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A novel adaptive FIR filter for the estimation of a single-tone sinusoid corrupted by additive noise is described. The filter is
based on an offline optimization procedure which, for a given notch frequency, computes the filter coefficients such that the
frequency response is unity at that frequency and a weighted noise gain is minimized. A set of such coefficients is obtained for
notch frequencies chosen at regular intervals in a given range. The filter coefficients corresponding to any frequency in the range are
computed using an interpolation scheme. An adaptation algorithm is developed so that the filter tracks the sinusoid of unknown
frequency. The algorithm first estimates the frequency of the sinusoid and then updates the filter coefficients using this estimate.
An application of the algorithm to beamforming is included for angle-of-arrival estimation. Simulation results are presented for a
sinusoid in correlated noise, and compared with those for the adaptive IIR notch filter.
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1. INTRODUCTION

Estimation of sinusoidal signals and their frequencies from
noisy measurements is important in many fields such as
angle of arrival estimation, frequency-shift keying (FSK)
demodulation, Doppler estimation of radar waveforms,
biomedical engineering, sensor array processing, and cancel-
lation of periodic interferences [1]. The observed signal has
the following general form:

x(k) = a cos(kθ + φ) + q(k). (1)

The problem in many applications is to recover the signal
and/or its frequency θ, from the noisy observations x(k). Var-
ious adaptive filtering algorithms have been introduced for
solving such problems. The least-mean-square (LMS) algo-
rithm [2] based on the FIR transversal filter has been widely
used due to its simplicity and robustness. On the other hand,
the performance of this algorithm deteriorates when the in-
put signal is correlated [3]. Transform-domain techniques
have been introduced to decorrelate the input signal and
achieve faster convergence [3, 4]. Also, in certain applica-
tions, the filter length required for a satisfactory performance
is large. The adaptive IIR filter, also known as the adaptive
notch filter [5–7], has been introduced as an alternative to
the LMS FIR filter. The IIR filter has the outstanding advan-
tage of requiring considerably fewer coefficients compared

with its FIR counterpart. However, the performance of the
IIR notch filter in correlated noise has not been studied well
in the literature. In [8], an adaptive IIR notch filter for sup-
pressing narrow-band interference is described, where the fil-
ter’s bandwidth is adaptively controlled to maximize SNR.

In this paper, a notch filter based on the FIR structure is
presented which has offline optimized magnitude responses
[9] at all frequencies in the range [0, π]. The magnitude fre-
quency response of the proposed filter is designed to mini-
mize a criterion which depends on the noise suppression per-
formance and takes into account the power spectrum of the
noise. It is assumed that the noise power is concentrated in
a certain frequency range which can be estimated. The filter
coefficients are then adapted to track the input signal by us-
ing filter coefficients stored at preselected frequencies in the
range [0, π]. In this way, an adaptive FIR notch filter with fre-
quency responses optimized to reject correlated noise is ob-
tained. This approach resembles that of [10] which employs
online constraints for waveform estimation in the frequency
domain. It is shown that the proposed filter provides perfor-
mance gains compared with the adaptive IIR notch filter in
terms of signal and frequency estimation, at frequencies out-
side of the noise band.

The proposed adaptive filter is suitable for adaptive line
enhancer applications where the noise is correlated and the
power spectra can be estimated (e.g., using periodogram
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techniques). It can also be successfully employed in adaptive
beamforming applications [2], where interference in certain
directions can be effectively suppressed.

The paper is organized as follows. In Section 2, the opti-
mization of the FIR notch filter is described. In Section 3, the
adaptation algorithm for tracking the input signal is obtained
and stability analysis is performed in Section 4. Section 5 de-
scribes an example application of the algorithm to beam-
forming. Section 6 presents the simulation results for the
proposed method and for the adaptive IIR filter.

2. OFFLINE-OPTIMIZED FIR NOTCH FILTER

Consider a predictive FIR filter of length N ,

x̂o(k + 1) =
N−1
∑

n=0
ho,nxo(k − n), (2)

where x̂o is the output of the filter and ho,n, n = 0, . . . ,N − 1,
are the filter coefficients which will be optimized. In or-
der that the filter can predict a sinusoidal signal xo(k) =
A cos(kθ0 + φ) at frequency θ0, the following equations must
be satisfied:

N−1
∑

n=0
ho,n cos

(

nθ0
) = cos θ0,

N−1
∑

n=0
ho,n sin

(

nθ0
) = − sin θ0.

(3)

Equation (3) can be written in matrix form as

Aho= p, (4)

where

A =
[

1 cos θ0 cos 2θ0 · · · cos
{

(N − 1)θ0
}

0 sin θ0 sin 2θ0 · · · sin
{

(N − 1)θ0
}

]

,

p =
[

cos θ0 − sin θ0
]T

.

(5)

This filter can be optimized by minimizing a cost function
which depends on the noise suppression performance, sub-
ject to the constraints in (4). The frequency response of the
filter in (2) is

H(θ) =
N−1
∑

n=0
ho,ne

− j(n+1)θ. (6)

In order to suppress the correlated noise frequency compo-
nents and design the frequency response of the proposed fil-
ter, the following cost function is defined:

J1 =
M
∑

m=1
wm

∣

∣H
(

θm
)∣

∣

2
, (7)

where θm, m = 1, . . . ,M, is the frequency range represented
by M samples and wm, m = 1, . . . ,M, are the weights that
can be used to shape the frequency response. Minimization

of J1 subject to the constraints in (4) can be achieved by using
the method of Lagrange multipliers. Incorporating the con-
straint (4) in the cost function, we obtain

J2 = hToCho + λT
(

Aho−p
)

, (8)

where λ = [λ1 λ2]T is the vector of Lagrange multipliers.
The minimization of J2 with respect to ho results in the fol-
lowing equations:

N
∑

i=1
ho,i−1ci j = −1

2

(

λ1a1, j + λ2a2, j
)

, j = 1, . . . ,N , (9)

ci j =
M
∑

m=1
wm cos

[

( j − i)θm
]

, i, j = 1, . . . ,N. (10)

In (9), a1, j and a2, j are the elements of A. Equation (9) can
be put into matrix form as

Cho = −1
2
ATλ. (11)

In order to solve for the multipliers, we substitute (11) in (4).
Then the vector λ can be solved as

λ = −2(AC−1AT)−1p. (12)

Finally, the filter coefficient vector ho can be obtained from
(11) as

ho = C−1AT(AC−1AT)−1p. (13)

3. THE ADAPTIVE FILTER

Consider an adaptive predictive FIR filter of the form

x̂(k + 1) =
N−1
∑

n=0
hn(k)x(k − n) = hT(k)xN (k), (14)

where x̂(k + 1) is the output of the filter, h(k) =
[h0(k) · · · hN−1(k)]T is the vector of the filter coefficients
at time step k, and

xN (k) =
[

x(k)x(k − 1) · · · x(k −N + 1)
]T

(15)

is the observed data vector, where x(k) = xo(k) + q(k). It is
assumed that q(k) is a zero-mean Gaussian random process.
The adaptive FIR filter will be designed such that it predicts
a sinusoid xo of any frequency θs by utilizing the optimum
filter coefficients computed at a selected frequency θ0, where
θs is assumed to lie in a certain neighborhood of θ0. The pre-
diction error is defined as

ep(k + 1) = x(k + 1)− x̂(k + 1). (16)

With the filter coefficient vector fixed at ho, an error transfer
function can be defined as

He,o(z) =
Ep(z)

X(z)
= 1−

N−1
∑

n=0
ho,nz

−(n+1). (17)
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Note that (17) is a notch filter tuned at the frequency θ0.
Therefore, the first pair of the zeros (z0,1, z0,2) of the polyno-
mial in (17) corresponds to the frequency θ0. Hence He,o(z)
can be written as

He,o(z) =
(

1− 2 cos
(

θ0
)

z−1 + z−2
)

N
∏

l=3

(

1− z0,lz
−1), (18)

where {z0,l, l = 3, . . . ,N} are the remaining zeros of the poly-
nomial. The proposed adaptive filter is based on the follow-
ing parameterized error transfer function:

He(z,α) =
(

1− αz−1 + z−2
)

Hn(z), (19)

where Hn(z) denotes the product term in (18), which has
constant coefficients of the powers of z. Now, He(z,α) can
be written in the form of He,o(z) in (17) as

He(z,α) = 1−
N−1
∑

n=0
hn(α)z−(n+1). (20)

The α-dependent filter coefficients can be obtained by ex-
panding He(z,α) in (19) as a power series. It is obvious that
the coefficients will be linear in α, as follows:

hn(α) = an + αbn, n = 0, . . . ,N − 1. (21)

The filter will be optimal with respect to the cost function
in (7) when α = α0 = 2 cos(θ0). However, it can be argued
that the noise power will not change significantly when α is
in the vicinity of α0. Note that (20) is a notch filter tuned
at the frequency θ = cos−1(α/2). Filtered prediction error is
defined as follows:

ẽp(k + 1) =
N−1
∑

n=0
he,nep(k − n), (22)

where he may be chosen equal to ho. This error may be as-
sumed to be equal to the difference between the original sig-
nal xo(k+1) and the prediction, where θs is the original signal
frequency,

ẽp(k + 1) ∼= xo(k + 1)− x̂(k + 1) = xo(k + 1)− hT(α)xN (k).
(23)

Now, if the following assumption is made:

xo(k + 1) ∼= hT
(

αs
)

xN (k), (24)

where αs = 2 cos θs, then (23) can be written as

ẽp(k + 1) = [h(αs
)− h(α)

]T
xN (k) = (Δh)TxN (k). (25)

The correction in the coefficient vector can be approximated
by

Δh ∼= ∂h
∂α

∣

∣

∣

∣

αs

Δα ∼= [−2 sin (θs
)

Δ̂θs
]

b, (26)

where b = [b0 · · · bN−1]T , and Δ̂θs is the correction in the
estimated frequency of the signal. Substituting (26) in (25)

and solving for Δ̂θs, the updating scheme for ̂θs is obtained
as

̂θs(k + 1) = ̂θs(k)− μ
ẽp(k + 1)

[

2 sin
(

̂θs(k)
)](

bTxN (k)
)
, (27)

where μ is a suitably chosen stepsize. The coefficient vector is
then updated using

h(k + 1) = h
[

α(k + 1)
] = a + bα(k + 1), (28)

where α(k+1) = 2 cos(̂θs(k + 1)). Note that the term bTxN (k)
in (27) may become arbitrarily small since it is a linear com-
bination of noisy sinusoids. In such case, the correction in the
frequency cannot be solved from (25) and (26). Higher-order
terms may be required in the series expansion in (26) for the

solution of Δ̂θs. However, in such case, ẽp will become non-

linear in Δ̂θs. This is avoided by equating the correction Δ̂θs
to zero in such a singular case, where μ is set to zero whenever

∣

∣bTxN (k)
∣

∣ < ε. (29)

Here, ε is a threshold for successive updates. When ε is too
small, it may lead to instability. On the other hand, a large
value of ε may result in decreased tracking performance.
Note that ε must be chosen less than the maximum ampli-
tude of bTxN (k). A reasonably accurate initial value of the
frequency estimate can be obtained by a periodogram with a
relatively short length FFT.

With the thresholding of the second term, the update

equation for ̂θs(k) can be written as

̂θs(k + 1) = ̂θs(k)− μ(k)
ẽp(k + 1)

[

2 sin
(

̂θs(k)
)](

bTxN (k)
)
, (30)

where

μ(k) =
⎧

⎨

⎩

μ
∣

∣bTxN (k)
∣

∣ > ε,

0 otherwise.
(31)

In the implementation of the proposed adaptive filter, the
frequency range [0,π] is divided into L = 18 intervals. The
optimum filter coefficient vector is calculated at the centre
frequency θ0(l), l = 1, . . . ,L, of each interval. Figure 1 shows
the frequency response of the optimized filter tuned at the
frequency π/4. The vectors (a,b) are then calculated offline
(only once) by (18) using symbolic computation and then
stored in processor memory. Given the frequency estimate
̂θs(k) at time k, the filter coefficient vector is then calculated
using h(k) = a(l) + b(l)α(k), where l is the index of the in-

terval to which ̂θs(k) belongs. Note that the larger L is, the
smaller the deviation of the cost function value will be, at
any frequency ̂θs(k) in an interval l, from the optimal value
for θ0(l). Increasing L will not complicate the design of the
filter. However, with a larger L, the variance of the frequency
estimate will decrease at the increased cost of the time taken
to search for the interval l to which ̂θs(k) belongs. Table 1
shows the variation of the variance of the frequency estima-
tion, where the frequency to be estimated is located at the
center of each interval. It can be observed that for large inter-
vals (small L), there is a large variability in the variance as the
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Figure 1: Magnitude response of optimized notch filter at θ0 = π/4.

frequency to be estimated approaches the end points of each
interval. For L = 10, at the center of the interval (θs = 45◦),
σ2
̂θs
= 5.7712×10−5. At the end of the corresponding interval

(θs = 54◦), it reaches a value of σ2
̂θs
= 21.644×10−5. However,

for L = 30, at the center σ2
̂θs
= 5.2202 × 10−5 and at the end

(θs = 48◦), the variance reaches to σ2
̂θs
= 11.385× 10−5.

Further, it should be noted that increasing the filter
length N improves the performance of the proposed algo-
rithm. The larger N is, the sharper the notch in the fre-
quency response at the signal frequency. While increasing N ,
L should also be increased to minimize the variability in esti-
mation variance.

The computational complexity of the proposed filter is
comparable with that of the standard LMS (requires approx-
imately 2N multiplications and 2N additions per sample),
but is much lower than the transform-domain LMS. The al-
gorithm requires approximately 3N multiplications and 3N
additions per sample, where N is the filter length. The offline
optimization is done once and requires a single application
of the FFT where the length is approximately 2N . The IIR-
ANF has a low complexity of approximately 10 multiplica-
tions and 10 additions.

A summary of the algorithm is given below.

Offline

(1) Select θ0(l), l = 1, . . . ,L, uniformly distributed in
[0,π].

(2) For l = 1, . . .,L, select weights wm(l), m = 1, . . . ,M
such that (7) is minimized for θ0(l).

(3) For l = 1, . . . ,L, compute ho using (13). Then, com-
pute the vectors (a(l),b(l)) using the following proce-
dure:

(a) find the zeros of the polynomial He,o(z) in (17);
(b) using (18) find the coefficients of Hn(z) in (19)

(symbolic computation is used);
(c) find hn(α), then an(l) and bn(l).

Table 1: Effect of the number of intervals L on the variation of es-
timated frequency variance in an interval.

L θs(×180/π) σ2
̂θs

(× 10−5
)

10

36 6.9772

45 5.7712

54 21.644

18

40 10.763

45 5.3937

50 14.722

30

42 4.4113

45 5.2202

48 11.385

Online

(1) Given the frequency estimate ̂θs(k) at time step k, find
l such that

θo(l)− π

2L
< ̂θs(k) ≤ θo(l) +

π

2L
. (32)

(2) Compute h[̂θs(k)] using (28) (k + 1 replaced by k).
(3) Compute the signal prediction x̂(k + 1) using (14).
(4) Compute the error using (16).
(5) Update the frequency estimate using (27) if (29) is not

satisfied. Otherwise, ̂θs(k + 1) = ̂θs(k).

4. STABILITY ANALYSIS

The updating equation for the estimated frequency in (27)
is a nonlinear stochastic discrete-time equation. An exact
stability analysis is only possible by using Lyapunov’s di-
rect method which is analytically intractable for this system.
Therefore, an approximate stability analysis is performed

when ̂θs is assumed to be close to the original signal fre-

quency θs. The perturbation in ̂θs is defined as

δ ̂θs(k) = ̂θs(k)− θs. (33)

The corresponding perturbation in the parameter α is

δα(k) = α(k)− αs ∼= −2 sin
(

θs
)

δ ̂θs(k). (34)

In order to simplify the analysis, it will be assumed that there
is no filtering on the prediction error. The prediction error in
(16) can be expressed as

ep(k + 1) = xo(k + 1) + q(k + 1)− x̂(k + 1). (35)

Now, (28) can be used to write

h(k) = h
[

α(k)
] = a + bα(k)

= h
(

αs
)

+ bδα(k).
(36)
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The predicted signal in (35) can be written as

x̂(k + 1) = hT(k)xN (k) = hT
(

αs
)

xN (k) + bTxN (k)δα.
(37)

The input vector in (37) can be written as

xN (k) = xo,N (k) + q(k), (38)

where q(k) = [q(k) q(k − 1) · · · q(k −N + 1)]T , leading
to

hT
(

αs
)

xN (k) = hT
(

αs
)

xo,N (k) + hT
(

αs
)

q(k)

= xo(k + 1) + q̂(k + 1).
(39)

Substituting (39) and (37) in (35),

ep(k + 1) = q(k + 1)− q̂(k + 1)− bTxN (k)δα. (40)

Substituting (33), (34), and (40) in (27), we obtain

δ ̂θs(k + 1) =
[

1− μ(k)
sin
(

θs
)

sin
(

̂θs(k)
)

]

δ ̂θs(k)

− μ(k)
q(k + 1)− q̂(k + 1)

[

2 sin
(

̂θs(k)
)](

bTxN (k)
)
.

(41)

Equation (41) is a nonlinear stochastic equation in discrete-

time. Linearization of this equation around δ ̂θs(k) = 0 gives

δ ̂θs(k + 1) = (1− μ(k)
)

δ ̂θs(k)− μ(k)
qd(k + 1)

2 sin
(

θs
)

d1(k)
.

(42)

In (42), qd(k+1) = q(k+1)− q̂(k+1) and d1(k) = bTxN (k).
Taking the expectation of (42), the time-dependent part

of the second term becomes

E
{

μ(k)
qd(k + 1)
d1(k)

}

= μptE
{

qd(k + 1)
d1(k)

| ∣∣d1(k)
∣

∣ > ε
}

,

(43)

where pt = P{|d1(k)| > ε}. In Appendix A, it is shown that
this term is negligible. Taking expectation, (42) becomes

E
{

δ ̂θs(k + 1)
} = (1− μ̄)E

{

δ ̂θs(k)
}

, (44)

where μ̄ = μ · P{|d1(k)| > ε}. The first-order discrete-time
equation in (44) is stable if 0 < μ̄ < 2, in which case

limk→∞ E{δ ̂θs(k)} = 0, implying that the frequency estimates
are unbiased. Using (42), it is also possible to show that the
frequency estimate converges to its true value in the mean,
square sense, and the variance of the frequency estimate,
which is obtained for white noise, is given as

σ2
̂θs
∼= μ2ptσ2n

(

1 +Gn
)

2εAθs sin
2 (θs

)(

1− λP
)

√

1− ε2

A2
, (45)

where Gn = ‖h(θs)‖2, λ = (1 − 2μ̄ + μ2pt), P = π/θs, and A
is the amplitude of bTxN . The derivation of (45) is outlined
in Appendix B.
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Figure 2: Directional response of the beamformer (θ0 = 0◦).

5. APPLICATION TO BEAMFORMING

The proposed method is well suited to be applied in beam-
forming applications with angle-of-arrival estimation. Con-
sider an array of N sensors with real gains and an incident
signal x0(k). The output of the nth sensor is then

xn(k) = x0(k)e− jnθ , (46)

where θ is the angle of arrival (AOA) of the signal. The beam-
former output can be written as

y(k) = x0(k)
N−1
∑

n=0
hne

− jnθ. (47)

The directional response of the beamformer is

H(θ) =
N−1
∑

n=0
hne

− jnθ. (48)

Following the procedure given in Section 2, the gain of the
beamformer at a selected angle of arrival can be made unity,
while the weights can be chosen to shape the response.
Figure 2 shows the response where interference arising in the
directions from 0.8 to 1.4 radian is suppressed by approxi-
mately −40 dB. Note that since the gains of the beamformer
are real, the response is symmetrical about 0◦.

The output of the beamformer can be written in general
as

y(k) =
N−1
∑

n=0
hn(k)xn(k) = hT(k) · xN(k), (49)

where

xN(k) =
[

x0(k) x1(k) · · · xN−1(k)
]T

= x(s)N (k) + x(i)N (k),

x(s)N (k) = x(s)0 (k) ·
[

1 e− jθ0 · · · e− j(N−1)θ0
]T

,

x(i)N (k) = x(i)0 (k) ·
[

1 e− jθi · · · e− j(N−1)θi
]T

.

(50)
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Table 2: Bias of the frequency estimates.

θs 0.3142 0.6283 0.9425 1.5708 2.5133 2.8274

̂θs (AWGN) 0.3126 0.6290 0.9420 1.5591 2.5172 2.8278

̂θs (CGN) 0.3146 0.6287 0.9431 1.5677 2.5160 2.8280

32.521.510.50
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0

0.2

0.4

0.6

0.8

1

1.2

1.4
×10−3

σ
2 ̂ θ s

Equation (37)
Simulation

Figure 3: Approximate theoretical and computed variance of fre-
quency estimates for AWGN.

In (50), θ0 and θi are the angles-of-arrival of the main signal
and the interference, respectively. In (49) it is assumed that
the AOA of the main signal is not known and the gains hn(k)
are adapted to estimate this angle. For this adaptation, the
error signal is

e(k) = y(k)− hT(k) · xN(k) (51)

and is complex in general. Therefore, the update equation for
the AOA estimate should be written as

̂θs(k + 1) = ̂θs(k)− μ
Re
{

e(k)
}

[

2 sin
(

̂θs(k)
)]

Re
{

bTxN (k)
}
. (52)

6. SIMULATION RESULTS

For frequency estimation of a noisy sinusoid, the parame-
ters used in the simulations are N = 16, a = 1, L = 18,
μ = 0.01. Table 2 shows the estimates of selected frequencies
in the range [0,π] in AWGN (σ2q = 0.25) and in correlated
Gaussian noise (CGN) (σ2q = 0.30), averaged over 30 000
samples. The estimates are generally unbiased with a maxi-
mum absolute error of 0.7%.

Figure 3 shows the theoretical and computed variance
of estimated frequency in AWGN. There is good agreement
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Figure 4: Magnitude response of the noise filter.
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Figure 5: Computed RMSE of the FIR-ANF and the IIR-ANF.

except at the edges of the frequency range. This is due to
the terms in the denominator in (45) which become zero
at the edges. The RMSE performance of the FIR notch fil-
ter (FIR-ANF) is compared with that of the IIR notch filter
(IIR-ANF, constrained poles and zeros [6]). The noise is cor-
related Gaussian with variance σ2q = 0.30 and is obtained by
filtering white noise using a filter having the magnitude re-
sponse shown in Figure 4. In order that a fair comparison
is made, the stepsize of IIR-ANF is adjusted to have the same
convergence rate as the FIR-ANF. Alternatively, the RMSE for
the two methods could have been fixed to observe the im-
provement in the convergence rate. Figure 5 shows the com-
puted RMSE values over the complete frequency range. It is
observed that the RMSE of the FIR-ANF is less than that of
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Figure 6: Computed estimated frequency variances of FIR-ANF
and IIR-ANF.
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Figure 7: Convergence of the estimated frequency from an initial
value of π/6 to π/4 (FIR-ANF).

IIR-ANF over almost the entire frequency range, except in
1.5 < θs < 2.3 rad. (around the center of the noise band).

Figure 6 shows the variances of the estimated signal fre-
quency for the two methods. It is again observed that the
variance of FIR-ANF is better than that of IIR-ANF over the
frequency range, except in 1.2 < θs < 2.4 rad. As the signal
frequency approaches the noise band, the variance of FIR-
ANF rapidly increases above that of the IIR-ANF. This is due
to the inefficiency of the FIR filter to suppress noise com-
ponents which are very near the signal frequency. Figure 7
shows the convergence of the estimated frequency from an
initial value of θs(0) = π/6 to the actual value θs = π/4 with
the FIR-ANF. It is observed that the convergence is almost

1000900800700600500400300200100
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3

̂ θ s

Figure 8: Convergence of the estimated frequency from an initial
value of 1.92 rad. to 2.80 rad. (FIR-ANF).

exponential, that is, (1− μ̄)k, which is the solution of (44). It
is also important to note that the initial frequency estimate
does not have to be in very close vicinity of the true one.
Figure 8 shows the convergence of the estimated frequency
when the initial value is at the center of the correlated noise
band (1.92 rad.), which poses the biggest challenge for the
algorithm (it still converges to the true frequency which is
2.80 rad.). However, as the initial frequency is far from the
steady state value for this case, the linear model in (42) is
not valid any more and the response of the error is not ex-
ponential. It should be noted here that, whatever parame-
ters are chosen, IIR-ANF does not converge under the same
conditions. Figure 9 shows the responses of the frequency es-
timates with FIR and IIR-ANFs for the case where the fre-
quency variances are equated.

A beamforming application is also simulated where the
actual angle-of–arrival of the signal is 4◦ and the initial es-
timate is 0◦. Figure 10 shows the convergence of the esti-
mated AOA to the true one. The frequencies of the signal
and the interference are 0.087 radian and 0.87 radian, respec-
tively. Sensor inputs are assumed to be corrupted by zero-
mean Gaussian noise with uniform directional density. The
signal-to-interference ratio (SINR) of the beamformer input
is SINR = 4.15. After convergence, the signal-to-interference
ratio is calculated as SINR = 84.9, with an increase by a fac-
tor of 20.45.

7. CONCLUSIONS

A new adaptive notch FIR filter is introduced. This filter has
the novel feature that its frequency responses can be op-
timized in an offline manner. The proposed filter is con-
siderably more flexible in shaping the frequency response,
and thereby rejecting noise in selected frequency ranges. Un-
like the IIR filter, the adaptive FIR filter is always stable for
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Figure 9: Convergence of the estimated frequency from an initial

value of ̂θs(0) = 0.52 rad. to θs = 0.87 rad. (FIR-ANF and IIR-ANF).

suitable choice of stepsizes. The algorithm can effectively
be applied to beamforming problems with AOA estimation,
whereas the IIR counterpart is inapplicable. Simulation re-
sults indicate that except for the frequency range around the
peak noise power, the FIR-ANF is superior in estimating the
sinusoid and its frequency in CGN, compared with the IIR
notch filter.

APPENDICES

A. EXPECTED VALUE OF THE SECOND TERM IN (41)

In [11], an approximation for the expected value of a func-
tion of two random variables is given as

E
{

g(X ,Y)
} ∼= g0 +

1
2

(

∂2g

∂x2
σ2X +

∂2g

∂y2
σ2Y

)

+
∂2g

∂x∂y
ρσXσY ,

(A.1)

where g0 = g(μX ,μY ) and the derivatives are evaluated at
(μX ,μY ). For g(x, y) = x/y (A.1), gives

E
{

g(X ,Y)
} ∼= μX

μY
− ρσXσY

μ2Y
+
μXσ

2
Y

μ3Y
, (A.2)

which can be applied to the expected value in (43). Letting
X = qd(k + 1) and defining Y as a random variable tak-
ing values which satisfy the threshold. The fact that μX =
E{qd(k + 1)} = 0 gives

η = E
{

qd(k + 1)
d1(k)

| ∣∣d1(k)
∣

∣ > ε
}

∼= −ρσXσY
μ2Y

, (A.3)

where μY = E{d1(k) | |d1(k)| > ε}.
Similar to (39), d1(k) can be written as

d1(k) = bTxN (k) = bTxo,N (k) + bTq(k)

= s(k) + q2(k),
(A.4)

21.81.61.41.210.80.60.40.2
×104Time (k)
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Figure 10: Convergence of the estimated AOA from an initial value

of 0◦ to 4◦(μ = 0.0003, ε = 6 sin ̂θs).

where s(k) is a sinusoid. Let s(k) = A sin((k + 1)θs), where A
is determined by the vector b. Therefore, μY ∼= s(k) whenever
k ∈ I∈ = {k : |d1(k) > ε|} and

η ∼= − σXY
A2 sin2

(

(k + 1)θs
) k ∈ I∈. (A.5)

The time-average of the expected value is written as

η̄ ∼= −ρσXσY
A2

θs
π

∑

k∈I∈

1

sin2
(

(k + 1)θs
)

∼= −σXYθs
A2π

1
θs

∫ π−sin−1 ε/A

sin−1 ε/A

1

sin2 θ
dθ

= −2σXY
Aπε

√

1− ε2

A2
= − 2σXY

A2πτ

√

1− τ2,

(A.6)

where τ = ε/A (is of the order of 0.1). The amplitude A
can be estimated if the filter coefficients are approximated by
those of an LMS adaptive line enhancer [12]:

hn = 2 a∗

N
cos
(

(n + 1)θs
)

, n = 0, . . . ,N − 1, (A.7)

where a∗ is approximately equal to one for large N . The
derivatives with respect to α are obtained as

bn = δhn
δα

= a∗(n + 1)
N sin θs

sin
(

(n + 1)θs
)

, n = 0, . . . ,N − 1.

(A.8)

Evaluation of bTxo,N (k) shows that it contains three sinu-
soidal functions of the time k, with amplitudes which are of
the orders of 1/N , 1, and N . Hence, the amplitude A can be
approximately obtained as

A = a∗(N + 1)
4 sin θs

a. (A.9)
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The covariance σXY can be obtained as

σXY = E
{

qd(k + 1) · d1(k)
} = bT

(

rq −Qh
(

αs
))

, (A.10)

where Q is the autocorrelation matrix of the noise sequence
and rq = E{q(k + 1) · q(k)}. It is difficult to derive a general
result from (A.10) for any given correlated noise sequence.
To gain an insight as to the order of this term, we consider
white noise. In this case, rq = 0 and Q = diag[σ2q , . . . , σ

2
q ]

resulting in

σXY = σ2qb
Th
(

αs
)

, (A.11)

which can be calculated using (A.7) and (A.8) as

σXY =
σ2q
(

a∗
)2

4N2 sin2 θs
×{(2N+csc2 θs

)

sin
(

2Nθs
)−2N cot θs cos

(

2Nθs
)}

.
(A.12)

Combining all the above results, it can be easily shown that
the second term in (43) (except for μ) is of the order of

8σ2q
πτN3a2 sin2 θs

. (A.13)

Note that the above expression is also approximately equal to
the bias in the frequency estimate. Hence, for 0 < θs < π and
for sufficiently large N the bias is negligible.

B. VARIANCE OF THE FREQUENCY ESTIMATE

Variance of the frequency estimate is given by

v(k) = E
(

[

̂θs(k)− θs
]2
)

= E
(

[

δ ̂θs(k)
]2
)

. (B.1)

If the simplifying assumption is made that δ ̂θs(k), q(k + 1),
and q̂(k + 1) are uncorrelated, the following can be obtained
from (42):

v(k + 1) = (1− 2μ̄ + μ2pt
)

v(k) +
μ2ptσ2n

(

1 +Gn
)

4 sin2 θs
D(k),

(B.2)

where D(k) = E{1/d21(k) | |d1(k)| > ε}.
The steady state solution of the difference equation in

(B.2) can be written as

lim
k→∞

v(k) = lim
k→∞

μ2ptσ2n
(

1 +Gn
)

4A2 sin2 θs

k
∑

i=1
i∈I∈

λk−i

sin2
[

(i + 1)θs
] ,

(B.3)

where λ = (1− 2μ̄ + μ2pt).
The summation term in (B.3) may be approximately

evaluated as

k
∑

i=1
i∈I∈

λk−i

sin2
[

(i + 1)θs
] 


(

1− λk

1− λP

)

2A
εθs

√

1− ε2

A2
, (B.4)

where P = π/θs. In the limit, as k goes to infinity. (B.3) and
(B.4) lead to (43).
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from Boğaziçi University, Istanbul, Turkey,
in 2000. He joined the faculty of Eastern
Mediterranean University, Gazimağusa, North Cyprus, in 2000,
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