, τ) ≈ σ exp
(
j4π
c

f0
[
D0 +V

(
τ +mTr

)])

× exp
(
j4πB
cTr

[
d0 +V

(
τ +mTr

)]
τ
)

= σ exp
(
j4π
c

f0
(
D0 +Vτ

))

× exp
(
j4πVm

c

(
f0Tr + Bτ

))

× exp
(
j4πτB
cTr

(
D0 +Vτ

))
.

(9)
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Figure 1: Illustration of the radar target geometry.

Since f0 � B, Tr > |τ|, and D0 � Vτ, signal q(m, τ) can be
further simplified to

q(m, τ) ≈ σ exp
(
j4π f0D0

c

)
exp

(
j4πVm f0Tr

c

)

× exp
(
j4πτBD0

cTr

)
.

(10)

A two-dimensional (2D) FT of this signal over m and τ is
approximately

Q
(
ωτ ,ωm

)

=
∫

τ

M−1∑

m=0
q(m, τ)e− jωττ− jωmmdτ

≈ (2π)σ exp
(
j4π f0D0

c

)
δ
(
ωτ − 4πBD0

cTr

)

× sin
((
ωm − 4πV f0Tr/c

)
M/2

)

sin
((
ωm − 4πV f0Tr/c

)
/2
) e− j(ωm−4πV f0Tr /c)(M−1)/2.

(11)

For largeM we can write the magnitude of Q(ωτ ,ωm) as

∣∣Q
(
ωτ ,ωm

)∣∣

≈ (2π)σδ
(
ωτ − 4πBD0

cTr

)
Mδ

(
ωm − 2V f0Tr

c

)
.

(12)

For rotating scatterer given in Figure 1, distance can approx-
imately be written as d(t) ≈ R(t)+xp cos(θ(t))+ yp sin(θ(t)),
where R(t) is distance of the target rotation center from the
radar, where coordinates of the scatterer, for τ = 0, are
(xp, yp). Coordinate system is formed in such a way that the

coordinate x is the line of sight. Assume constant rotation
velocity θ(t) = ωRt, with relatively small angular movement
of the target |ωRTr| � 1 (it implies that cos(θ(t)) ≈ 1
and sin(θ(t)) ≈ 0). According to the introduced condi-
tions, d(t) ≈ xp and v(t) = d′(t) = −xpθ′(t) sin(θ(t)) +
ypθ′(t) cos(θ(t)) ≈ ypθ′(t) cos(θ(t)) ≈ ypωR. Commonly,
it is assumed that R(t) is compensated by adjusting T0 in
(4). Thus, we will not consider it in our algorithm. Then
|Q(ωτ ,ωm)| can be written as

∣∣Q
(
ωτ ,ωm

)∣∣

≈ (2π)σMδ
(
ωτ −

4πBxp
cTr

)
δ
(
ωm −

4πypωR f0Tr

c

)

= (2π)σMδ
(
ωτ − c1xp

)
δ
(
ωm − c2yp

)
.

(13)

It represents the ISAR image of scatterer (xp, yp) for a given
instant under introduced assumptions. Note that the con-
stants that determine resolution of the radar image are given
by c1 = 4πB/(cTr) and c2 = 4πωR f0Tr/c. The radar image
is formed as superposition of radar images of all scatterers
(xp, yp), p = 1, 2, . . . ,P. It is approximately given as

∣∣Q
(
ωτ ,ωm

)∣∣ =
P∑

p=1
(2π)σpδ

(
ωτ − c1xp

)
δ
(
ωm − c2yp

)
,

(14)

where σp is the reflection coefficient that corresponds to the
pth scatterer point.

In numerous cases we cannot assume that the radar
model can be simplified in the previously described manner.
For example, radar target can be very fast, or model of radar
target motion can be more complicated (e.g., 3D motion).
Then, instead of complex sinusoids given by (10) we will get
that components corresponding to particular scatterers are
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polynomial phase signals:

q(m, τ) = σp exp

(
j

L∑

l=0

am,lτl

l!

)
, (15)

where parameters am,l depend on the considered chirp and
scatterer motion. For example, for the target motion model
d(t) = D0 + V0t + At2/2, where A is acceleration of target,
coefficients am,l are approximately equal to

am,0 = 4π
c

f0

(
D0 +mTr +

m2T2
r

2

)
,

am,1 = 4π
c

(
f0V0 + f0AmTr +

BD0

Tr
+ BV0m +

BAm2Tr

2

)
,

am,2 = 8π
c

(
f0
A

2
+ B

V0

Tr
+ Am

)
,

am,3 = 12πBA
cTr

,

(16)

and am,l = 0 for l > 3. Some terms of these coefficients can be
neglected, but in general it is not simple as in the case when
we can assume that the scatterer position is a linear func-
tion. Situation becomes even more difficult in the case when
target model is not a simple rotating model. Then, very com-
plicated relationship between position of scatterers (xp, yp)
and coefficients of the polynomial in the signal phase can be
established. Also, polynomial that should be used to accu-
rately estimate signal phase is of very high order. Radar im-
age obtained by using the 2D FT of signal with higher order
polynomial becomes spread (defocused) in the range/cross-
range domain (ωτ ,ωm). The goal of ISAR signals processing
is to obtain a focused radar image, that is, to remove influ-
ence of the higher order polynomial in signal phase of each
component.

Usually, it is assumed that modeling of coefficients is pos-
sible based on the target motion model. In that case, instead
of all possible parameters, only parameters of the motion
model should be used in order to perform enhancement of
the radar image.

The first group of techniques for enhancement of radar
images is based on this concept. One such approach is de-
scribed in [6] where it is assumed that radar scatter can be
modeled with relative simple motion model which assumes
that velocity increases or decreases linearly (or that angular
velocity changes in linear manner) within repetition time.
After estimating acceleration of target, variation in the veloc-
ity is compensated from signal and finally focused radar im-
age is obtained. It corresponds to removing influence of ac-
celeration from (15). However, these techniques are very sen-
sitive to any variations from assumed motion model. They
cannot be used for 3D motion models.

Alternative techniques are based on estimation of all
coefficients in the polynomial of all components in the re-
ceived signal [2, 3]. These techniques are usually based on
iterative removing of the lower order coefficients from signal
phase in order to estimate the highest order coefficient. Then,
estimation of lower order coefficients is performed by using

the same procedure but for dechirped signal. It means that
error in estimation of the highest order coefficient propagates
toward lower order coefficients. Furthermore, it has recently
been shown that these procedures are biased for multicom-
ponent signals and that dechirping procedure used to pro-
duce signal suitable for estimation of lower order coefficients
introduces additional source of errors for multicomponent
signals. These techniques are also time consuming and, as far
as we know, never applied to signals with large number of
components. Numerous components caused by target scat-
terers could appear in radar signal.

A novel technique for enhancement of radar images, that
introduces just one new adaptive parameter in the FT ex-
pression for each received signal, is introduced in the next
section. For each chirp only one parameter of the transform
should be estimated. The second important property of this
technique is in the fact that we do not assume any particular
motion model. It can be applied for any realistic motion of
targets.

3. ADAPTIVE LOCAL POLYNOMIAL FT

In this section we introduce the LPFT as a tool for the
ISAR image autofocusing. Two forms of the adaptive LPFT
are proposed. The first form can be applied to each chirp
component separately with possible refinement by using
information from the adjacent chirps (Section 3.1). The sec-
ond form performs evaluation of the adaptive LPFT for each
detected region of interest in the radar image (Section 3.2).

3.1. First form: adaptive LPFT for radar signals

In order to develop this approach we will go through sev-
eral typical cases of signals, starting from a very simple and
going toward more complicated ones. Improvement in sig-
nal components concentration (focusing radar image) is per-
formed by estimation of signal parameters without assuming
any particularmotionmodel. This is quite different approach
comparing to the methods with predefined motion model or
to the methods where estimation is performed for each pa-
rameter am,l.

3.1.1. Linear FM signal case

The simplest case of monocomponent linear FM signal

q(m, τ) = σ exp
(
j
[
am,0 + am,1τ +

am,2τ2

2

])
(17)

is considered first. In this case, dependence on m in param-
eter indices will be removed for the sake of notation brevity.
Then, the signal can be written as

q(m, τ) = σ exp
(
j
[
a0 + a1τ +

a2τ2

2

])
. (18)
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For analysis of this kind of signals we can use the LPFT [7, 8],

F
(
ωτ ,m;α

)

=
∫∞

−∞
q(m, τ)w(τ) exp

(
− jατ2

2

)
exp

(− jωττ
)
dτ,

(19)

where w(τ) is a window function of the width Tw, w(τ) = 0
for |τ| ≥ Tw/2.

The LPFT is ideally concentrated along the instantaneous
frequency, for α = a2,

F
(
ωτ ,m; a2

) = σ
∫∞

−∞
w(τ) exp

(
j
[
a0 + a1τ +

a2τ2

2

])

× exp
(
− jωττ − ja2τ2

2

)
dτ

= σe ja0
∫∞

−∞
w(τ) exp

(− j(ωτ − a1
))
dτ

= σe ja0W
(
ωτ − a1

)
,

(20)

where W(ωτ) = FT{w(τ)}. Function F(ωτ ,m; a2) is highly
concentrated around ωτ = a1, since the FT of common wide
window functions (rectangular, Hamming, Hanning, Gauss)
is highly concentrated around the origin (in our experiments
window width is equal to the repetition rate Tw = Tr). Radar
image can be obtained from F(ωτ ,m; a2) for considered a2
by evaluating 1D FT along them-coordinate:

Q
(
ωτ ,ωm; a2

) =
M−1∑

m=0
F
(
ωτ ,m; a2

)
e− jωmm. (21)

3.1.2. Higher order polynomial FM signal

For higher order polynomial signal,

q(m, τ) = σ exp
(
jφm(τ)

) = σ exp
(
jφ(τ)

)
, (22)

the LPFT can be written as

F
(
ωτ ,m;α

)

=
∫∞

−∞
σ exp

(
jφ(τ)

)
w(τ) exp

(
− jατ2

2

)

× exp
(− jωττ

)
dτ

= σ
∫∞

−∞
exp

(
jφ(0) + jφ′(0)τ +

jφ′′(0)τ2

2

+
jφ′′′(0)τ3

3!
+ · · · + jφ(n)(0)τn

n!

+ · · · − jατ2

2
− jωττ

)
w(τ)dτ.

(23)

For φ(n)(0) = 0 for n > 2, we obtain highly concentrated
LPFT for α = φ′′(0),

F
(
ωτ ,m;φ′′(0)

) = σ exp
(
jφ(0)

)
W
(
ωτ − φ′(0)

)
. (24)

The second derivative of the signal phase is commonly called
chirp-rate parameter.

In the case when higher order derivatives are nonzero the
LPFT will not be ideally concentrated and we will have some
spread in the frequency domain caused by the FT of terms
exp( jφ′′′(0)τ3/3! + · · · + jφ(n)(0)τn/n! + · · · ). The LPFT
forms that can be used to remove effects of the higher order
derivatives from signal phase are introduced in [7, 8]. These
techniques are computationally demanding and difficult for
application in the ISAR imaging in the real time.

Alternative technique is proposed in [9]. It is the so-
called order adaptive LPFT. The width of the signal’s FT is
used as indicator of the polynomial phase order. Namely,
proper order and parameters of the LPFT are applied if its
width in the frequency domain is close to the width of con-
sidered window functionW(ωτ).

The algorithm for the order adaptive LPFT determina-
tion can be summarized as follows.

(i) It begins with the ordinary FT calculation (zero-order
LPFT) in the first step. If the width of this transform
in the frequency domain is equal to the window width,
it means that the image is already focused and there is
no need for the LPFT order increase. Otherwise, go to
the next step.

(ii) Use the first-order LPFT form considered in this
paper (19). If the width of the this transform in the fre-
quency domain is equal to the window width, it means
that the image is focused. If the LPFTs still have some
spread we should introduce new parameter β in the
transform (next coefficient in the LPFT phase will be
−βτ3/3!) and repeat operation.

This very simple idea could be used for signals with one
or at most few components. In complex multicomponent
signal cases, more sophisticated technique, based on the con-
centration measures, will be introduced in the next section.

3.1.3. Concentrationmeasure

From derivations given above, it can be concluded that
for a known chirp-rate parameter we can obtain a focused
radar image (highly concentrated TF representation). Also,
it can be seen that the ISAR imaging based on the LPFT
for a known chirp-rate parameter is slightly more demand-
ing than the standard ISAR imaging since in addition to
the standard procedure it requires multiplication with the
term exp(− jατ2/2). The next question is how to determine
a value of the parameter α which will produce highly con-
centrated images. There are several methods in open litera-
ture. Here, the concentration measures will be used [10–12].
Before we propose our concentration measure, some proper-
ties of the LPFT will be reviewed. The LPFT satisfies energy
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conservation property
∫∞

−∞

∣∣F
(
ωτ ,m;α

)∣∣2dωτ

=
∫∞

−∞
F
(
ωτ ,m;α

)
F∗
(
ωτ ,m;α

)
dωτ

=
∫∞

−∞

∫∞

−∞

∫∞

−∞
q
(
m, τa

)
w
(
τa
)

× exp

(
− jατ2a

2

)
exp

(− jωττa
)

× q∗
(
m, τb

)
w
(
τb
)
exp

(
jατ2b
2

)

× exp
(
jωττb

)
dτa dτb dωτ

=
∫∞

−∞

∫∞

−∞
q
(
m, τa

)
w
(
τa
)
exp

(
− jατ2a

2

)

× q∗
(
m, τb

)
w
(
τb
)
exp

(
jατ2b
2

)

× δ
(
τa − τb

)
dτa dτb

=
∫∞

−∞

∣∣q(m, τ)
∣∣2w2(τ)dτ.

(25)

Consider now the measure
∫∞
−∞ |F(ωτ ,m;α)|γdωτ for γ → 0.

Assume that F(ωτ ,m;α) is concentrated in a narrow region
around the origin in the frequency domain,

∣∣F
(
ωτ ,m;α

)∣∣ = 0 for ωτ ≥ Ω

2
. (26)

Then, we obtain

lim
γ→0

∫∞

−∞

∣∣F
(
ωτ ,m;α

)∣∣γdωτ = Ω. (27)

We can see that the considered measure is smaller in the case
of signals concentrated in narrower intervals in the TF plane.
Therefore, this type of measure can be used to indicate con-
centration of the TF representation. In a realistic scenario,
where signal side lobes and noise exist within the entire inter-
val, this measure with γ = 0 cannot be used, since it will pro-
duce approximately constant value. In order to handle this
issue, we can use 0 < γ < 2 instead of γ = 0. As a good
empirical value in our analysis we adopted γ = 1. Accurate
results can be achieved for a wider region of γ ∈ [0.5, 1.5].

The concentration measure based on the above analysis
can be written as

H(m,α; γ) = 1∫∞
−∞
∣∣F
(
ωτ ,m;α

)∣∣γdωτ
. (28)

Highly concentrated signal will be represented by a higher
value of concentration measure (28). This concentration
measure has been proposed [11] where it is analyzed in
detail and compared with other concentration measures.
This concentration measure produces accurate results for
multicomponent signals, as well.

3.1.4. Estimation of the chirp rate based on
the concentrationmeasure

Determination of the optimal chirp-rate parameter α can be
performed by a direct search in the assumed set of α values

α̂opt(m) = argmax
α∈Λ

H(m,α; γ) (29)

over the parameter space Λ = [0,αmax] where αmax is the
chirp rate that corresponds to the TF plane diagonal αmax =
2π(1/2Ts)/(NTs/2) = 2π/(NT2

s ), where 1/2Ts is the maximal
frequency that can be achieved with sampling rate Ts within
repetition time Tr , Ts = Tr/N . Direct search over a single
parameter is nowadays considered as an acceptable compu-
tational burden. However, in the case when calculation time
is critical, faster procedures should be used. For example, in
the case of monocomponent signals embedded in amoderate
noise, the LMS style algorithm can be employed. The optimal
value of the chirp-rate parameter can be evaluated as

αi+1(m) = αi(m)− μ
H
(
t,αi(m); γ

)−H
(
t,αi−1(m); γ

)

αi(m)− αi−1(m)
,

(30)

where [H(m,αi(m); γ)−H(m,αi−1(m); γ)]/[αi(m)−αi−1(m)]
is used to estimate gradient of concentration measure and μ
is the predefined step. This form of the algorithm has been
implemented and applied for TF representations in [11]. A
very fast (but sensitive to noise influence) technique for es-
timation of the chirp-rate parameters has been proposed in
[13].

3.1.5. Multicomponent signals

Previously described procedure for determination of the
adaptive chirp-rate parameter can be applied when reflected
chirp can be represented as a monocomponent FM sig-
nal. Furthermore, the same procedure can be applied for
multicomponent signals with the same or similar second
derivatives of the signal phase since search for just one chirp-
rate parameter should be performed. This situation corre-
sponds to close scatterer points in the radar image with sim-
ilar motion trajectories.

However, a modification is required in the case of sev-
eral components, with different chirp rates. Namely, the
previously described algorithm in this case would produce
high concentration of dominant signal component, while the
remaining components would be spread in the TF plane.
The method proposed in [14] is based on calculation of an
adaptive transform, as a weighted sum of the LPFTs,

FAD
(
ωτ ,m

)

= 1∫∞
−∞H(m,α; γ)dα

∫∞

−∞
F
(
ωτ ,m;α

)
H(m,α; γ)dα,

(31)

where weighted coefficients are proportional to the concen-
tration measure. In our previous research this method had
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produced good results for signals with components of simi-
lar magnitudes. However, if signal components significantly
differ in amplitude, the results are not satisfactory. Namely,
signal components with smaller amplitude would be addi-
tionally attenuated. In order to avoid this drawback, we will
use the following adaptive local polynomial FT:

FAD
(
ωτ ,m

) =
P∑

i=1
F
(
ωτ ,m;αi(m)

)
, (32)

where the first adaptive frequency is estimated as

α1(m) = argmax
α

H(0)(m,α; γ) (33)

with H(0)(m,α; γ) = H(m,α; γ), given with (28) and set
i = 1. After detection of the first component’s chirp rate,
values of H(m,α; γ) in a narrow zone around α1(m) are ne-
glected, and the search for the next maximum is performed.
Each iteration in this procedure could be described into two
steps:

H(i)(m,α; γ) =
⎧
⎨
⎩
H(i−1)(m,α; γ)

∣∣α− αi(m)
∣∣ ≥ Δ,

0 otherwise,

αi+1(m) = argmax
α

H(i)(m,α; γ), i = i + 1.

(34)

This procedure should be stopped after the maximal
value of argmaxα H(i)(m,α; γ) becomes smaller than an as-
sumed threshold. We set that the threshold is 25% of
maxα H(0)(m,α; γ), that is, 25% of concentration measure
before we start with peeling of components. Note that the
parameter Δ should be selected carefully so that the next rec-
ognized component is not just a “side lobe” of the previous
strong component. In the case when components have chirp
rates close to each other, it is enough to recognize single chirp
rate, since the proposed approach will improve concentra-
tion of all the components with similar chirp rates. In our ex-
periments we assumed that the number of components with
different chirp rates for considered radar chirp cannot be
larger than 8 and we selected that Δ = αmax/16 = π/(8NT2

s ).
It produces accurate results in all of our experiments. Note
that an alternative method for evaluation of the LPFT is pro-
posed in [15].

3.1.6. Combination of the results from various radar chirps

In the case of radar signals we can assume that scatterers
at close positions in the range/cross-range plane have simi-
lar motion parameters. It means that for chirps with simi-
lar chirp number we can take similar value of chirp-rate pa-
rameter. The chirp rate estimated for the mth chirp can be
used with a small error for the next chirp signal, without
recalculating concentration measure. This simplified tech-
nique was accurate in simple simulated reflector geometry.
In the case of complex reflector geometry, with numerous
close components, inaccurate chirp-rate parameter estimates
are obtained in several percents of chirps. Usage of one chirp
rate for the next chirps causes the error propagation ef-
fect. Therefore, the concentration measure is calculated and

chirp-rate parameter should be estimated for each chirp. In
order to refine the results further, nonlinear filtering of the
obtained chirp rates is performed. Assume that the chirp-rate
parameter α(m) is estimated for each chirp. The nonlinear
median filter can be calculated as

α̂(m) = median
{
α(m + i), i ∈ [−r, r]}, (35)

where 2r + 1 is the width of the used median filter. Note
that other filters with ability to remove impulse noise can be
used here instead of the median filter like, for example, the
α-trimmed mean filters [16, 17].

3.2. Second form: adaptive LPFT for regions
of the radar image

Methods for adaptive calculation of the radar image de-
scribed so far propose evaluation of the adaptive parameter
for each considered chirp and possible refinement by com-
bining results obtained on close sensors. The implicit as-
sumption was that the close points in the range/cross-range
domain have similar chirp-rate parameters. In order to have
more robust technique, that is able to deal with more chal-
lenging motion models, we propose alternative form of the
adaptive LPFT with 2D optimization of chirp parameters. In
defining this procedure, we keep in mind that relatively small
portion of the radar image is related to the target. Consider
just a part of the radar image above a threshold,

Iε
(
ωτ ,ωm

) =
⎧
⎨
⎩
1

∣∣Q
(
ωτ ,ωm

)∣∣ > εmax
{∣∣Q

(
ωτ ,ωm

)∣∣},
0 otherwise.

(36)

The region Iε(ωτ ,ωm) can be separated into nonoverlapping
regions

Iε
(
ωτ ,ωm

) =
pε⋃

i=1
Ii
(
ωτ ,ωm

)
, (37)

where Ii(ωτ ,ωm)∩ I j(ωτ ,ωm) = ∅ for i �= j. We assume that
each region Ii(ωτ ,ωm) is the largest one so that between any
two points that belong to the same region Ii(ωτ ,ωm) there
exists a path that passes through points that belong to the re-
gion. Note that the number of separated regions pε depends
on selected threshold ε. By using the inverse 2D FT we can
calculate signals associated with the region Ii(ωτ ,ωm),

qi(m, τ) = IFT
{
Q
(
ωτ ,ωm

)
Ii
(
ωτ ,ωm

)}
, i = 1, 2, . . . , pε.

(38)

Now, we can assume that signal qi(m, τ) is generated by a
single reflector. Then, we can perform optimization of each
signal qi(m, τ). Since this signal is already localized in the
range/cross-range domain, we will not perform optimization
for each τ or m, but only optimization with a single chirp
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function for each region Ii(ωτ ,ωm),

Fi
(
ωτ ,ωm; α̂i

)

=
∫∞

−∞

M−1∑

m=0
qi(m, τ) exp

(
− jα̂iτ2

2
− jωττ − jωmm

)
dτ,

(39)

where

α̂i = argmax
α

1
∫∞
−∞
∑M−1

m=0
∣∣Fi
(
ωτ ,ωm;α

)∣∣γdωτ

. (40)

The radar image is calculated as a sum of the adaptive LPFT
Fi(ωτ ,ωm; α̂i):

Fε,AD
(
ωτ ,ωm

) =
pε∑

i=1
Fi
(
ωτ ,ωm; α̂i

)
. (41)

In our experiments we obtain very good results for ε in a rel-
atively wide range for numerous radar images.

However, additional optimization can be done based on
the threshold ε. Here, a three-step technique for threshold
selection is considered. In the first stage we consider vari-
ous thresholds ε ∈ Ξ and calculate Fε,AD(ωτ ,ωm) for each
threshold from the set. Then, we calculate the optimal LPFT
as Fε,AD(ωτ ,ωm) that achieves the best concentration over
ε ∈ Ξ. Since, by introducing the threshold value, we remove
a part of the range/cross-range plane (see (36)) the energy of
Fε,AD(ωτ ,ωm) should be normalized to the energy of signal
above the specific threshold,

F′ε,AD
(
ωτ ,ωm

) = Fε,AD
(
ωτ ,ωm

)
√∫∞
−∞
∑M−1

m=0
∣∣Q
(
ωτ ,ωm

)∣∣2Iε
(
ωω,ωm

)
dωt

,

ε̂ = argmax
ε∈Ξ

1
∫∞
−∞
∑M−1

m=0
∣∣F′ε,AD

(
ωτ ,ωm

)∣∣γdωt

.

(42)

In this procedure the transforms, Fε,AD(ωτ ,ωm), ε ∈ Ξ, are
compared under unequal conditions since they are obtained
with various thresholds ε and they could have different num-
ber of recognized components. Obtained adaptive transform
Fε,AD(ωτ ,ωm) could be worse concentrated than a particular
F′ε,AD(ωτ ,ωm) from the considered set of ε values. However,
this radar image is close to the best one and a small addi-
tional manual adaptation around the estimated ε̂ could be
performed in the third stage of this procedure. In our exper-
iments we obtain that ε̂ is underestimated. Thus, additional
search could be performed over higher values of ε.

4. NUMERICAL EXAMPLES

Several numerical examples will be presented here to jus-
tify the presented approach. Examples 1–4 are generic signals
representing one received radar chirp that proves that the
adaptive LPFT can be used to produce highly concentrated
TF representation for following 1D signals: linear FM, sinu-
soidal FM, multicomponent signal with similar chirp rates,

andmulticomponent signal with different chirp rates. Exam-
ples 5 and 6 demonstrate that the adaptive LPFT optimized
for each chirp signal with filtering data produced by adjacent
radar chirps gives accurate results. Example 7 illustrates the
second adaptive LPFT algorithm with optimization for de-
tected regions of interest in radar image.

Example 1. The first signal that will be considered is a lin-
ear FM signal f (t) = exp( j64πt2/2) embedded in Gaussian
noise with variance σ2 = 1. The signal is sampled with Δt =
1/128 second. The FT of the windowed signal with aHanning
window of the width T = 2 second is shown in Figure 2(a).
It can be seen that the FT is spread. Thus, if this signal is a
part of the received signals reflected from a target, we will
obtain a defocused radar image. Results obtained with nar-
rower Hanning windows are given in Figure 2(b). Improve-
ment could be observed from this figure, but generally speak-
ing it is slight. The concentration measure (28) for γ = 1
is presented in Figure 2(c), with marked detected chirp-rate
parameter. Finally, adaptive LPFT is given in Figure 2(d) cal-
culated for parameter α for which the concentration measure
given in Figure 2(c) is maximized. Significant improvement
achieved by the LPFT is obvious.

Example 2. The second signal is a more complex sinusoidal
FM signal: f (t) = exp( j16 sin(2πt)). Signal sampling and
noise environment are the same as in Example 1. The FTs
with wide and narrow windows around a given time instant
(STFT), [18], are depicted in Figures 3(a) and 3(b). This
STFT illustration for fixed instant corresponds to the radar
image for considered m. It can be used to estimate radar im-
age depending on different chirp rates. Again we can see that
for each instant this representation is spread in frequency do-
main. It means that the radar image obtained based on the
FT for signal of this form will be defocused. Adaptive LPFT
with a single chirp rate, calculated for each instant, is given
in Figure 3(c). A significant improvement is achieved. Also,
it can be noticed that the representation is not ideal in the re-
gion with higher order derivatives. These derivatives can be
removed by employing higher order LPFT form [7–9]. Adap-
tive chirp rate is given in Figure 3(d).

Example 3. A three-component signal: f (t) = exp( j22πt2 +
j48πt) + exp( j32πt2) + exp( j42πt2 − j48πt) is considered
next. The STFT with a wide and a narrow window is given in
Figures 4(a) and 4(b). The adaptive LPFT calculated as in the
case of monocomponent signal is given in Figure 4(c). It can
be seen that the concentration is improved for all three com-
ponents. Component in the middle is enhanced the best, but
other components with similar chirp rates are also improved.
The adaptive parameter is given in Figure 4(d). This case cor-
responds to a signal obtained from several scatterers in the
same cross-range with similar chirp rates. Difference in chirp
rates of these components in fact is not so small, it is 30%
of the chirp rate of middle component. It is a realistic case
for numerous targets in practice. We can see that concentra-
tion of all components is satisfactory. It can also be seen that
accuracy of this procedure is not affected by the distance be-
tween scatterers points. The same accuracy is achieved for
the left part of Figure 4(c), where we assume that scatterers
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Figure 2: Spectral analysis of the linear FM signal: (a) FT with a wide window; (b) FT with a narrow window; (c) concentration measure;
(d) adaptive LPFT.
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Figure 3: Time-frequency analysis of the sinusoidal FM signal: (a) STFT with a wide window; (b) STFT with a narrow window; (c) adaptive
LPFT; (d) adaptive chirp-rate parameter.
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Figure 4: Time-frequency analysis of multicomponent signal: (a) STFT with a wide window; (b) STFT with a narrow window; (c) adaptive
LPFT; (d) adaptive chirp-rate parameter.

are far from each other, as well as in the right part of this il-
lustration, where it can be assumed that scatterers are close
to each other.

Example 4. A three-component signal: f (t) = exp( j11πt2 +
j48πt) + exp( j32πt2) + exp( j67πt2 − j48πt) is considered.
However, in this case the chirp rates of components are quite
different (difference between chirp rates is more than 60%
of chirp rate of middle component). The STFT is given in
Figure 5(a), while the “adaptive” transform, assuming that
signal has single chirp rate, is given in Figure 5(b). It can
be seen that in each instant, the transform is adjusted to
one component, while other components remain spread. For
t < 0.3, the LPFT is highly concentrated for middle compo-
nent, but when components are close to each other (it cor-
responds to close scatterers) the adaptive chirp rate several
times switches between components. The adaptive weighted
LPFT (32) is given in Figure 5(c). It can be seen that all com-
ponents have improved concentration and that concentra-
tion is not influenced by distance between scatterers. De-
tected adaptive chirp rates are given in Figure 5(d).

Example 5. Simulated radar target setup according to the
experiment in [4] is considered. The reflectors are at the

positions (x, y) = {(−2.5, 1.44), (0, 1.44), (2.5, 1.44), (1.25,
−0.72), (0, 2.88), (−1.25, 0.72)} in meters. High resolution
radar operates at the frequency f0 = 10.1GHz, with a band-
width of linear FM chirps B = 300MHz and pulse chirp rep-
etition time Tr = 15.6ms. The target is at 2 km distance from
the radar, and rotates at ωR = 40/s. The nonlinear rotation
with frequency Ω = 0.5Hz and amplitude A = 1.250/s is su-
perimposed, ωR(t) = ωR +A sin(2πΩt). The FT-based image
of radar target is depicted in Figure 6(a). The radar image ob-
tained by using the adaptive LPFT calculated for each chirp
separately is presented in Figure 6(c), while the adaptive pa-
rameter for each chirp signal is given in Figure 6(b). It can be
seen that the adaptive parameter linearly varies between the
limits of the target. However, the impulse like errors in esti-
mation of the chirp rate can be observed from Figure 6(b). It
suggests that improvement of the results can be achieved by
filtering chirp-rate parameters.

Example 6. In this example we consider a B727 radar data.
The FT-based image is presented in Figure 7(a). It can be
seen that the radar image is defocused, thus causing the
problem to extract the target. However, radar imaging based
on the adaptive LPFT determined for each radar chirp pro-
duces a significant improvement in the signal representation,
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Figure 5: Time-frequency analysis of multicomponent signal: (a) STFT with a wide window; (b) LPFT with a single chirp-rate parameter
estimated in each instant; (c) weighted adaptive LPFT; (d) estimated chirp rates.
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Figure 6: Simulated radar image: (a) results obtained by the FT; (b) adaptive chirp-rate parameter as function of m (thick line is linear
approximation); (c) radar image based on the adaptive LPFT.
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Figure 7: B727 radar image: (a) results obtained by the FT-based method; (b) adaptive LPFT method; (c) adaptive chirp rate (dotted line),
filtered adaptive chirp rate (light solid line), linear interpolation of filtered data (bold solid line); (d) adaptive LPFT with interpolated data.

Figure 7(b). In order to obtain better results for close reflec-
tors, we consider the adaptive chirp-rate parameter depicted
in Figure 7(c) as a dotted line. We expected that removing
impulse-like disturbances will produce better results. To this
aim median filtering of the adaptive parameter is performed.
In addition, the linear interpolation of estimated chirp rates
is performed (linear interpolation is depicted with thick line
in Figure 7(c)). The result obtained with these parameters is
depicted in Figure 7(d). It is better than its counterpart in
Figure 7(b) except for nose reflectors. A possible reason is in
fact that the received signal corresponding to these scatterers
can have higher order polynomial in the signal phase. The
higher order LPFT forms [7–9] could be used for these scat-
terers points (see Section 3.1.2).

Example 7. In this example we consider the same target as in
Example 5. Themain difference in this example is in complex
motion pattern that cannot be modeled with just a rotation.
The radar image calculated by using the 2D FT is presented
in Figure 8(a). Region of interest Iε(ωτ ,ωm) is determined
by (36) with the threshold set to ε = 0.05. Three separated
regions are detected in radar image denoted in Figure 8(b)
in different shades of gray. The region denoted with 1 cor-
responds to three radar scatterers. Since these three scatter-
ers move in a similar manner, concentration of these com-

ponents is significantly improved (see Figure 8(c)) with re-
spect to the radar image calculated with 2D FT. Region de-
noted with number 3 corresponds to two radar scatterers. In
this case concentration of one of components from the re-
gion is improved, while other component remains spread.
The reason is in fact that these close scatterers move in a
quite different manner. When we apply threshold ε = 0.2,
we obtain 6 regions of interest that correspond to 6 radar
scatterers (Figure 8(d)). The resulting radar image is focused
for all scatterers (Figure 8(e)). The threshold ε could be set
in an empirical manner. However, a procedure for threshold
optimization could be very helpful. Concentration measure
of adaptive LPFT for various threshold levels is depicted in
Figure 9(a) and obtained value in the optimization proce-
dure is ε̂ ≈ 0.155. The LPFT form with adaptive threshold
is shown in Figure 9(b). It can be seen that radar image ob-
tained in Figure 9(a) is slightly worse than radar image with
additionally adjusted threshold (Figure 8(e)).

5. CONCLUSION

The adaptive local polynomial Fourier transform-based
method for enhancement of defocused radar images has been
proposed. Adaptive parameters in the transform are obtained
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Figure 8: Simulated radar image with complicated motion pattern: (a) results obtained by the FT; (b) regions of interest Iε=0.05(ωt ,ωm) with
three recognized separated regions; (c) adaptive LPFT based on region optimization with ε = 0.05, Fε=0.05(ωt ,ωm); (d) regions of interest
Iε=0.20(ωt ,ωm) with six recognized separated regions; (e) adaptive LPFT based on region optimization with ε = 0.20, Fε=0.20(ωt ,ωm).

by using a simple concentration measure. For monocompo-
nent and multicomponent signals with similar chirp rates, a
single chirp-rate parameter is estimated for each chirp. For
multicomponent signals with different chirp rates, an adap-
tive weighted local polynomial FT should be employed. It has

been shown that the ISAR images could be improved by com-
bining results achieved from various chirps. For targets with
very complex motion pattern, separation of the radar image
in regions of interests and optimization of the radar signal
within regions are proposed.
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Figure 9: Adaptive LPFT with adaptive threshold: (a) concentrationmeasure for various threshold levels; optimal threshold value is depicted
with dotted line; (b) adaptive LPFT with adaptive threshold.
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