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Shah functional and other edge-preserving approach, and the results show the effectiveness of the proposed method.
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1. INTRODUCTION

Mumford-Shah (MS) functional is an important variational
model in image analysis. It minimizes a functional involving
a piecewise smooth representation of an image and penaliz-
ing the Hausdorff measure of the set of discontinuities, re-
sulting in simultaneous linear restoration and segmentation
[1, 2].

However, the MS functional is based on Bayesian lin-
ear restoration, so the resultant linear diffusion not only
smoothes all structures in an equal amount but also dislo-
cates themmore and more with the increasing scale that may
blur true boundaries [2]. The situation becomes worse for
poor-quality images with artifacts and low contrast, mak-
ing the coupled segmentation unreliable. To address this
problem, many improvements on MS model from nonlin-
ear diffusion perspective are developed. However, due to the
unknown discontinuities set of lower dimension, most ap-
proaches solve the weak formulation of the improved func-
tional. In [3], the smooth constraint and the data fidelity are
defined by the norm functions instead of quadratic func-
tions in the MS functional. The resultant diffusion is mod-
ulated by the magnitude of the gradient that can deblur the
edges. In [4], an edge-preserving regularization model based

on the half-quadratic theorem is proposed, where the dif-
fusion is nonlinear both in intensity and edges. But these
approaches solving weak formulation concentrate rather on
image restoration than image segmentation. Therefore, exact
boundary locations cannot be explicitly yielded.

To solve the MS functional in such a way that image seg-
mentation can be explicitly yielded, level set and curve evolu-
tion formulations of the MS functional have been developed
in recent years. By viewing an active contour as the set of
discontinuities, active contours without edges model is pro-
posed [5, 6]. It introduces Heaviside function and embeds
the level set function into MS model for piecewise constant
and piecewise smooth optimal approximations, leading to
the coupled image restoration and level set evolution. Similar
work can be found in [7], where numerical implementation
of the MS functional from the level set perspective is derived
in detail. And also in [8], the MS functional is formulated
from curve evolution perspective.

In this paper, inspired by the nonlinear diffusion the-
ory and level set method, an improved Mumford-Shah func-
tional is presented from both the theoretical and numeri-
cal aspects. The main contribution of this paper is as fol-
lows. First, a nonlinear smooth constraint function is pro-
posed and introduced into the functional that can induce
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edge-preserving regularization. Second, different from ex-
isting edge-preserving approaches that solve the weak for-
mulation of the problem, we formulate the proposed func-
tional from the level set perspective so that nonlinear edge-
preserving regularization and explicit boundary contours are
both addressed naturally. Third, to reduce the computational
cost, a modified additive operator splitting (AOS) algorithm
is developed to address the diffusion equations defined on ir-
regular domains. Furthermore, multi-initial scheme is used
to speed up the convergence rate.

The remainder of the paper is organized as follows.
In Section 2, mathematical background is sketched; in
Section 3, an improved Mumford-Shah functional is pro-
posed and level set formulation of the functional is derived.
In Section 4, numerical implementation of the improved
functional is described in detail, where a modified AOS algo-
rithm is proposed. In Section 5, experimental results are pro-
vided and comparisons are discussed. Finally in Section 6,
conclusions are reported.

2. MATHEMATICAL BACKGROUND

2.1. Mumford-Shah functional

Let Ω ⊂ Rm be open and bounded image domain, and let
f : Ω → R be the original image data, the linear restoration
of the ideal image data u is formulated as

f = u + n, (1)

where n ∼ N(0, σ2) is the white noise. By introducing
Markov random field (MRF) line process, the above restora-
tion is expressed as the minimization problem [2]:

E(u) =
∑

i, j

ωλ,μ
(
ui+1, j − ui, j

)

+ ωλ,μ
(
ui, j+1 − ui, j

)
+

(
fi, j − ui, j

)2

2σ2
,

(2)

where ωλ,μ(x) = min(λx2,μ), λ and μ are two positive
weights. The continuous form of (2) is the MS functional
[1]:

EMS(u,C)=α
∫∫

Ω\C
|∇u|2dx dy + β

∫∫

Ω
(u− f )2dx dy+γ|C|,

(3)

where C ⊂ Ω is the set of discontinuities in the image and
α, β, γ are weights that control the competition of the vari-
ous terms. The first term comes from the piecewise smooth
constraint. The second term is the data fidelity term that
makes the restoration more like its original. And the third
term stands for the (m− 1)-dimensional Haussdorf measure
of the set of discontinuities.

Due to the unknown discontinuities set of lower dimen-
sion, it is not easy to minimize MS functional in practice.

Some approaches solve the weak formulation of theMS func-
tional [9–11]. But the weak formulation cannot explicitly
yield the boundary contours. However, from curve evolution
perspective [8], minimizing (3) with respect to u+, u−, C, we
can obtain the coupled diffusion and curve evolution equa-
tions:

u− − f = α

β
div

(∇u−), ∂u−

∂
⇀
N

∣∣∣∣
C
= 0,

u+ − f = α

β
div

(∇u+), ∂u+

∂
⇀
N

∣∣∣∣
C
= 0,

(4)

∂C

∂t
= α

(∣∣∇u−∣∣2 − ∣∣∇u+∣∣2
)
· ⇀N

+ β
((
u− − f

)2 − (u+ − f
)2)· ⇀N +γ · κ· ⇀N ,

(5)

where u+ and u− represent the value inside and outside the

current curve C, respectively.
⇀
N is the normal vector of the

curve and κ is the curvature of the curve C.

2.2. Nonlinear edge-preserving regularization

As was discussed above, MS functional is derived from linear
restoration problem. However, in most cases, image restora-
tion is a complex and nonlinear process where the linear re-
lationship between f and u in (1) does not come into ex-
istence. Consider the nonlinear regularization such that the
restored image can preserve edge while remove noise, then
the restoration energy can be expressed as follows [12]:

E(u) = α
∫∫

Ω
ψ
(|∇u|)dx dy + β · (u− f )2. (6)

From variational method, the corresponding Euler-
Lagrange equation minimizing (6) is the stable state of the
following diffusion partial difference equation:

∂u

∂t
= α

β
div

(
ψ′
(|∇u|)
2|∇u| · ∇u

)
+( f −u) on Ω,

∂u

∂
⇀
n

∣∣∣∣
∂Ω
= 0 on ∂Ω,

u(·, 0) = f (·),

(7)

where
⇀
n denotes the normal to the image domain boundary

∂Ω, and ψ′(|∇u|)/2|∇u| is the diffusion coefficient that con-
trols the diffusion process. To assure edge preserving and the
stability, ψ(·) should satisfy (1) 0 < limt→0(ψ′(t)/2t) = M;
(2) limt→∞(ψ′(t)/2t) = 0; (3) ψ′(t)/2t is decreasing function.
Discussions on the choice of ψ(·) can be found in [4, 12].
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When the diffusion coefficient is equal to 1, (7) de-
grades to homogenous linear diffusion. In this view, (4) is
homogenous linear diffusion inside and outside the cur-
rent curve C, respectively. Although the diffusion is not
across C, it smoothes the regions inside and outside C in an
equal amount. Therefore, before the curve arrives at the true
boundary, the true boundaries may become obscure more
and more with the increasing scale that can dislocate the
boundary position and also mislead the coupled curve evo-
lution.

3. IMPROVEDMUMFORD-SHAH FUNCTIONAL

In order to perform edge-preserving regularization and
segmentation simultaneously, we present an improved
Mumford-Shah functional. Inspired by the idea of nonlin-
ear diffusion theory, we propose and introduce a nonlinear
smooth constraint function ψ(|∇u|) to replace |∇u|2 in (3).
The improved Mumford-Shah functional is given by

EIMS(u,C) = α
∫∫

Ω\C
ψ
(|∇u|)dx dy

+ β
∫∫

Ω
(u− f )2dx dy + γ|C|,

(8)

where ψ(|∇u|) is a nonlinear increasing function of |∇u|2
for piecewise smooth constraint and should also satisfy the
conditions (1), (2), and (3) for edge-preserving regulariza-
tion.

Inspired by the level set method [13], we minimize (8)
from the level set evolution perspective. Embed the current
curve C as zero level set of a higher-dimensional level set
function φ and introduce the Heaviside function

H(φ) =
⎧
⎨
⎩
1, φ ≥ 0,

0 else,
(9)

and Dirac function δ0(φ) = (d/dφ)H(φ), then the length is
approximated by L(φ) = ∫

Ω |∇H(φ)|dx dy. We can formu-
late the functional (8) as follows:

EIMS(u,C) = EIMS
(
u+,u−,φ

)

= α
∫

Ω
ψ
(∣∣∇u+∣∣) ·H(φ)dx dy

+ α
∫

Ω
ψ
(∣∣∇u−∣∣) · (1−H(φ)

)
dx dy

+ β
∫

Ω

∣∣u+ − f
∣∣2 ·H(φ)dx dy

+ β
∫

Ω

∣∣u− − f
∣∣2 · (1−H(φ)

)
dx dy

+ γ
∫

Ω

∣∣∇H(φ)
∣∣dx dy.

(10)

Let μ = α/β, minimizing EIMS(u+,u−,φ) with respect to u+,
u−, φ, we can obtain the coupled equations:

u+− f = μ · div
(
ψ′
(∣∣∇u+∣∣)
2
∣∣∇u+∣∣ · ∇u+

)
on φ > 0,

∂u+

∂
⇀
N
= 0 on φ = 0,

(11)

u− − f = μ · div
(
ψ′
(∣∣∇u−∣∣)
2
∣∣∇u−∣∣ · ∇u−

)
on φ < 0,

∂u−

∂
⇀
N
= 0 on φ = 0,

(12)

∂φ

∂t
= δε(φ) ·

[
γ · div

( ∇φ
|∇φ|

)
+ αψ

(∣∣∇u−∣∣)

+ β
(
u− − f

)2 − αψ
(∣∣∇u+∣∣)− β

(
u+ − f

)2
]
,

(13)

where δε(φ) is a slightly regularized version of δ0(φ). The de-
tailed derivation is provided in appendix.

Choosing proper ψ(|∇u|) such that ψ′(|∇u|)/2|∇u| is
close to 1 in the homogenous regions and close to zero on
the edges, then (11) and (12) can perform edge-preserving
diffusion inside and outside the current curve, which can re-
move noise while preserve the edges even with the increasing
scale. Therefore, the coupled curve evolution can be precisely
guided towards the true boundaries. Note thatMS functional
could be considered as the special case when ψ(x) = x2. In
this case the diffusion coefficient ψ′(x)/2x ≡ 1, thereby lead-
ing to homogenous linear diffusion.

4. NUMERICAL IMPLEMENTATION

4.1. Modified AOS algorithm for diffusion equations

In general, standard explicit difference scheme can be used
to iteratively update u+ and u− [7]. However, the convergence
rate is very slow. In [14], an efficient AOS scheme, which uses
semi-implicit scheme discretization and uses an additive op-
erator splitting to decompose complex process into multiple
linear process, is proposed to solve diffusion equations de-
fined on the rectangular image domain as expressed in (7).
Its separability allows parallel implementations, making the
scheme ten times faster than usual explicit one. However,
diffusion equations (11) and (12) are defined on irregular
domains divided by the current curve, making the question
more complex and difficult. Aiming at this point, a modified
AOS scheme is developed.
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Let Ψ(X) = ψ′(|∇u+|)/2|∇u+|. The diffusion equation
(11) is equivalent to

u+H(φ)− f H(φ) = μ · div (Ψ(X) ·H(φ) · ∇u+). (14)

Use center difference scheme and let Dx
h/2u = (ui+1/2, j −

ui−1/2, j)/h, D
y
h/2u = (ui, j+1/2 − ui, j−1/2)/h. This yields

div
(
Ψ(X) ·H(φ) · ∇u+) = Dx

h/2

(
Ψ(X) ·H(φ) ·Dx

h/2u
+)

+D
y
h/2

(
Ψ(X) ·H(φ) ·Dy

h/2u
+).
(15)

In that case, (14) can be discretized as

u+i jH(φ)i j − fi jH(φ)i j

= μ ·
∑

(k,s)∈N(i, j)

(
Ψ(X) ·H(φ)

)
i j +

(
Ψ(X) ·H(φ)

)
ks

2

· u
+
ks − u+i j
h2

.

(16)

Now we only consider pixels {i | φi > 0} and store ui as a
vector u+. Since H(φi) = 1 for φi > 0, we can obtain

u+i − fi = μ ·
∑

j∈N(i)

(ψ ·H) j + (ψ ·H)i
2

· u
+
j − u+i
h2

= μ ·
∑

l∈(x,y)

∑

j∈Nl(i)

(ψ ·H) j + (ψ ·H)i
2

· u
+
j − u+i
h2

= μ ·
∑

l∈(x,y)

(
∑

j∈Nl(i)

(ψ ·H) j + (ψ ·H)i
2

· 1
h2
· u+j −

∑

j∈Nl(i)

(ψ ·H) j + (ψ ·H)i
2

· 1
h2
· u+i +

∑

k /∈Nl(i)

0 · u+k
)

= μ ·
∑

l∈(x,y)

(
∑

j∈Nl(i)

âi jl · u+j + âiil · u+i +
∑

k /∈Nl(i)

âikl · u+k
)

= μ ·
∑

l∈(x,y)

∑

j

âi jl · u+j ,

(17)

where Nl(i) is the set of the two neighbors of pixel i along l
direction, and

âi jl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ψ
(
Xj) ·H

(
φj
)
+Ψ

(
Xi
) ·H(φi

))

2h2
,

j ∈ Nl(i),

−∑k∈Nl(i)

(
Ψ
(
Xk
) ·H(φk

)
+Ψ

(
Xi
) ·H(φi

))

2h2
,

j = i,

0, else.

(18)

In vector-matrix notation and using semi-implicit discretiza-
tion, (17) can be written as

un+1,+ − f = μ ·
∑

l∈(x,y)
Al
(
un,+

) · un+1,+, (19)

where Al(un,+) is a matrix along l direction whose element is

ân,+i jl . The solution is given by

un+1,+ =
(
I − μ ·

∑

l∈(x,y)
Al
(
un,+

)
)−1

· f . (20)

Directly solving (20) leads to great computation effort.
Using AOS scheme, we can obtain [14]

un+1,+ = 1
m

m∑

l=1

(
I −m · μ · Al

(
un,+

))−1 · f . (21)

The key of AOS algorithm is that Al(un,+) is tridiagonal and
diagonally dominant along the l direction. Therefore (21)
can be converted to solve tridiagonal system of linear equa-
tions for m parallel processes that can be rapidly imple-
mented by Thomas algorithm.

Similarly, solving (12) we can obtain

un+1,− = 1
m

m∑

l=1

(
I −m · μ · Al

(
un,−

))−1 · f , (22)

where Al(un,−) is obtained by replacing H(φ) by 1−H(φ) in
(18).
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4.2. Extend u+ on {φ < 0} and u− on {φ > 0}
For solving the level set equation (13), extending u+ on
{φ < 0} and u− on {φ > 0} is necessary for calculating the
jumps. This can be made by the modified five-point averag-
ing scheme as follows [15]:

un+1,+i j = max
{
u0i, j ,

1
4

(
un,+i+1, j + un,+i−1, j + un,+i, j+1 + un,+i, j−1

)}
,

u0,+ = u+ on φ ≥ 0 given,
(23)

un+1,−i j = min
{
u0i, j ,

1
4

(
un,−i+1, j + un,−i−1, j + un,−i, j+1 + un,−i, j−1

)}
,

u0,− = u− on φ ≤ 0 given.
(24)

4.3. Numerical scheme for the level set evolution

Let

(
Δx
−φ
)
i j =

φi j − φi−1, j
h

,
(
Δx
+φ
)
i j =

φi+1, j − φi, j
h

,

(
Δx
0φ
)
i j =

φi+1, j − φi−1, j
2h

,

(
Δ
y
−φ
)
i j =

φi j − φi, j−1
h

,
(
Δ
y
+φ
)
i j =

φi, j+1 − φi, j
h

,

(
Δ
y
0φ
)
i j =

φi, j+1 − φi, j−1
2h

.

(25)

Discretization of the level set equation (13) yields

φn+1
i j − φn

i j

Δt
= δh

(
φn
i j

)

⎧
⎪⎪⎨
⎪⎪⎩

γ

h2

⎡
⎢⎢⎣Δ

x
−

⎛
⎜⎜⎝

Δx
+φ

n+1
i j√(

Δx
+φ

n
i j

)2
+
(
Δ
y
0φ

n
i j

)2

⎞
⎟⎟⎠ + Δ

y
−

⎛
⎜⎜⎝

Δ
y
+φ

n+1
i j√(

Δx
0φ

n
i j

)2
+
(
Δ
y
+φ

n
i j

)2

⎞
⎟⎟⎠

⎤
⎥⎥⎦

−β(u+i j − fi j
)2 − αψ

(∣∣∇u+i j
∣∣) + β

(
u−i j − fi j

)2
+ αψ

(∣∣∇u−i j
∣∣)

⎫
⎪⎪⎬
⎪⎪⎭
.

(26)

Consequently we have

φn+1
i j = 1

C
·
{
φn
i j + η

· (C1φ
n
i+1, j + C2φ

n
i−1, j + C3φ

n
i, j+1 + C4φ

n
i, j−1

)

+ Δt · δε
(
φi j
)

·
[
β
(
fi j − un,−i j

)2 − β
(
fi j − un,+i j

)2

+ α · ψ(∣∣∇un,−∣∣i j
)− α · ψ(∣∣∇un,+∣∣i j

)]}
,

(27)

where η = (Δt/h2) · δε(φi j) · γ,

C1= 1√(
Δx
+φ
)2
i j+

(
Δ
y
0φ
)2
i j

, C2= 1√(
Δx−φ

)2
i j+

(
Δ
y
0φ
)2
i−1, j

,

C3= 1√(
Δx
0φ
)2
i j+

(
Δ
y
+φ
)2
i j

, C4= 1√(
Δx
0φ
)2
i, j−1+

(
Δ
y
−φ
)2
i j

,

C = 1 + η
(
C1 + C2 + C3 + C4

)
.

(28)

4.4. Algorithm description for the coupled PDEs

The coupled PDEs (11), (12), and (13) should be alterna-
tively iterated until convergence. The diffusion equations
(11) and (12) are solved by the modified AOS algorithm. The
level set evolution (13) is by standard explicit iterate scheme,
where multi-initial scheme is used so that it can speed up the
convergence rate and also it has the tendency to converge to
a global minimizer [6]. The complete algorithm is described
as follows.

Step 1. Use multi-initial scheme to plant seed curves and set
the initial front curve to be pixels on all seed curves. Initialize
φ0 as a signed distance function to the initial front curve.

Step 2.

While (not convergence)

(i) Solve u+ on {φ > 0} according to (21) and u−

on {φ < 0} according to (22) by modified AOS
algorithm.

(ii) Extend u+ on {φ < 0} according to (23) and u−

on {φ > 0} according to (24) by the modified
five-point averaging scheme.

(iii) Update the level set function φ using standard ex-
plicit iterate scheme (27).

End.
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5. RESULTS ANDDISCUSSIONS

To evaluate the effectiveness of the proposed model, a repre-
sentative CT pulmonary vessel image is chosen as an exam-
ple. The vessels and their branches, which exhibit much vari-
ability with artifacts and low contrast, make segmentation
and restoration very difficult. In the experiment, a regulariza-
tionHε of the Heaviside function is used.We chooseHε(φ) =
(1/2)(1 + (2/π) arctan(φ/ε), then δε(φ) = (d/dφ)Hε(φ) =
(1/π) · (ε/(φ2 + ε2)). We set ε = 1, α = 1, β = 1, γ = 0.005∗
2552 for our model and γ = 0.002∗ 2552 for MS model. We
set ψ(x) = x2/(1 + x2/λ2), where λ is the contrast param-
eter separating the forward diffusion from backward diffu-
sion, which is chosen to be the 50 percent quantile of |∇ f |.
Thereby the diffusion coefficient ψ′(x)/2x = 1/(1 + x2/λ2)2,
which is close to 1 as x → 0 and 0 as x → ∞, leading to edge-
preserving diffusion.

The first experiment compares the performance of the
improved Mumford-Shah functional and original MS func-
tional. Figures 1(A) and 1(B) show the coupled diffusion
and curve evolution by the improved and original MS func-
tional, respectively. From Figure 1(A), it can been seen that
our model has succeeded in preserving the locality of ves-
sel boundaries while smoothing the interior of the vessel, so
that the restored image is edge-preserving regularization as
shown in Figure 1(A)(h). Therefore, the final segmentation
results are promising in that vessels, even their thin branches,
could be located precisely, as shown in Figure 1(A)(g).
Whereas in Figure 1(B), we can see that almost all structures
are blurred with the increasing scale, thus the restored image
is not satisfactory in that important vessel branches become
more and more obscure and the boundaries are dislocated to
some extent as shown in Figure 1(B)(h). Therefore, the resul-
tant segmentation results as shown in Figure 1(B)(g) are not
reliable and some small vessel branches cannot be extracted
precisely as well.

Furthermore, the segmentation results are quantitatively
evaluated by the criteria of intraregion uniformity and inter-
region discrepancy. The intraregion uniformity can be mea-
sured by the variance within each region and the interregion
discrepancy by the difference of the mean between adjacent
regions. The smaller the variance is, the better the intraregion
uniformity is. And the larger the difference is, the better the
interregion discrepancy is. The comparison results are illus-
trated in Table 1. We can conclude that our model achieves
better segmentation results than MS functional in that the
variance of each region is smaller and the difference between
regions is larger by our approach. It also indicates that the
regularization by our approach is more reliable because it can
induce better segmentation result.

The second experiment compares our model with the
other edge-preserving approach. Figure 2(A) shows the reg-
ularization and segmentation results by our approach, and
Figure 2(B) by the approach proposed in [4]. Both ap-
proaches can perform edge-preserving regularization as
shown in Figures 2(A)(a) and 2(B)(a). However, the segmen-
tation results are different. Our approach formulates the im-
provedMumford-Shah functional from the level set perspec-

tive, thereby explicit boundary contours can be obtained nat-
urally as shown in Figure 2(A)(b). The edge-preserving ap-
proach in [4] formulates its functional from the weak for-
mulation, resulting in two coupled diffusion equations. One
is for image intensity and the other is for edge function. Ob-
serve in Figure 2(B)(b) that only the image of the edge func-
tion is obtained and that cannot explicitly give the bound-
ary location. The comparison shows that our approach is
very effective both in regularization and segmentation re-
sults.

6. CONCLUSION

In this paper, an improved Mumford-Shah functional is pre-
sented that can perform edge-preserving regularization and
image segmentation simultaneously. Different from exist-
ing edge-preserving approaches, the formulation of the pro-
posed functional is considered from the level set evolution
perspective thus explicitly yielding boundary contours and
image restoration. Both are addressed naturally. A modified
AOS algorithm is developed to address the diffusion equa-
tions defined on irregular domains. It is ten times faster than
usual explicit scheme. The experimental results are evaluated
by the criteria of intraregion uniformity and interregion dis-
crepancy, which show that our model outperforms MS func-
tional both in segmentation and regularization. Compari-
son with other edge-preserving approach shows that our ap-
proach is very promising. It can be applied to a variety of
image segmentations and restorations.

APPENDIX

As∇H(φ)=H′(φ) ·∇φ=δ0(φ) ·∇φ, (10) can be rewritten as

EIMS(u,C) = EIMS
(
u+,u−,φ

)

= α
∫

Ω
ψ
(∣∣∇u+∣∣) ·H(φ)dx dy

+ α
∫

Ω
ψ
(∣∣∇u−∣∣) · (1−H(φ)

)
dx dy

+ β
∫

Ω

∣∣u+ − f
∣∣2 ·H(φ)dx dy

+ β
∫

Ω

∣∣u− − f
∣∣2 · (1−H(φ)

)
dx dy

+ γ
∫

Ω
δ0(φ) ·

∣∣∇φ∣∣dx dy.
(A.1)

From variational method, fixing u the Euler-Langrange
equation for φ is

Eφ − ∂

∂x
Eφx −

∂

∂y
Eφy = 0. (A.2)
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Table 1: Comparison of segmentation results by improvedMumford-Shah functional and byMS functional. IMS: improvedMumford-Shah
functional; MS: MS functional.

Model
Mean Mean Interregion discrepancy Intraregion uniformity

(Vessel) (Background) |Mean (V)−Mean (B)| Var (vessel) Var (background)

IMS 189.7322 75.6746 114.0576 285.47 291.8098

MS 184.6859 79.7815 104.9044 363.92 354.5709

(a) (b) (c) (d)

(e) (f) (g) (h)

(A) Coupled edge-preserving regularization and curve evolution by the improved Mumford-Shah functional

(a) (b) (c) (d)

(e) (f) (g) (h)

(B) Coupled linear diffusion and curve evolution by the MS functional

Figure 1: Coupled diffusion and curve evolution for CT pulmonary vessel segmentation and restoration (A) by the improved Mumford-
Shah functional and (B) by the MS functional. (a) Original CT pulmonary vessel. (b)–(f) Coupled curve evolution and diffusion. (g) and
(h) show the final segmentation and restoration results, respectively.
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(a) (b)

(A)

(a) (b)

(B)

Figure 2: Edge-preserving regularization and image segmentation
on CT pulmonary vessel (A) by the improvedMumford-Shah func-
tional and (B) by the edge-preserving approach proposed in [4].

Then we can derive

Eφ = ∂EIMS

∂φ

= αψ
(∣∣∇u+∣∣) ·H(φ)−αψ(∣∣∇u−∣∣) ·H(φ)

+ β
(
u+ − f

)2 ·H(φ)−β(u− − f
)2 ·H(φ)

+ γ|∇φ| · δ′0(φ),

Eφx =
∂EIMS

∂φx
= γδ0(φ) · φx

|∇φ| ;

Eφy =
∂EIMS

∂φy
= γδ0(φ) ·

φy

|∇φ| ,

∂

∂x
Eφx +

∂

∂y
Eφy = γ div

(
δ0(φ) · ∇φ∣∣∇φ∣∣

)

= γ

(
δ0(φ) div

( ∇φ
|∇φ|

)

+∇δ0(φ) • ∇φ
|∇φ|

)

= γ

(
δ0(φ) div

( ∇φ
|∇φ|

)
+ δ′0(φ) · |∇φ|

)
.

(A.3)

Substituting (A.3) into (A.2) and by gradient descent
method, we can get level set evolution equation

∂φ

∂t
= δε(φ) ·

[
γ · div

( ∇φ
|∇φ|

)

+ αψ
(∣∣∇u−∣∣) + β

(
u− − f

)2

− αψ
(∣∣∇u+∣∣)− β

(
u+ − f

)2]
.

(A.4)

Fixing φ and minimizing (A.1) is equivalent to minimizing

EIMS
(
u+,u−

)

= α
∫

Ω+
ψ
(∣∣∇u+∣∣)dx dy + β

∫

Ω+
ψ
(
u+ − f

)2
dx dy

+ α
∫

Ω−
ψ
(∣∣∇u−∣∣)dx dy + β

∫

Ω−
ψ
(
u− − f

)2
dx dy.

(A.5)

From variational method, the Euler-langrange equations for
u+ and u− are given by

Eu+ − ∂

∂x
Eu+x −

∂

∂y
Eu+y = 0 on φ > 0,

(
Eu+x ,Eu+y

) • �N|φ=0 = 0,

(A.6)

Eu− − ∂

∂x
Eu−x −

∂

∂y
Eu−y = 0 on φ < 0,

(
Eu−x ,Eu−y

) • �N|φ=0 = 0.

(A.7)

From (A.6), we have

Eu+ = ∂EIMS

∂u+
= 2

(
u+ − f

)
;

Eu+x =
∂EIMS

∂u+x
= ψ′

(∣∣∇u+∣∣) · u+x∣∣∇u+∣∣ ;

Eu+y =
∂EIMS

∂u+y
= ψ′

(∣∣∇u+∣∣) · u+y∣∣∇u+∣∣ .

(A.8)

Setting μ = α/β and substituting them into (A.6) yields u+ −
f = μ · div((ψ′(|∇u+|)/2|∇u+|) · ∇u+).

And (Eu+x ,Eu+y ) • �N|φ=0 = 0 yields (ψ′(|∇u+|)/|∇u+|) ·
∇u+ • �N|φ=0 = 0, that is, (∂u+/∂�N)|φ=0 = 0.
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Thereby, we can get the diffusion equation for u+:

u+ − f =μ · div
(
ψ′
(∣∣∇u+∣∣)
2
∣∣∇u+∣∣ ·∇u+

)
on φ > 0,

∂u+

∂
⇀
N
= 0 on φ = 0.

(A.9)

Similar to (A.8), we can get the diffusion equation for u−:

u− − f =μ · div
(
ψ′
(∣∣∇u−∣∣)
2
∣∣∇u−∣∣ ·∇u−

)
on φ < 0,

∂u−

∂
⇀
N
= 0 on φ = 0.

(A.10)
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