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A novel scheme is described for determining the position of an unknown mobile terminal without any prior information of
transmitted signals, keeping in mind, for example, radiowave surveillance. The proposed positioning algorithm is performed by
using a single base station with an array of sensors in multipath environments. It works by combining the spatial characteristics
estimated from data measurement and ray-tracing (RT) analysis with highly accurate, three-dimensional terrain data. It uses two
spatial parameters in particular that characterize propagation environments in which there are spatially spreading signals due to
local scattering: the angle of arrival and the degree of scattering related to the angular spread of the received signals. The use of RT
analysis enables site-specific positioning using only a single base station. Furthermore, our approach is a so-called blind estimator,
that is, it requires no prior information about the mobile terminal such as the signal waveform. Testing of the scheme in a city of
high density showed that it could achieve 30 m position-determination accuracy more than 70% of the time even under non-line-

of-sight conditions.
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1. INTRODUCTION

Interest in determining the position of wireless terminals
has been growing rapidly for a number of wireless applica-
tions, such as location-based services, navigation, and secu-
rity. In the United States, for example, the Federal Communi-
cations Commission (FCC) requires wireless carriers imple-
menting enhanced 911 (E-911) service to provide estimates
of a caller’s location within a given accuracy, for instance,
wireless E-911 callers have to be located within 50 m of their
actual location at least 67% of the time [1-3]. In Japan, there
is a need to determine the locations of illegal wireless ter-
minals on vehicles that are interfering with wireless commu-
nication systems [4]. Position determination is also needed
for radiowave surveillance. The most widely used position-
determination scheme is the global positioning system (GPS)
[5]. Although it can be used to determine the locations of
things highly accurately, existing handsets have to be modi-
fied to function as a GPS receiver, and it does not work un-
less the mobile terminal has a line-of-sight (LOS) path to the
satellites [2]. Thus, it is not applicable to the detection of a
nonsubscriber such as the radiowave surveillance.

In a few decades, the use of array antennas is receiv-
ing much attention through the efficient use of information

carried in the spatial dimension [1, 6]. More and more mo-
bile positioning schemes using array antenna employed at a
high base station have been investigated as the number of
cellular handset subscribers increases. Until now, a number
of conventional position-determination methods have been
based on trilateration, which combines the received signal
strength (RSS), time-of-arrival (TOA), time-delay-of-arrival
(TDOA), and/or angle-of-arrival (AOA) of signals received at
three receivers, for example, see [7—10]. This approach also
depends on there being an LOS path between each receiver
and transmitter, which is difficult to observe in urban envi-
ronments since a non-LOS (NLOS) condition significantly
degrades positioning accuracy. Although some NLOS miti-
gation strategies can partly improve accuracy by exploiting a
priori knowledge or using a sensor network to a certain ex-
tent [11, 12], the propagation characteristics greatly depend
on the measurement area and the location of the transmitters
and receivers.

On the other hand, database correlation methods, so-
called fingerprint methods, have been showing better detec-
tion capability rather than the trilateration in the last couple
of years, see [13—16] and the references therein. The received
signal fingerprints, such as RSS, TDOA, and angular profile,
are stored as a database by actual measurement in a testing
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area, and the estimated location is obtained by minimizing
the Euclidean distance between a sample signal vector and
the location fingerprints in the database. This site-specific
technique is especially popular in indoor location systems
such as existing wireless local area network (WLAN) infras-
tructure [14]. The straightforward extension to outdoor po-
sitioning in general cellular systems is unrealistic considering
an immense amount of time and effort to make a database
[16]. Furthermore, the dynamic nature of the outdoor radio
environments makes fingerprint methods infeasible. Instead
of the database made from measurement data, a model-based
approach is promising for outdoor positioning, for example,
the use of ray-tracing (RT) analysis that the radiowave prop-
agation in a testing area is virtually simulated by modeling
three-dimensional (3D) terrain data and propagation laws.
Ahonen and Eskelinen virtually predicted the site-specific
fingerprints of a testing area by using the RT analysis, and
compared RSSs of received signals with those of the RT anal-
ysis results obtained at 7 base stations (a serving cell and 6
strongest neighbors) [13]. Basically, however, the use of the
RSSs is not adequate to the applications such as surveillance
of illegal wireless terminals and emergency calls from non-
subscribers, since the RSS estimation needs prior informa-
tion of transmitted signals [10]. Furthermore, using fewer
base stations is important from the economic standpoint.
Although a positioning algorithm with a single base station
employing sensors of array was proposed [17], it utilized the
temporal information of impinging signals that also require
prior knowledge of transmitted signals [9, 18].

This work presents a novel positioning method for use in
multipath environments, which has three important features
as follows.

(i) It uses a “blind algorithm,” that is, it needs no prior
information about the transmitted signal, such as its
signal waveform.

(ii) It is site-specific in that it takes the propagation envi-
ronment into consideration by using RT analysis, and
pinpoints the location of a terminal using only a single
base station.

(iii) It exploits the characteristics of radiowave propagation
in urban environments considering a local scattering
model.

The algorithm consists of two steps. First, the parameters
characterizing the locations in the testing area (defined later)
are experimentally estimated from received signals. Second,
the RT simulations are virtually conducted for calculating
the parameters corresponding to those in the measurement
data analysis, and the estimated location is determined by
matching with the experimentally estimated parameters. The
preliminary calculation of the RT analysis reduces the com-
putational load; however, note that the use of the RT anal-
ysis makes a difference from the conventional fingerprint
methods in that the fingerprint does not always have to be
stored in advance. Furthermore, one of the notable features
of the proposed algorithm is to give a blind algorithm in or-
der to meet more variable requirements of positioning issues
such as surveillance of illegal wireless terminals as mentioned
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FIGURE 1: Conceptual diagram of local scattering.

above. The estimation of only spatial parameters realizes
the blind algorithm, while temporal parameter estimation
needs prior information of signal waveform [18]. Those us-
ing code-division multiple access (CDMA), like those de-
scribed by Caffery and Stiiber [7], are also considerable for
future communication systems, and the proposed position-
ing algorithm can be applied to the narrowband CDMA sys-
tems, for example, 1S-95 [19], if code information for dis-
preading is known in advance. Another feature is to model
the received signal based on a local scattering model that as-
sumes scattering only in the vicinity of a mobile or some re-
flectors, for example, see [20, 21]. This signal model is suit-
able for the propagation environments of urban areas with
a high base station and a low mobile terminal. Then in ad-
dition to AOAs of the received signals, this work introduces
a new spatial parameter indicating the degree of scattering
(DOS) related to the angular spread under the assumption
of the local scattering model, like in Figures 1 and 2. The
two parameters of AOA and DOS are used for pinpointing
the location without any information of transmitted signal
waveform. The DOS is related to a parameter derived from
the first-order approximation of received signal model [20],
and the theoretical performance of the DOS will be also de-
rived in this paper. The matching of these two parameters
dramatically mitigates the computational burden, compared
to the case that angular profile between —7/2 < 0 < 7/2 itself
is used for matching [22]. Furthermore, RT analysis [23] us-
ing highly accurate, 3D terrain data realizes site-specific posi-
tioning using only a single base station. Note that the RT an-
alyzer follows the fundamental property of radiowave prop-
agation, for example, geometrical optics (GO) and uniform
theory of diffraction (UTD) [24].

In this paper, the effectiveness of the proposed position-
ing method is evaluated through experimental data analysis
measured at Yokosuka City in Japan, and the results show
that the combination of measurement data and RT analysis
and exploitation of the AOA and DOS prominently improves
the positioning accuracy although the test range is limited
to approximately 500 m x 500 m. This paper is organized as
follows. Section 2 outlines the basic concept of the proposed
position-determination scheme. The method for estimating
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FIGURE 2: Local scattering on reflectors.

the AOA and DOS in the experimental data analysis and the
theoretical behavior of the DOS are described in Section 3.
Section 4 mentions the fundamental property of the RT anal-
ysis and how to exploit the parameters corresponding to the
AOA and DOS from the RT analysis result. The parameter
estimation results obtained through experimental data anal-
ysis and the positioning accuracy of the proposed algorithm
are discussed in Section 5. We conclude in Section 6 with a
brief summary.

2. CONCEPT OF PROPOSED
POSITION-DETERMINATION SCHEME

2.1. Local scattering model and parameters
characterizing terminal location

Suppose that a transmitter in a general cellular system is
located in low positions outdoors and its scattered signals,
which deteriorate as a result of multipath propagation, are
measured at a receiver mounted on top of a building. If the
receiver is much higher than the transmitters, a local scatter-
ing model, like the one described by Asztély and Ottersten
[20], that considers reflections and scattering in the vicinity
of each transmitter is an appropriate model of the received
signals. In such a model, spatially spread signals are observed
at the receiver, as illustrated in Figure 1. However, in prac-
tical situations, especially under NLOS conditions between
the transmitter and receiver, which is the case dealt with
throughout this paper, the spread signals are usually mea-
sured after propagating along several routes, as illustrated in
Figure 2. As a result, the received signal is expressed as the
summation of several local scatterers on some reflections. For
example, if there is an LOS between a transmitter and a re-
ceiver, the transmitter lies along the AOAs of the direct paths
to multiple base stations. If there is no LOS, the locations of
terminals cannot always be identified by using the AOA esti-
mates, making the position-determination more difficult.
Our proposed positioning method, using a single array of
sensors, uses two particular spatial parameters, the AOA and

DOS, to determine the location of a terminal. These param-
eters represent the path characteristics, which depend on the
propagation environment between the transmitter and re-
ceiver. The signals can be discriminated using the DOSs, even
if their AOAs are the same. Estimation of these two parame-
ters and the relationship between the angular spread and the
bit error rate (BER) are described elsewhere [25, 26].

2.2. Positioning method using ray-tracing analysis

The AOA and DOS estimated from the received signals are
not sufficient for determining the location of a mobile termi-
nal with a single base station, since the location of the mo-
bile is not always determined by such trilateration because of
an NLOS condition and/or multipath propagation. We also
have to use RT analysis. Using an RT simulator, we can vir-
tually analyze the radiowave propagation using the given ter-
rain data and some propagation parameters such as coeffi-
cients of reflection and diffraction. Since the rendering of ge-
ographical information has been attracting much attention,
this technology should become widely used in a variety of
applications in the near future. This work thus uses the RT
analysis with highly accurate 3D terrain data around the test-
ing area to estimate the location of a terminal, by comparing
with the results of the two spatial parameters from both ex-
perimental and RT analyses. In the RT analysis, these param-
eters can be calculated from all the rays between a transmitter
and receiver as shown in Figure 3. In addition, the estimated
AOAs and DOSs are virtually measured at all outdoor loca-
tions (e.g., every 10 m). The calculated AOAs and DOSs in
the RT analysis are used for estimating the location of the
terminal. Let 6; and ik, k = 1,..., K, denote, respectively,
the estimated AOA and DOS of the kth scatterer obtained
in the experimental analysis. Similarly, let O,ERT) (X,Y) and
71,(<RT> (X,Y), k = 1,...,K, be, respectively, the estimates in
the RT analysis, where (X, Y) indicates the Cartesian coor-
dinate of the pseudotransmitters inside the testing area D.
Note that K is the number of scatterers in Figure 2, not that
of the total rays. We estimate the location of a terminal using
a cost function:

K
F(X,Y) = [ > -0 - 65" (x, Y))2
k=1
ey M
+ (i — 1 (X, 7)) } :

where 0y is the radian measure, and 0 < v < 1 is a weighting
factor that indicates the ratio between the correlation of the
AOAs and DOSs. The (X, Y') minimizing this cost function is
taken as the estimated position. That is,

(X,Y) = argx{lglg% F(X,Y), (2)

where (X,Y) is the estimated position. The diagram of
this algorithm is illustrated in Figure 4. Combining the re-
sults for multiple signals from different directions enables to
use the multipath propagation, conventionally regarded as a
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FIGURE 3: 3D terrain data around testing area and RT analysis. A
number of rays from a transmitter (Tx) reach a receiver (Rx) via
different reflections and diffractions.

problem to be avoided, to pinpoint the locations of mobile
terminals using only a single receiver even under NLOS con-
ditions.

Remark 1. This work deals with the position determination
of one mobile terminal using a single base station. If the
number of users is more than one, then the total number
of scatterers is Kr = >.|_, K;, where I denotes the number
of transmitted sources, and K; is the number of scatterers
generated from the ith source. In order to determine the po-
sition of the mobiles, we need the identification of {K;}._,
and the association, that is, which transmitted source the kth
scatterer belongs to. This problem is called “source associa-
tion.” As one idea to solve the problem, Yan and Fan pro-
posed an algorithm for categorizing the distinct Ky AOAs
into I groups in the case that the ith group includes K; coher-
ent signals [27]. Note that the total number of scatterers Ky
has to meet the condition M > K, where M is the number of
sensors of array. Suppose I = 1 and Kr = K; 2K through-
out this paper.

3. DATA MODEL AND PARAMETER ESTIMATION

This section describes the received signal model for multi-
path environments, like the one illustrated in Figure 2, based
on the local scattering model. We also mention the estima-
tion of the AOA and DOS, and statistically derive the physical
properties of the DOS.

3.1. Signal model considering local scattering

The received signal model is expressed as the summation
of multiple local scatterers [25, 26, 28]. We assume that
the transmitter is stationary during observation and that
the time dispersion introduced by the multipath propaga-
tion is small compared to the reciprocal of the bandwidth of
the transmitted signals. An M-element uniform linear array
(ULA) is used as the base station; it is mounted on top of a
high building. A flat Rayleigh fading narrowband channel is
considered. The received signal consists of K scatterers; the
number depends on the physical propagation phenomena,

such as reflection and diffraction:

K Lk N
x(t) = > Bua(By + 0u)s(t — ma) +n()  (3)
k=1 1=0
K Lg N
~ >0 > aga(O + ) si(t) +n(t), (4)
k=1 1=0

where Ly and i are the total number of rays associated with
the kth scatterer and complex amplitude of the Ith ray in the
kth scatterer, respectively. si(t) is the signal of the kth scat-
terer, and n(t) is an additive white Gaussian noise (AWGN)
vector. We assume that the array response vector is perfectly
known from calibration. The mth factor of a(8y) is expressed
as a,(0k) = exp{j2ndsin Ox/A} for ULAs. The quantities 0k
and O + 5k1 represent the nominal AOA of the kth scatterer
and the arrival angle of the Ith ray in the kth scatterer, respec-
tively. This means that |Sko| is sufficiently large compared to
|Bki| under the condition that the kth scatterer includes a di-
rect path, while [Bio| is at almost the same level as |fy| if the
scatterer results from reflections. Note that this model covers
both LOS and NLOS conditions. Assuming narrowband sig-
nals, the time delay of the scattered signals is included in the

phase shift [20]. Thus, given the definitions s () 2 s(t— Txo)

and Aty 2 Tkl — Tko, we obtain (4) from (3) using an approx-
imation:

s(t =) ~ se() exp (— j2m feAtir),

. (5)
ok = P exp (— ]27TfCATk1), k=1,...,K.

3.2. Scattering parameter

3.2.1. Definition

It is impossible to identify all the unknown parameters in (4)
since the number of scattered signals, Ly, is too large and un-
countable. Therefore, a number of statistical approaches to
deal with the scattering model have been so far proposed.
For instance, the standard deviation of the distributed rays
is estimated by the weighted subspace fitting [21], which re-
quires heavy computational load. On the other hand, assum-
ing that the rays are independent and identically distributed
with phases uniformly distributed over [0, 2], and that the
number of rays is sufficiently large, the central limit theorem
may be used to approximate the elements of the spatial signa-
ture as complex Gaussian random variables. Thus, (4) can be
approximated using a first-order Taylor expansion under the

assumption that the angular spread is small, that is, 18l — 0
(20, 21]:

I~

k

agi[a(6k) + Gud (6¢) Isi (1) +n(2)
0

M=

x(t) ~

,r
i

L
I

I
M=

[yka(Ok) + ¢ed(Ok) sk (1) +n(r) (6)

>~
Il
—_

I
M=

[a(6k) + ped(6k) [Sk(£) +n(1),

>~
Il
—_
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FIGURE 4: Diagram of proposed positioning algorithm.

where d(6) £ 9a(6)/96, and

Ly Ly
A A N
Yk =D s, ¢k = D axbu. (7)
1=0 1=0

Including yx in sk(f) as the complex amplitude, we define

Pk 2 O/ yr and Sk(t) 2 yisk(t). Due to the definitions of
yx and ¢y of (7), the identification of the number of the rays
in a scatterer Ly is unnecessary. The model is then consistent
with flat Rayleigh fading since the magnitude of each element
of the spatial signature has a Rayleigh distribution. There are
three unknown parameters in (6), 6k, pk, and 5i(£); px has
been discussed elsewhere [20, 25]. Actually, however, py tem-
porally fluctuates as a result of multipath fading in practical
situations. Thus, we define a new parameter called the “de-
gree of scattering (DOS)” using the expectations of the abso-
lute values of ¢y and yy as

nkéE‘H(/)kH
E{lyel}’

where E{-} denotes the expectation. This parameter 7 is
theoretically relevant to the angular spread of the kth scat-
terer, and the detailed behavior of the parameter is discussed
in Section 3.2.3. The DOS can be estimated without any prior
information such as signal waveform, and the identification
of both AOA and DOS is appropriate for fingerprint to deter-
mine the location under the assumption of the local scatter-
ing model.

(8)

3.2.2.  Parameter estimation method

To estimate the AOAs and DOSs, we assume that the number
of scatterers K is correctly estimated in advance. Although
eigenvalue-based nonparametric source number detection
methods such as the Akaike information criterion (AIC) and
minimum description length (MDL) criterion are commonly
used [29], they does not work well in the presence of angular
spread. Recently, robust source number estimators have been
described elsewhere, for example, [30], based on the gener-
alized maximum-likelihood-ratio test principles, that work
well even for slightly scattered signals. The K nominal AOAs
are estimated from correlated sources by an AOA localizer
based on TLS-ESPRIT [31] with a spatial smoothing [32],

under the assumption that the angular distribution for a scat-
terer is symmetrical. The DOSs are obtained using the least-
squares (LSs) method:

[5c(t), pi | = arg min J(2), 9)
RAGN

where J(t) is the cost function used to estimate Si(¢) and pk,

K 2

x(t) = 3 [a(Bk) + ped (Be) |30

k=1

J(t) = (10)

The K sets of DOS are recursively calculated using only the
x(t) of the received signals as follows.

Step 1. Obtain ék, k=1,...,K.

Step 2. Initialize K-column vector, f)(o) = [0,...,0]T, where
f)(') denotes the ith iteration of p = [py,...,px]".
Step 3. Calculate ML estimate ?k(t):

(1) = (VHV) 'VHx(p), (11)
where

T

M=

V= [al6) +pd(B)], 50 =[5, 5]

(12)

k=1

Step 4. Estimate py using an LS approach that minimizes the
following cost function:

I = E{|%() - x(t) |}, (13)
where
K A~ ~ A~ o] Fo)
X(t) = Z [a(@k) +pkd(9k)]?k(t) = ASe + DSp,
k=1
A=[a),...,a(6x)],
D = [d(8,),...,d(0K)], (14)
$ = Diag {51(1),..., 5 (1},
p=lpiopxl’
e=[1,...,1]%.
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Diag{-} is a diagonal matrix whose diagonal elements are
{+}. Thus, the cost function (13) can be reobtained as

i =EHA§e+D§p—X(t)‘2} =E{‘D§p—z’2}, (15)

where z = x(t) — Age.

Step 5. Repeat Steps 4 and 5 until p converges.

Step 6. Derive |k| under the condition E{s;(¢)s; (t)} = 1:
E{S(05E (0} = Elpsi(0s; Dy} = | (16)

Step 7. Calculate ¢x = |9%| 1Pkl

Step 8. Repeat the above steps for every time slot (includ-
ing enough samples). Determine expectations E{|yx|} and

E{ |$k [} by temporal averaging, and obtain 7 from (8).

3.2.3. Theoretical behavior of scattering parameter

The theoretical performance of the proposed parameter 7y is
considered to clarify its physical meaning. The resultant for-
mulations are applied to the RT analysis. First, the theoretical
behavior of the expectations E{|yx|} and E{|¢x|} are derived
for LOS and NLOS conditions, respectively.

From (16), |yx| means the amplitude envelope of the
signal received at the base station, and it varies based on
Nakagami-Rice fading, which has a probability density func-
tion (pdf) that follows the Ricean distribution. Note that
Nakagami-Rice fading includes Rayleigh fading as a special
case. Since the phase of ay changes randomly during ob-
servation, the expected values and variances of R {ay} and
I{ax} can be expressed, respectively, as

E{age} = E{am} =0,

2
(04
Var {age} = E{od.} = M,

5 Var {(le} = Var {aRe}s

(17)

where [-]re and [ -] denote, respectively, the real and imag-
inary parts, and Var{-} is the variance. Let Ai/Z and ‘ui =
Ly - Var{agre} = Li - Var{aim} be, respectively, the power of
the main wave and scattered waves. The Ricean factor is de-
fined as the ratio between their powers [24]:

5 Ap

2u;
Basically, the propagation scenarios can be classified into
LOS and NLOS conditions depending on Ricean factor K.
We consider the performance of the DOS in both cases. Since

|yk| follows the Ricean distribution, the expectation E{|yk|}
is

K (18)

E{|y|} = \/ng exp (- Kk)M@; 1;I<k), (19)

where M(-) denotes Kummer’s confluent hypergeometric
function [33]. The detailed derivation of (19) is given in the

appendix. When K > 1, the pdf of |yk| is an approximately
Gaussian distribution since the scattered component orthog-
onal to the main wave can be neglected. The expected value
of |yk| can be approximated as

E{|yc]} ~ Ax. (20)

On the other hand, without a high-powered main wave, that
is, under NLOS conditions, the level of the scattered waves
is almost the same as that of the main wave. Thus, we define
W2 = A/2 + pi as the total wave power including the main
wave. Since the pdf of |y | is approximated by a Rayleigh dis-
tribution, the expected value of |yx| can be then expressed
as

, 7 A2 i3
E{[ye|} = \/;.“k = \/;\/ 7k +pp = \/g.“k\/Kk +1. (21)

Next, the behavior of ¢y is considered. From (7), the real
and imaginary parts of ¢ are, respectively,

Ly Ly

Prek = . ORe,10ki> Pk = . om 1Ok (22)
I=1 I=1

where 8 = 0 without loss of generality. Under the assump-

tion that §k1 and oy have no correlation, the pdfs of both
¢rek and ¢mi can be approximated as Gaussian distribu-
tions. The expectations of ¢rex and ¢ are given, respec-
tively, as

E{¢rex} =0, E{¢mi} = 0. (23)

Thus, their variances are, respectively,

Var {¢re} = LeE{O?}E{ad.} = uiog,
Var {¢im} = LkE{6* E{ad,} = piod,

where 0g, denotes the standard deviation of the angular dis-
tribution, the so-called angular spread [21]. Since the dis-
tributions of ¢re and ¢y, are Gaussian, the pdf of [¢| =

[Pk + ¢%, follows the Rayleigh distribution. From (24), the
expected value of |¢x| is

E(19c]} =\ Zuon. (5)

As shown by (8), the DOS is defined as the ratio between
E{|ykl} and E{|¢r|}. Under the condition K > 1, that is,
an LOS condition, we derive the parameter #10s using (20)
and (25):

(24)

NLosk = El gt ~ \/ﬁﬂktfek = =% (26)
TOE{Iwll N2 A 4 VK’

where 7105« is proportional to og, and inversely proportional
to /K. Furthermore, when the level of the main wave is al-
most the same as that of the scattered waves, which occurs
mainly under NLOS conditions, #nros is given from (21)
and (25):

ANLOSK = E{|¢k|} ~ 06,
© Eflpll VKT

(27)
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where #nros is proportional to oy, and inversely propor-
tional to +/Ki + 1. Equations (26) and (27) mean that the
DOS 7 depends on the Ricean factor K and angular spread
g, of each AOA. This means the larger the DOS is, the more
widely the impinging kth signal is distributed, and vice versa.
Thus, the DOS is an efficient criterion for describing the de-
gree of scattering.

4. RAY-TRACING ANALYSIS

Section 2 described the basic procedure of the proposed po-
sitioning method. In our scheme, the AOAs and DOSs ob-
tained by practical data analysis are compared with those by
RT analysis using the cost function of (1). This section de-
scribes how the parameters are calculated in the RT analysis.
We use highly accurate, 3D terrain data for the experimen-
tal area. The data is collected for approximately 20 layers per
material including the conditions of the dielectric properties
regarding the materials of reflectors and the 3D coordinates
obtained within a height accuracy of £25 cm. The RT analy-
sis follows propagation rules such as the GO and UTD [24],
and enables us to determine the position of terminals accu-
rately using site-specific information for the measurement
area.

In the analysis, the receiver is virtually located in the
same place as in the experiment described in the next section,
and the waves propagate following the geometric laws of ra-
diowave propagation. We use the ray-launching method [23]
for our RT simulator as it is more tractable and computa-
tionally reasonable than the other commonly used approach,
that is, the imaging method. The ray-launching method ra-
diates a ray at every angle A8 from a transmitter, and the
path is traced through reflection, transmission, and diffrac-
tion points, while the imaging method traces a ray reflec-
tion and transmission route connecting a transmission point
with a reception point by obtaining an imaging point against
a reflection surface. Thus, the implementation of the imag-
ing method is unrealistic as the terrain data become huge.
As a result of the RT analysis, an angular profile can be ob-
tained like that shown in Figure 5, which indicates the valid-
ity of modeling the received signal using the local scattering
model. From the profile, a scatterer is defined as a signal clus-
ter including a nominal ray above 30 dB and rays 10 degrees
around when the least signal level that the receiver detects
is set at 0 dB. Therefore, Figure 5 can be regarded as a case
of K = 2. The angular spread of each scatterer is calculated
using the second-order statistics:

®n) _ |1 J ®n sen)? P
k Lk lgl |:< ) PkRT)
where 9 (RT) and P,iRT) are, respectively, the nominal AOA and

its power, 0, (1) and P,((I;T) are the AOAs and powers of the

scattered waves, respectively, and L is the total number of
both nominal and scattered waves. The theoretical behavior
of the DOS derived above says that the DOS depends on the
standard deviation of the scattered signals and the Ricean
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FiGure 5: Example of angular profile by RT analysis (K = 2). It is
shown that some rays are launched from the Tx and reflected on the
reflector. At the end of the process, a fewer number of rays may be
received at the Rx.

factor. Thus, the DOS is also derived from those parame-
ters even in the RT analysis. The Ricean factor is given by
K R PkRT 23 e P,(CI;T) since it is the ratio between the
powers of the main and scattered waves. Using (26), (27), and
(28), we can obtain the DOS under LOS conditions by

- 7 RT)
Mosk = (29)
and under NLOS conditions by
; O.(RT)
(RT k
’7NLOS k= . (30)
K& 41

Note that determining whether the mobile terminal is at an
LOS or NLOS location is obvious in the RT simulations. We
can thus obtain K&, 6%V and 5 X" for all points in the 3D
terrain and use for pinpointing the location of terminals, in
combination with the results of the experimental data analy-
sis.

5. EXPERIMENTAL DATA ANALYSIS AND
POSITION-DETERMINATION ACCURACY

We now consider the application of the parameter estima-
tion method described above to experimental data measured
using array antennas. The accuracy of the proposed position-
determination algorithm based on experimental data analy-
sis is also discussed.

5.1. Experimental conditions

We analyzed data obtained from field testing in Yokosuka
City, Japan, a city with a high housing density. An exper-
imental array used as the base station receiver (Rx) was
mounted on top of a 15m high building, employing the
ULA with eight-element microstrip patch antenna. The an-
tenna elements were separated by half the wavelength of the
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FIGURE 6: Map around testing area.

TABLE 1: Angle, distance, and transmitted power regarding each Tx.

LOS NLOS
Tx1 Tx2  Tx3 Tx4 Tx5 Tx6
Angle (deg) -15.7  10.6 0 -6.5 229 548
Distance (m) 215 200 100 300 200 210
Power (dBm) 0 10 0 30 20 30

2.335 GHz carrier frequency. Figure 6 shows a map of the
testing area, and Table 1 summarizes the angles, distances,
and signal powers of the transmitters, which were 1.5 m high.
The transmitters (Tx1-6) were stationary; three of them (Tx1
to Tx3) were at LOS positions, while the others (Tx4 to Tx6)
were at NLOS positions. The transmitted signal was formed
by n/4-shift QPSK modulation. We took 1900 snapshots at
a sample rate of 2 MHz, which meant that the observation
time was only 10~% second. The other specifications and the
experimental system are described elsewhere [34]. The data
was collected at the base station. Note that the analysis was
done for one terminal at a time.

5.2. Experimental analysis

The AOAs and DOSs were estimated by using the proce-
dure described in Section 3.2.2. Tables 2 and 3 summarize
the AOAs and DOSs estimated under LOS and NLOS condi-
tions, respectively. We analyzed 1900 sample signals, divided
into 19 groups, and calculated E{|yx|} and E{|¢i|} by aver-
aging the estimates for those 19 periods to estimate the DOS,
Hk-

The previous numerical simulations [26] showed that the
DOS was correlated with the BER of beamformed signals,

which meant that the DOS indicated the degree of scattering.
This is supported by the results shown in Tables 2 and 3. The
DOS of a direct path was much smaller than that of reflected
ones since the definition of the DOS in (26) and (27) says
that the DOS is smaller as the Ricean factor is larger. Thus,
since both AOA and DOS are appropriate parameters for de-
scribing the characteristics of each scatterer, we use them as
the key to obtain the locations of terminals.

5.3. Positioning method and its accuracy

We estimated the location of terminals using the results of
the field testing and RT analysis by the method described in
Section 2. First, using the RT simulator, pseudotransmitters
were positioned at 10 m intervals within about 500 mx 500 m
on the map in Figure 6 and the AOAs and DOSs were esti-
mated for each one. Note that the DOSs were obtained sepa-
rately for the LOS and NLOS transmitter positions since the
DOSs in the RT analysis behave differently in (29) and (30).
The results were matched with the experimental analysis re-
sults by using the cost function of (1) with the weighting fac-
tor v = 0.5.

Tables 4 and 5 show how accurately the location could
be estimated in terms of probability for 200 trials using tem-
porally different signals from the same point. For example,
the location of Tx4 under NLOS conditions was estimated
within 10 m in 31.5% of the trials, 20 m in 65.0%, and 30 m
in 83.5%. Overall, the results show that positioning accuracy
was within 30 m more than 73.5% of the time, even under
NLOS conditions. These results easily satisfy the E-911 re-
quirements of the FCC that the estimated location of a caller
is within 50 m of the caller’s actual location more than 67%
of the time [2], and they show that our scheme outperforms
other positioning schemes, such as [13, 17].
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TaBLE 2: Parameter estimation results using actual data in LOS conditions.

Tx no. Tx1 Tx2 Tx3

Path no. Path1 Path2 Path1 Path2 Path3 Path1 Path2 Path3
DOA (deg) -15.7 45.7 —24.6 10.3 17.5 —38.8 0.0 40.5
DOS 0.0102 0.2942 0.0912 0.0535 0.5013 0.1492 0.0116 0.2239

TABLE 3: Parameter estimation results using actual data in NLOS conditions.

Tx no. Tx4 Tx5 Tx6

Path no. Path1 Path2 Path3 Pathl Path2 Pathl Path2 Path3
DOA (deg) -18.2 12.5 44.8 -29.0 15.1 —40.1 3.1 49.4
DOS 0.0368 0.1674 0.0812 0.0952 0.0715 0.6824 0.1328 0.3972

5.4. Weighting factor and positioning accuracy

To prove the effectiveness of introducing DOS, the position-
ing accuracy was evaluated at different values of the weight-
ing factor v in (1). Figure 6 shows the relationship between
the probability of accuracy within 20m and the weighting
factor. The results confirm that introducing DOS, which re-
flects the propagation characteristics, dramatically improved
position-determination accuracy. Although the optimization
of the weighting factor is quite difficult since it depends on
the transmitter location, the results show that the accuracy
was approximately 15% to 40% better when both AOA and
DOS were used than when only AOA was used.

6. CONCLUSION

We have described the novel method for determining the po-
sition of a wireless terminal; it uses a single array antenna
and is suitable for use in multipath environments. It makes
use of two spatial parameters, the angle of arrival and the de-
gree of scattering, which reflect the path characteristics be-
cause they depend on the propagation environment between
the transmitter and the receiver. These parameters are used
in combination with the results of ray-tracing analysis with
highly accurate 3D terrain data. The key features of our algo-
rithm are that it is “blind,” which needs no prior information
about the transmitted signal such as signal waveform, keep-
ing in mind the application of unknown source detection for
radiowave surveillance. Furthermore, it is based on a local
scattering model considering scattering in the vicinity of a
mobile or some reflectors. We achieved a site-specific scheme
with only a single base station by introducing the ray-tracing
analysis.

Field testing showed that the proposed method was suffi-
ciently accurate to meet the Federal Communications Com-
mission requirements for mobile terminal position deter-
mination and that it outperformed other positioning al-
gorithms, although the experimental area was only about
500 mx 500 m. This site-specific method can be used in other

locations if only experimental data and 3D terrain data are
available.

APPENDIX

The expectation of |y | in (19) is derived as follows. First we
define r = |y, and the pdf p(r) follows the Ricean distribu-
tion:

AR (A
Bt o

where yy = Ly - Var{age} = Li - Var{aim }, and Io(-) is a zero-
order Bessel function of the first kind [33]. The expectation
of r is expressed as an integral in terms of r:

2+A2
' 2k>IO<A—kzr)dr.
2 i

(A.2)

0 2
E{r}—j r- p(r)dr—L [%exp <_

k

This equation can be modified with the following mathemat-
ical formulae using a Gamma function and the Kummer’s
confluent hypergeometric function [33], respectively:

I x*Lexp (= a®x?) 1, (bx)dx
0

_ T{E+v)2)bY (E+v b2>
= qngnrp+1) M\ vt bag

clc+1) 22 (A4.3)

M(c;dsz) = Z Oz dd+1) 2!

C
(A kI T

(c+1)(c+2)z N
d(d+1)(d+2) 3! ’

z
1

where T'(x) is the Gamma function, M(c;d; z) is the Kum-
mer’s confluent hypergeometric function, and we define

T(x+ n)

() = T(x)

x(x+1)---(x+n-1). (A.4)
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TABLE 4: Positioning accuracy in LOS conditions: “Num.” denotes the number of successful estimations within each accuracy up to 200

trials, and “Prob.” is cumulative probability of correct positioning.

Positioning Tx1 Tx2 Tx3

accuracy Num. Prob. Num. Prob. Num. Prob.
Within 10 m 158 79.0% 123 61.5% 181 90.5%
Within 20 m 40 89.0% 49 86.0% 19 100%
Within 30 m 2 100% 28 100% 0 100%

TABLE 5: Positioning accuracy in NLOS conditions: “Num.” denotes the number of successful estimations within each accuracy up to 200

trials, and “Prob.” is cumulative probability of correct positioning.

Positioning Tx4 Tx5 Tx6
accuracy Num. Prob. Num. Prob. Num. Prob.
Within 10 m 63 31.5% 82 41.0% 19 9.5%
Within 20 m 68 65.0% 77 79.5% 72 45.5%
Within 30 m 36 83.5% 22 90.5% 56 73.5%
100 F ] Substituting x = 7, & = 3,v = 0,a = 1/(~/2ux), and b = Ay/
_ pi into (A.3), we obtain (19) from (A.2) as
S 80t .
z 2 2
Z 60t . - T _ Al 3. A
;5 E{|yk|} \/;‘ukexp< Zyi)M(Z)l’Zyi)' (A.5)
& 40t i
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