
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 39297, Pages 1–12
DOI 10.1155/ASP/2006/39297

FromMIMO-OFDMAlgorithms to a Real-TimeWireless
Prototype: A Systematic Matlab-to-Hardware Design Flow

Jan-WillemWeijers, Veerle Derudder, Sven Janssens, Frederik Petré, and André Bourdoux

Wireless Research Group, Interuniversity MicroElectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium

Received 22 December 2004; Revised 4 April 2005; Accepted 7 April 2005

To assess the performance of forthcoming 4th generation wireless local area networks, the algorithmic functionality is usually
modelled using a high-level mathematical software package, for instance, Matlab. In order to validate the modelling assumptions
against the real physical world, the high-level functional model needs to be translated into a prototype. A systematic system design
methodology proves very valuable, since it avoids, or, at least reduces, numerous design iterations. In this paper, we propose a
novel Matlab-to-hardware design flow, which allows to map the algorithmic functionality onto the target prototyping platform
in a systematic and reproducible way. The proposed design flow is partly manual and partly tool assisted. It is shown that the
proposed design flow allows to use the same testbench throughout the whole design flow and avoids time-consuming and error-
prone intermediate translation steps.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Fourth generation high-throughput (HT) wireless local area
networks (WLANs), which are currently being standard-
ized in the IEEE 802.11n Working Group [1], aim for
higher data rates (well beyond 100Mbps effective through-
put at the medium access control (MAC) service access point
(SAP)), larger range, and better quality-of-service (QoS),
compared to existing IEEE 802.11a/g type of WLANs. To
meet these ambitious targets, it is now widely agreed upon
that both the physical (PHY) and theMAC layer of these HT-
WLANs will capitalize on so-called multiple-input multiple-
output (MIMO) orthogonal frequency-division multiplex-
ing (OFDM) communication technology [2]. On the one
hand, MIMO techniques, which deploy multiple antennas
at both ends of the wireless link, allow to significantly in-
crease the spectral efficiency (and, hence, the data rate), and
to significantly improve the performance (and, hence, the
QoS and/or the range), compared to their single-antenna
counterparts [3–5]. On the other hand, OFDM modulation
enables low-complexity frequency-domain processing over
the highly frequency-selective indoor propagation channel
[6–8].

Several types of MIMO-OFDM processing can be en-
visioned, depending on where the processing is performed:
transmit (TX-only) processing, receive (RX-only) processing
and joint TX-RX processing. In either case, defining, opti-
mizing, and verifying the selected digital signal processing

(DSP) algorithms for theWLAN system under consideration
almost always require the modeling and the simulation of
the complete system functionality using a mathematical soft-
ware package like, for instance, Matlab. All aspects like auto-
matic gain control (AGC), phase noise, clock frequency off-
set (CFO), and their impact on synchronization and tracking
need to be taken into account. Once the system functionality
achieves the expected end-to-end performance, it needs to
be translated into a prototype, in order to validate the mod-
eling assumptions against the real physical world. However,
this translation process consists of four major steps. First,
a hardware architecture needs to be defined. Second, float-
ing-point numbers need to be quantized. Third, timing
needs to be added. Finally, interfaces to the MAC and higher
software layers need to be defined. Meanwhile, constraints
like power consumption, hardware cost, design time, and,
most importantly, real-time operation need to be taken into
account. Unfortunately, these translation steps have not been
automated up till now. A lot of human intervention is still
needed, which will inevitably introduce errors. Hence, a sys-
tematic design flow is needed to detect these errors as early
as possible. Even when using field-programmable gate arrays
(FPGAs) as a target prototyping platform, a first-time-right
design methodology is very valuable, since it prevents nu-
merous design iterations and bug fixes, which would lead to
unacceptable project delays.

Currently, two basic design methodologies already ex-
ist to translate the Matlab model into a real-time hardware

2 EURASIP Journal on Applied Signal Processing

Table 1: Implemented MIMO schemes. (˜H is the virtual matrix corresponding to the STBC precoding, ‖H‖FRO is the Frobenius norm of
H .)

Type Transmission scheme Spatial filter Number of antennas

TX side RX side M ×N

RX SDM-MMSE IM,M HH(HHH + σ2
nI)

−1 2× 2

MRC IM,M HH 1× 2

STBC Alamouti ˜HH 2× 1, 2× 2

TX SDM-MMSE Fu = HH(HHH + σ2
nI)

−1 IN ,N 2× 2

F = Fu/‖Fu‖FRO
MRC HH/‖H‖FRO IN ,N 1× 2

STBC Alamouti ˜HH 2× 1, 2× 2

prototype. The first approach relies on Simulink to rewrite
the Matlab model into a quantized register-transfer-level
(RTL) Matlab model by means of schematic entry [9]. This
RTL-Matlab model is then automatically translated into
a very-high-speed hardware description language (VHDL)
model. The second approach rewrites the Matlab model into
a C++-based hardware description language, like, for in-
stance, SystemC [10]. Using a variety of commercial tools,
the obtained model can then be simulated, refined, and syn-
thesized. A major disadvantage, which is common to both
methodologies, is the need for completely rewriting the Mat-
lab model into an RTLmodel. The rationale behind the work
in this paper is the simple observation that this rewriting
step is needed anyway, so why not translating the functional
model directly into VHDL, instead of going through very
time-consuming intermediate translation steps.

The Matlab-to-prototype translation is broken into dis-
tinct subproblems. For each of these subproblems, the most
appropriate design flow, tool assistance, and languages are
given. The same testbench is used throughout the whole de-
sign cycle, which allows for example to simulate the effect of
front-end impairments on the RT-level description. Thanks
to the bit-identical behavior fromMatlab to prototype, mea-
sured data can easily be evaluated with the Matlab model.
Even mixing Matlab calculations and real-time prototype
operation is possible, for example calculation of compensa-
tion values for front-end drift.

The paper is organized as follows. Section 2 describes the
complete end-to-end systemmodel, including a detailed sys-
tem architecture for the access point functionality. Section 3
introduces the real-time prototyping environment. Section 4
explains our proposed system design methodology, which al-
lows to map the available system functionality on the target
prototyping platform in a systematic and reproducible way.
Finally, Section 5 summarizes our approach and formulates
our major conclusions.

2. SYSTEMARCHITECTURE

Our target was to implement both MIMO schemes with
receiver processing (MIMO-RX) and MIMO schemes with
transmitter processing (MIMO-TX), see [11, 12]. Spatial di-
vision multiplexing (SDM) [13], maximum ratio combining
(MRC) [14, 15], and space-time block coding (STBC) [16]

are supported at both sides. OFDM processing with MIMO
processing per subcarrier is used as a modulation technique
to mitigate the effects of the highly frequency-selective in-
door propagation channel. These physical devices are very
close to those currently discussed in the IEEE 802.11n Stan-
dardization Committee.

Table 1 sumarizes the various MIMO transmission
schemes that were implemented, together with the pre- and
postfilter used and the number of TX and RX antennas.1 An
important point is that in the case of TX processing (SDM,
MRC), no channel state information (CSI) is theoretically
needed at the receiver because no spatial processing needs to
be applied. In practice, per-stream channel estimation and
equalization are still needed in order to scale and rotate the
received constellations because of transceiver effects such as
AGC, residual frequency offsets, phase noise, and so forth.
Figures 1 and 2 show the functional block diagrams of these
two transmission schemes.

The starting point for the implementation is the floating-
point Matlab model of the MIMO schemes. The Matlab
model allows to accurately simulate the various MIMO
transmission schemes. In addition, a key feature of our Mat-
lab model is that front-end nonidealities are also included
in the model. The reason is twofold: first, the baseband sig-
nal processing can to some extent mitigate certain front-end
effects (carrier frequency offsets, phase noise, etc.). Second,
this allows to predict the performance of the digital modem
together with the analog frontend, and to possibly provide
early front-end specifications to the front-end designers. The
overall Matlab model that enables to perform these mixed-
signal simulations is shown in Figure 3.

We will focus on the baseband processing blocks of
Figure 3. These blocks run at 20MHz and perform the
DSP operations needed for MIMO-OFDM. The demonstra-
tor will be implemented to prove the correctness of these
MIMO-OFDM algorithms. Both the user terminal and the

1 Almost all the transmission schemes indicated in Table 1 can be de-
scribed by the linear model of the form x̂ = F · (Hx + n) for MIMO-RX
or x̂ = H · Fx + n for MIMO-TX. STBC requires a small modification of
themapping to take into account the simultaneous transmission of 2 sym-
bols in 2-symbol periods. Note that STBC (which is a transmit diversity
technique) has been included in both the RX and TX processing schemes
because it does require processing, though very simple, at both sides.

Jan-WillemWeijers et al. 3

Preamble (STS) for coarse synchronization.

Coarse Δf and Δt

estimation

Antenna #1

Input signal
from down-
sampling
filters

(20 Msps
complex)

Antenna #2

Payload

CP

CP

S/P

S/P

Fine Δ f

and Δt est

Preamble (LTS)

Fine Δ f

and Δt est

Correct
preamble

Correct
preamble

Chan.
estim.

To tracking
init.

Chan.
estim.

H

Δ ffine

To tracking
init.

F

Coeff.
calc.

FFT

FFT

Tracking
MMSE
STBC
MRC

Demap-
ping

Bits to
decoder

Figure 1: Functional block diagram of the MIMO-RX.

Estimated
channel

H

Front-end
calibr.

Transceiver
calibration

data

Coeff.
calc.

F

Frequency-
domain
preamble

Time-
domain
preamble

Input bit
streams

Mapper

Mapper

MUX

MUX

TX
pre-
filter

IFFT

IFFT

P/S

P/S

CP

CP

MUX

MUX

Antenna #1

Output signal to
upsampling filters
(20 Msps, complex)

Antenna #2

Not used if no TX
processing

2 SISO OFDMmodems

Figure 2: Functional block diagram of the MIMO-TX.

base station operations will be implemented. Where possi-
ble, hardware will be reused between uplink and downlink
and between algorithms. Transmit, receive, and initialization
operations are started under control of MAC layer software
which will not be treated in this paper. In total, 1500 lines of
Matlab code need to be implemented.

3. PLATFORMARCHITECTURE

The real-time demonstrator will use IMECs Picard testbed
[17]. A Picard system consists of a PCI backplane, a general-
purpose processor board, one or more front-end boards each
supporting one antenna, and one or more baseband pro-
cessing boards, see Figure 4. Each baseband processing board

contains two Xilinx Virtex II 6000 FPGAs [18], see Figure 5.
Each FPGA contains 144 multipliers of 18-by-18 bit, 144
RAM blocks of 18 kb and 33792 “slices.” A slice contains 2
flipflops, 216- bit-SRAM-based lookup tables which imple-
ment any 4-input combinatorial function, and several gates
to cascade slices.

The ever increasing density and speed of FPGAs allow
the implementation of all baseband processing hardware of
a wireless MIMO-OFDM base station in these 2 FPGAs. In
addition, the PCI interface and a very small processor for
time-critical tasks are implemented in one of the FPGAs. The
FPGAs are clocked at only 40MHz. This is far below themax-
imal clock rate of these FPGAs, but it allows a conservative
design. Higher clock rates are possible and can potentially

4 EURASIP Journal on Applied Signal Processing

De-
mux

Symb.
map.

Symb.
map.

...

MMSE
MRC
STBC
SISO

(per sub-
carrier)

OFDM
mod.

OFDM
mod.

...

N

N

CNQ

CNQ

I-Q

I-Q

PHN

PHN

PA

PA

...

N bits,
μ

ε,
Δϕ

Integr.
phase
noise,
BW,
floor P1dB

Front-end model

Timing, freq.
offsets

H

AWGN
SNR

N bits,
μ

ε,
Δϕ

Integr.
phase
noise,
BW,
floor

De-
mux

Symb.
demap.

Symb.
demap.

...

MMSE
MRC
STBC
SISO

(per sub-
carrier)

Tracking

Coeff.
calc.

Chan.
estim.

Coarse/
fine

synch.

OFDM
dem.

OFDM
dem.

...

Preamble
Front-end model

...

N

N

CNQ

CNQ

I-Q

I-Q

PHN

PHN

Figure 3: Matlab MIMOmodel including TX and RX processing and front-end effects.

reduce the hardware usage. However, this would require a
more “user-assisted” routing and/or a more complex mul-
tiplexing of resources.

The most critical hardware resources are the number of
multipliers needed to implement the baseband processing,
and the hardware size. The hardware size, expressed as the
number of slices, together with the number of multipliers,
drives the division of the logic over the 2 FPGAs. Early es-
timates of these numbers need to be communicated to the
algorithm designers which can opt for a different algorithm
if the hardware size of the current algorithm is too big. The
MIMO-OFDM base station logic has all spatial filter calcula-
tions of Table 1 in one FPGA, all other logic is located in the
other FPGA, see Figure 6. Tables 2 and 3 give the sizes of each
functional block.

4. MATLAB-TO-HARDWARE DESIGNMETHODOLOGY

Translating a Matlab model to VHDL in a systematic and re-
producable way requires the addition of a lot of details to the

model and, if necessary, choosing for a different implementa-
tion of an algorithm. As this task is not automated, bugs are
inevitably introduced. It is of utmost importance that after
each step, the refined model is simulated and compared with
the original model. Using the same testbench or, at least, the
same input and output values during the whole design cycle
guarantees that the prototype will behave exactly the same as
the original Matlab model.

Four types of specializations need to be added to theMat-
lab model during the conversion process. First, the hardware
on which the algorithms will be executed needs to be defined.
The amount of resources defines which algorithms can be
executed and at which speed. Second, the problem of quan-
tization needs to be solved. The prototype uses fixed-point
arithmetic. Each variable of the Matlab model needs to be
quantized to a fixed and as small as possible number of bits.
Third, there is the problem of timing. Matlab models do not
have something like a clock. Finally, there is the problem of
system integration, which can be translated into hardware in-
terfaces and software interfaces to the hardware.

Jan-WillemWeijers et al. 5

Figure 4: Picard prototyping system.

To and from
frontends

Initialization
FPGA

Datapath
FPGA

Forward error coder/
decoderPCI interface

Figure 5: Picard board.

The design flow is drawn in Figure 7. Following tasks
will be handled in more detail in the next sections:
hardware-architecture development, fixed-point refinement,
system integration, and RTL design. These tasks require a
lot of human intervention, which will inevitably introduce
errors. After each task, extensive simulations are needed to
avoid unwanted differences in performance. Using the same
testbench during the whole design cycle significantly reduces
the debugging effort. The choice of algorithm implementa-
tion and the fixed-point refinement are executed in Matlab.
This allows the reuse of the original testbench on which the
algorithms were developed. Defining signals which exist both
in Matlab and in VHDL allows to compare the RTL design
with the refined Matlab model.

This section is organized as follows. Section 4.1 in-
troduces the hardware-architecture definition step, while
Section 4.2 explains the Matlab fixed-point and hardware

Table 2: FPGA datapath hardware size.

Entity 18× 18 mult. 18 kbit RAM k slices

Mapper + StbcTx — 3 0.9

Demapper 1 3 1.2

SdmaProc: DlSdma 6 — 1.4

SdmaProc: STP 6 1 0.9

HFF storage — 6 0.9

Tracking +WaitHFIFO 3 4 3.0

ZeroProc — 1 0.3

C addition — 1 0.3

FFTIFFT 8 — 2.3

Guard — 1 0.5

Sync 34 3 3.0

MasterControl — 1 1.0

MpSlave — — 0.3

ConB2A — — 0.1

ChEst 36 12 7.9

NoiseEst 2 1 0.5

Total 96 37 24.5

Resources used 67% 27% 75%

Table 3: FPGA init hardware size without PCI or processor.

Entity 18× 18 mult. 18 kbit RAM k slices

FeComp 6 — 1.0

HStorage — 4 0.8

MMSE 44 — 5.8

HFnorm 8 1 2.0

ConA2B — — 0.2

SlaveControl — 1 0.3

MpMaster — — 0.2

Total 58 6 10.3

Resources used (%) 40% 4% 31%

refinement step. Section 4.3 describes the system integration
step, while Section 4.4 reviews the RTL design step. Finally,
Section 4.5 explores the possibilities for design reuse offered
by our design flow.

4.1. HW-architecture development

For this MIMO-OFDM application, a quick top-level com-
plexity assessment has shown that general-purpose CPUs or
DSP processors are either too slow or consume too much
power. FPGAs were found to provide sufficient processing
power while being especially suited for prototype develop-
ment. If necessary, the RTL code can be resynthesized for an
ASIC, althoughmore thorough optimizations should be con-
sidered in that case.

Hardware-architecture development is started in the late
phases of floating-point model development. The Matlab
code is manually analyzed for mathematical operations and
for data dependencies. Not all mathematical operations are
easily translated to hardware. Two examples are division

6 EURASIP Journal on Applied Signal Processing

User
data

MapDemap

Mapper

STBC-Tx

Demapper

〈17, 15〉

〈18, 13〉
/4 =
〈18, 15〉

SdmaProc

DISdma

Shared

Space-
time

processing

STBC-Rx

〈17, 11〉

〈18, 13〉

〈17, 11〉

〈17, 15〉 Tracking

〈17, 15〉

W
ai
tH

FI
FO

〈10, 9〉

ZeroProc

Zero-
insert

Zero-
delete

RAM

〈10, 9〉C
-s
ym

bo
ls

〈18, 13〉

〈10, 5〉/16 =
〈10, 9〉

FFTIFFT

IFFT

Shared

FFT

〈10, 9〉

〈10, 9〉∗16 =
〈18, 13〉

Guard

Guard-
insert

Guard-
delete

RAM

〈10, 9〉

〈10, 9〉

Antenna
data

Sync

SyncS

SyncR
〈10, 9〉

HFF storage

RAM

〈17, 11〉 〈18, 15〉/2 = 〈17, 15〉

Caddition

RAM

C-Rx C-Rx 〈11, 9〉

ChEst NoiseEst

〈18, 15〉 H C-tx
〈15, 15〉

N
oi
se

ConB2A
FPGA datapath

ConA2B
FPGA init

Global control

MasterControl

SlaveControl

MpInterf

Mp slave

Mp master

PCI-interface +
processor

Noise
〈15, 15〉〈17, 11〉

HFnorm

〈17, 11〉

MMSE

〈17, 13〉 or 〈17, 15〉

Fecomp Hstorage
RAM

〈18, 15〉/2 = 〈17, 15〉
〈17, 15〉∗4 = 〈17, 13〉

Figure 6: Base station functionality.

operations and matrix inversions. If possible, a different
algorithm or a simplification of the algorithm should be used
to avoid these operations. In general, the Matlab code should
only use operations, for which a hardware equivalent is avail-
able. The number of operations (easily found by profiling),
divided by the number of hardware resources, defines the du-
ration of the calculations. If this duration is too long, more
hardware resources are needed or the algorithm needs to be
simplified to reduce the number of operations.

Data dependencies dictate the amount of memory
needed. These memories have an impact on the power con-
sumption and the latency of the calculations. Three exam-
ples are (I)FFT operations where the order of the output data
is bit-reversed, guard insertion, and datapaths which split
in parallel branches with different latencies and which join
again. In general, these data dependencies are hard to find
in the Matlab code, because they are not explicitly modeled.
Memory analysis tools like, for example, from PowerEscape
[19], could help, but in general they take C-code as input.
If translation of the Matlab code to C-code is a too big ef-
fort, a manual “pen-and-paper” analysis of the Matlab code
is needed.

VirtexII FPGAs contain block RAMs of 18 kb. Except for
very small memories, each memory is mapped on one or
more of these block RAMs. For a prototype, no effort needs
to be spent on optimizing the memories to a size of less than
18 kb. For high-volume products, more effort is needed to
reduce the memory requirements.

The MIMO-OFDM base station which serves as an ex-
ample in this document is dominated by the amount of
multiplications. Approximately, 150 18 × 18 bit multipliers
are needed. Thanks to the early hardware-architecture ex-
ploration, the algorithms could be changed to reduce the
number of dividers to 3. Matrix inversion is rewritten and
now uses the LDLH decomposition because of the properties
(Hermiticity) of the matrix which needs to be inverted. All
MIMO algorithms described in Section 2 could be mapped
on the same hardware, spread over 2 FPGAs.

The above-described algorithm-hardware-architecture
codesign has a profound influence on the properties of the
prototype. It therefore is important that algorithm and hard-
ware architects work in close cooperation on this codesign
problem. As soon as the required algorithms are more or less
stable, this codesign should be started. The performance of

Jan-WillemWeijers et al. 7

Matlab floating-point model

HW-architecture definition,
memory insertion

Size, latency, speed estimation

Size, latency, and speed
requirements

Compare
Too big or too slow

Matlab fixed-point refinement,
HW datapath refinement

Compare
Performance loss too bigSystem integration:

(i) interface definition
(ii) toplevel controller intelligence

RTL design

Compare
bit by bit Bit errors

Standard synthesis and
back-end flow

Netlist

Figure 7: Design flow for MIMO-OFDM implementation.

implementation-friendly algorithms can be easily tested with
the same Matlab testbenches as used for the original algo-
rithm development.

In general, the functionality of the floating-point model
is easily split into groups of operations which belong to-
gether. Some examples are (I)FFT, tracking, channel estima-
tion, power normalization. Each group of operations will be
implemented as a VHDL entity, possibly with many more
subhierarchies. Each group of operations will be called a
“top-level entity” in this paper. The top-level entities are
shown in Figure 6. They are connected by “top-level signals.”
These top-level signals will become the checkpoints for com-
paring Matlab and RT-level simulations.

4.2. Matlab fixed-point and hardware refinement

Fixed-point arithmetic is prefered over floating-point arith-
metic due to its smaller size after translation to hardware. In
general, algorithm development in Matlab is done in float-
ing point; this is the floating-point model. After completion
of the algorithm, it needs to be translated into a fixed-point
representation: the fixed-point model. Figure 8 shows the de-
tailed design flow for the quantization and hardware refine-
ment step.

The problem of converting the floating-point model to a
fixed-point model needs to be solved independently of the
language (Matlab, Simulink, C, VHDL). As will be shown
in the next paragraphs, simulation speed and integration
with the floating point model are important. For this rea-
son, we prefer to perform this task in Matlab. An additional
advantage of the availability of a fixed-point Matlab model
is the possibility of cosimulation of floating-point and fixed-
point models. The floating-point front-endmodel with all its
impairments like phase noise, clock frequncy offset (CFO),
automatic gain control can be simulated together with the
bit-true representation of what later will become the proto-
type which implements the baseband processing. Stimuli are
generated by a floating-point model of 2 user terminals. Per
transmit-receive antenna pair, a Hiperlan2 channel type A is
used. An antenna correlation factor of 0.2 is applied both for
transmit and receive. The resulting signals are applied to the
frontend of the receiver.

Quantizing a floating-point model causes a loss in per-
formance. Before starting the quantization, the maximum
allowed performance loss needs to be defined, for example
a loss of 1 dB in signal-to-noise ratio for achieving a bit er-
ror rate (BER) of 10−3 for 1000 different channels. A test
needs to be written to measure this performance loss. It is

8 EURASIP Journal on Applied Signal Processing

Floating-point model

Set maximum performance degradation

Toplevel quantization

SimulateToo much degradation

Implementation choices Quantize internal signals of a
toplevel entity

Simulate

All top
entities

quantized?

Simulate

Fixed-point model

Too much degradation
or too much hardware

Still more variables
need to be quantized

Too much degradation
or too much hardware

Figure 8: Design flow for MIMO-OFDM quantization.

important that this test executes as fast as possible, because
it will be run a lot of times. A faster test with less accuracy
could also be used. In that case, the full accuracy test is kept
as a final check. A faster test could be amaximumBER degra-
dation of 10−4 at a typical signal-to-noise ratio.

Starting point for the quantization is a first simulation,
which reveals the amplitude of the signals. This gives an up-
per bound for the number of bits before the comma. For
each signal, the standard deviation of the difference of the
value during a floating-point simulation and the value dur-
ing a simulation with partly quantized signals gives an upper
bound of the required number of bits after the comma [20].
In general, these upper bounds are pessimistic. Applying sat-
uration and rounding allows to reduce the required number
of bits, although these operations require additional hard-
ware. Especially, the quantization of feedback loops and ac-
cumulations need manual intervention. Typical for MIMO
systems are the signals at the antenna, which suffer from
a high peak-to-average power ratio (PAPR). Saturating the
highest peaks can reduce the required number of bits.

The maximum allowed performance loss should be con-
sidered as an “error budget.” Almost each signal, which is
quantized, consumes a part of the budget. A big part of the
budget can be distributed over the various top-level signals
proportional to the hardware (or dollar) cost of the func-
tions, which are influenced by the quantization. For example,

a fast division operator which accepts one input per clock cy-
cle is an expensive hardware operation. A division which is
one bit longer consumes a lot more gates. For that reason,
it is recommended to spend a larger portion of the perfor-
mance decrease budget to use less bits for those signals which
influence the divider word length.

Quantization can cost a lot of manpower. Some trade-
offs are needed. For high-volume products, the savings in
hardware cost are worth the additional manpower cost of fur-
ther optimizing the quantization. On the other hand, if FP-
GAs with dedicated multipliers are used, it is not necessary
to reduce the quantization of the signals which need to be
multiplied to a number of bits less than the multiplier size.
In case of Xilinx VirtexII FPGAs, the multipliers are 18-by-
18 bit and do not allow subword parallellism. In the multi-
plication intensive MIMO-OFDM example we use through-
out this paper, the first attempt of quantization of all sig-
nals is therefore 18 bits. The same FPGA family also supports
dedicated RAMs which are 18-or-36 bit wide. Data stored in
these RAMs is allowed to be 18-bit wide without additional
hardware cost. A tradeoff of accuracy versus hardware size is
possible for the complex multiplier. If the signals to be mul-
tiplied are 17 bits or less, the complex multiplication can be
implemented with only 3 real multiplications and 5 real ad-
ditions instead of 4 real multiplications and 2 real additions.
Signals which are not only multiplied and stored in RAM
but which are also added and stored in flipflops should be
reduced in size when possible in order to save FPGA hard-
ware. Divisions need special attention because in general,
they require 20 bits or more and require a lot of hardware for
a reasonably fast implementation. On the other hand, the
square root operation requires a relatively small amount
of hardware and reduces the word length with a factor
2.

Quantization of the top-level signals is performed first.
One signal at a time is quantized. Each attempt needs to be
simulated. Two values need to be defined: the number of
bits and the position of the comma. After all top-level sig-
nals are quantized, the top-level entities are quantized. Each
top-level entity is assigned a part of the rest of the perfor-
mance decrease budget, based on the hardware cost function.
Quantizing the internal signals of a top-level entity is almost
independent of the internal quantization of other top-level
entities. For this reason, the internal quantization of top-level
entities can be done in parallel by several designers. Again,
the quantization values which are not easily derived from al-
ready quantized signals need to be checked by simulation.

Quantization in Matlab is performed using function
calls. In Simulink, quantization blocks are dragged and
dropped on signals. In either case, it is very important that
identical functions are available for hardware implementa-
tion. Each top-level entity which is converted to hardware
needs to be simulated and compared with the fixed-point
Matlab model. The two design representations should be
identical at the bit level.

The Matlab fixed-point model of the example MIMO-
OFDMbase station used throughout this paper requires 2500
lines of code to implement the baseband processing. This

Jan-WillemWeijers et al. 9

User data
FIFO

Downlink datapath
Serial

interface
To front-ends

User data FIFO
Uplink datapath

Serial
interface

From front-ends

Controller
Initialization
(i)UL channel estimation
(ii)DL precompensation

PCI
-Start/stop
-Parameters
-Status
-Interrupts

MAC layer
software

Modelled in Matlab

Figure 9: Interfaces for system integration.

includes the optimizations based on the hardware require-
ments. The word lengths are indicated in Figure 6. The first
number is the word length, the second number indicates the
amount of bits behind the comma. With this internal quan-
tization, an SNR degradation of 0.37 dB for MMSE, 0.03 dB
for MRC, 0.19 dB for STBC2x1, and 0.31 dB for STBC2x2 is
achieved.

4.3. System integration

The Matlab model describes the datapath operations which
need to be performed on the antenna or user data. The dat-
apath however does not exist in isolation. It has to commu-
nicate with sources and sinks of user/antenna data. The dat-
apath has to be started, stopped and parameters like modu-
lation scheme, algorithm choice, and so forth need to be set.
These operations need to be modeled by the hardware devel-
opper in cooperation with the software designers. Figure 9
shows these “system interfaces.”

The complexity of these “system interfaces” is one of the
factors which need to be taken into account when defining
the approach which is followed to convert the Matlab fixed-
point model to hardware. We will now discuss the weak and
strong points of three possible design flows for system inte-
gration.

(1) Simulink provides the designer with a library of com-
ponents which have a hardware equivalent. By means of
schematic entry, these components are connected. Cosimu-
lation with Matlab code and hardware synthesis are straight-
forward. Simulink is an option for systems which are not
too complex because Matlab and Simulink are oriented to-
wards DSP operations, not towards control. Implementa-
tion of synthesizable control logic requires schematic entry,
sometimes even down to the gate level. The MIMO-OFDM
base station with its flexibility in choice of algorithm, parallel
datapaths, and shared hardware requires toomuch control to
be easily described in Simulink.

(2) SystemC is situated at the other end of the spec-
trum. C and C++ are perfectly suited to implement complex

control strategies. Cosimulation of a SystemC description of
the hardware with theMAC layer software is straightforward.
Synthesis of SystemC descriptions to gates requires the Sys-
temC description to be at RT or behavioral level. The Matlab
model needs to be completely rewritten. Using SystemC is
an option if there is a lot of interaction between hardware
and software (the MAC layer) which need to be simulated.
Hardware-software partitioning decisions can be delayed un-
til relatively late in the design cycle.

(3) Both Simulink and SystemC require theMatlab fixed-
point model to be completely rewritten to an RT-level model.
The MIMO-OFDM algorithms needed for our example
base station do not need much interaction with the MAC-
layer software: once started, the datapath can run almost
completely without software interventions. For these rea-
sons, an immediate, manual conversion from Matlab fixed
point to RTL-VHDL was used. The implementation of
the “system interfaces” often can be copied from previous
projects, see also Section 4.5 on IP-reuse.

4.4. RTL design

One important property is still missing in the Matlab fixed-
point model: timing. Timing is important to describe for
example time multiplexing and the delay of hardware opera-
tors. Before hardware synthesis is possible, this information
has to be added to the design. We will now discuss the weak
and strong points of three possible design flows for RTL im-
plementation.

(1) Simulink supports clocked systems by means of “z−1”
blocks. These blocks need to be inserted in the drawing,
whenever a delay is required. Control signals are an example:
often they need to be delayed until some computation has
finished. Using Simulink, clock cycle delays can be added, but
modeling the correct number of clock cycle delays is a time-
consuming and error-prone task. Simulink is not the correct
tool to implement cycle-true behavior at all levels of a sys-
tems with a complexity comparable to a MIMO-OFDM base
station.

10 EURASIP Journal on Applied Signal Processing

(2) SystemC models are either written at the RT-level or
at the behavioral level. SystemC RT-level coding is compara-
ble to VHDL RT-level coding. However, in SystemC RT-level,
it is more difficult to use Xilinx-specific components. In ad-
dition, not all FPGA synthesis tools accept SystemC-RTL as
an input language. SystemC behavioral level requires less
accurate timing information from the designer. The results
however are not always as expected and tuning of the behav-
ioral SystemC code is often necessary.

(3) VHDL is a natural language for RTL-level design. In
addition reuse of previous designs, which are often written in
this language, is no problem.

Verification of the RTL design is very important. Each
top-level entity in Matlab needs to be translated to a “bit-
identical” RTL model. For SystemC and VHDL RTL designs,
the top-level signals which are input and output of the top-
level entities are dumped to files. These files are used as input
and expected-output of the simulations of the RTL top-level
entities.

It is not sufficient that each top-level entity contains the
correct datapath. They also need to correctly interpret the
handshaking and data ordering of the entities with which
they communicate. Control signals should be generated in
time by the “controller” entity of Figure 9. For these rea-
sons, integration tests are also needed. Integration tests use
the input and expected-output values at the “system inter-
faces.”

For a MIMO-OFDM base station like the one which
serves as an example in this paper, designing the control
and top-level handshaking is a major task. Immediately after
the hardware-architecture definition phase, this task can be
started. The actual datapath calculations are temporarily re-
placed with dummy operations which need the same amount
of data and the same amount of time. Using these dummy
models, the assumptions on data storage and throughput
made during the hardware-architecture definition phase can
be tested before the datapath implementation starts. When
implementation of the top-level entities starts, the dummy
model serves as a specification of the control signals for the
designers. This “executable control signal specification” pre-
vents major problems during the integration tests described
in the previous paragraph.

4.5. IP-reuse

Rewriting a fixed-point Matlab model of a system as complex
as a MIMO-OFDM base station to an RTL model may seem
a gigantic task. Luckily, not every line of code needs to be
written from scratch. In many cases, parts from previous
projects can be reused. These “parts” are known as “IP-
blocks,” where IP stands for intellectual property. In addi-
tion, Xilinx provides a library of IP-cores, known as “Core-
gen” [21].

Xilinx-Coregen is an interesting tool for generating IP-
blocks ranging from FIFOs to a PCI interface. Some of this IP
is licensed, some of it is available for free. The generated IP-
blocks make optimal use of the FPGA resources. For compli-
cated datapath operators, Coregen is less interesting because

the internal quantization is unknown, which often prevents
creating an equivalent model in Matlab.

As already treated in the previous sections, it is impor-
tant that the fixed-point Matlab model has a bit-true hard-
ware equivalent. A dual library of fixed-point functions is
a minimum requirement. To implement the MIMO-OFDM
functionality, the following functions are necessary: word-
length conversions, saturation, flooring, and rounding. This
library might already be available from previous projects and
can be reused in future projects.

Other functions which are often needed for MIMO-
OFDM applications are (I)FFT, complex multiplication, and
the CORDIC-operator.2 Writing bit-compatible Matlab and
RTL components once and reusing them within and be-
tween designs speeds up Matlab quantization and later
RTL design. During Matlab quantization, high-level func-
tion calls like matrix multiplication need to be expressed in
more basic operations: real additions and multiplications.
Each basic operation then needs to be quantized. If a bit-
compatible complex-multiply-accumulate function is avail-
able, the floating-point matrix multiplication only needs to
be rewritten in terms of complex-multiply-accumulate func-
tion calls with the correct quantization values. The RTL de-
sign then calls the same function with the same parameters
without the need of testing the internals of the implemented
function. Using the tested function of such a bit-true dual
library considerably speeds up design time and reduces the
risk of errors.

A third type of mathematical functions which need
dual bit-true implementations is the division and square
root operations. These functions are often needed for
MIMO-OFDM implementations. Coregen can generate
synchronous implementations. Synopsys/designware library
[22] contains asynchronous implementations in which af-
terwards some pipeline stages are inserted until the FPGA
clock speed is achieved. Knowing the quantization of the in-
puts, the output quantization is uniquely defined. This can
be modeled in Matlab without knowing the exact internal
algorithm of the hardware model. In Matlab, it is sufficient
to take the quantized input(s), to perform the square root
or division, and to apply the output quantization to the re-
sult.

Another type of basic operators exists only in hardware:
interfaces between top-level blocks and between the hard-
ware and the outside world. These interfaces need to be
designed only once and can be reused within or between
projects.

The example MIMO-OFDM base station used through-
out this paper is implemented in two Xilinx VirtexII 6000
FPGAs and consumes 154 multipliers, 43 block RAMs, and
33792 slices. This does not include interfaces to the rest of
the Picard prototyping environment like the PCI interface,
the user data buffers, and the small processor. These blocks
also fit in the two FPGAs.

2 CORDIC, coordinate rotation digital computer, is a set of shift-add al-
gorithms which amongst others can rotate a vector and can translate be-
tween Cartesian and polar coordinates.

Jan-WillemWeijers et al. 11

5. CONCLUSIONS

A systematic approach to translate Matlab models of
MIMO-OFDM algorithms in a real-time wireless proto-
type is given in this paper. The translation problem is split
into four subproblems: hardware-architecture development,
fixed-point refinement, timing, and system integration. For
each step, the task is defined and the optimum tools and
languages are defined. The baseband processing of a MIMO-
OFDM base station has been implemented with success us-
ing this approach. Use of the already existing components
of IMECs Picard platform allowed us to successfully build a
real-time, 5GHz wireless demonstrator of the hardware of a
MIMO-OFDM access point. The physical parameters of the
demonstrated MIMO-OFDM access point are very close to
those currently being discussed in the IEEE 802.11n Stan-
dardization Committee.

REFERENCES

[1] “IEEE 802.11 Homepage,” http://grouper.ieee.org/groups/
802/11.

[2] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Ye Li, M. A. In-
gram, and T. G. Pratt, “Broadband MIMO-OFDM wireless
communications,” Proceedings of the IEEE, vol. 92, no. 2, pp.
271–294, 2004.

[3] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Increasing
data rate over wireless channels,” IEEE Signal Processing Mag-
azine, vol. 17, no. 3, pp. 76–92, 2000.

[4] D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib,
“From theory to practice: an overview of MIMO space-time
coded wireless systems,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 3, pp. 281–302, 2003.

[5] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Boelcskei, “An
overview of MIMO communications - a key to gigabit wire-
less,” Proceedings of the IEEE, vol. 92, no. 2, pp. 198–218, 2004.

[6] Z. Wang and G. B. Giannakis, “Wireless multicarrier commu-
nications: where Fourier meets Shannon,” IEEE Signal Process-
ing Magazine, vol. 17, no. 3, pp. 29–48, 2000.

[7] M. Engels, Ed., Wireless OFDM Systems: How to Make Them
Work?, Kluwer Academic, Boston, Mass, USA, 2002.

[8] A. R. S. Bahai and B. R. Saltzberg,Multi-Carrier Digital Com-
munications: Theory and Applications of OFDM, Kluwer Aca-
demic, New York, NY, USA, 1999.

[9] “The MathWorks - MATLAB and Simulink for Technical
Computing,” http://www.mathworks.com.

[10] “Homepage of the SystemC community,” http://www.systemc.
org.

[11] P. Vandenameele, Space Division Multiple Access for Wireless
Local Area Networks, Ph.D. thesis, Katholieke Universiteit Leu-
ven, Leuven, Belgium, October 2000.

[12] S. Thoen, Transmit optimization for OFDM/SDMA-based wire-
less local area networks, Ph.D. thesis, Katholieke Universiteit
Leuven, Leuven, Belgium, May 2002.

[13] A. J. Paulraj and C. B. Papadias, “Space-time processing for
wireless communications,” IEEE Signal Processing Magazine,
vol. 14, no. 6, pp. 49–83, 1997.

[14] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Transactions
on Communications, vol. 47, no. 10, pp. 1458–1461, 1999.

[15] J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna
diversity on the capacity of wireless communication systems,”

IEEE Transactions on Communications, vol. 42, no. 234, pp.
1740–1751, 1994.

[16] S. M. Alamouti, “A simple transmit diversity technique for
wireless communications,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 8, pp. 1451–1458, 1998.

[17] M. Wouters, T. Huybrechts, R. Huys, S. De Rore, S. Sanders,
and E. Uman, “Picard: platform concepts for prototyping and
demonstration of high speed communication systems,” in Pro-
ceedings of 13th IEEE Workshop on Rapid System Prototyping
(RSP ’02), pp. 166–170, Darmstadt, Germany, July 2002.

[18] “Xilinx Home : Products and Services : Silicon Solutions :
Virtex-II Platform FPGAs,” http://www.xilinx.com/products/
silicon solutions/fpgas/virtex/virtex ii platform fpgas/index.
htm.

[19] “PowerEscape Architect,” http://www.powerescape.com/
products/architect.php.

[20] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.
Bolsens, “A methodology and design environment for DSP
ASIC fixed point refinement,” in Proceedings of Conference on
Design, Automation and Test in Europe (DATE ’99), pp. 271–
276, Munich, Germany, March 1999.

[21] “Xilinx Design Tools Center : CORE Generator,” http://www.
xilinx.com/xlnx/xebiz/designResources/ip product details.
jsp?key=dr dt coregenerator.

[22] “DesignWare Intellectual Property,” http://www.synopsys.
com/products/designware/designware.html.

Jan-Willem Weijers was born in 1965 in
the Netherlands. He received the degree of
Civil Engineer Microelectronics at KULeu-
ven, Belgium, in 1989. His thesis work de-
scribed the an ASIC implementation of
singular value decomposition and was ex-
ecuted at Interuniversity MicroElectronics
Center (IMEC), Belgium. From 1989 till
1999, he was ASIC Designer at Siemens
Atea, Herentals, Belgium. During this time
frame, he fulfilled several periods of employment at Siemens Ger-
many (Dusseldorf and Munich). At Siemens, he implemented sev-
eral telecom ASICs in VHDL (digital PLLs and controllers of ATM-
based data). From 2000 on, he joined IMEC where he designed
ASIC architectures to implement DSP algorithms, improved exist-
ing XILINX implementations, and did DSP quantizations. Recent
projects include the design and test of the control logic for a low-
power high-throughput turbo coder and turbo decoder and the de-
sign, test, and implementation of the hardware architecture, and
control logic of several FPGA-based MIMO-OFDM systems.

Veerle Derudder received the M. Eng. de-
gree in electrical engineering from Kath-
olieke Hogeschool Brugge Oostende, Bel-
gium, in 1990. She joined the Interuniver-
sity MicroElectronics Center (IMEC), Leu-
ven, Belgium in 1990, working on the de-
sign of parameterized module generators
for DSP applications. In 1995, she became
responsible for the ASIC test strategy. She
has also been involved in the design of
ASICs for spread-spectrum satellite modems, a satellite naviga-
tion receiver, OFDM transceivers, a turbo coder, and MIMO
transceivers. She is currently a Senior Design Architect working on
flexible air interfaces.

http://grouper.ieee.org/groups/802/11
http://grouper.ieee.org/groups/802/11
http://www.mathworks.com
http://www.systemc.org
http://www.systemc.org
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.powerescape.com/products/architect.php
http://www.powerescape.com/products/architect.php
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=dr_dt_coregenerator
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=dr_dt_coregenerator
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=dr_dt_coregenerator
http://www.synopsys.com/products/designware/designware.html
http://www.synopsys.com/products/designware/designware.html

12 EURASIP Journal on Applied Signal Processing

Sven Janssens received the Electrical En-
gineering degree in 2000 at the Univer-
sity of Leuven, Belgium. In 2000, he joined
the Interuniversity MicroElectronics Center
(IMEC), where he worked on the develop-
ment of a smart multiple-antenna system.
He contributed to the algorithmic explo-
ration and the design of the digital hardware
for a real-time wireless prototype. His re-
search interests include the design of digital
communication systems.

Frederik Petré is a Senior Project Engineer
at the Flanders’ MECHATRONICS Tech-
nology Centre (FMTC), which is a new re-
search centre, operating since October 2003,
with the mission to establish a bridge be-
tween the academic and industrial know-
how in mechatronics in Flanders, Belgium.
Over there, he focuses on end-to-end sys-
tem design and integration of a mobile
wireless sensor system for machine diag-
nosis within the very relevant industrial process control applica-
tion context. Before joining FMTC, Frederik was a Senior Scien-
tist within the Wireless Research Group at the Interuniversity Mi-
croelectronics Centre (IMEC), investigating baseband signal pro-
cessing algorithms and digital architectures for future generation
wireless communication systems, including third generation (3G)
and fourth generation (4G) broadband cellular networks and high-
throughput wireless local area networks (HT-WLANs). He received
theM.S. degree (1997) and the Ph.D. degree (2003) in electrical en-
gineering, both from the Katholieke Universiteit Leuven, Belgium.
During the Fall of 1998, he spent 6 weeks as a Visiting Researcher
at the Information Systems Laboratory (ISL), Stanford University,
California, USA, working on OFDM-based powerline communi-
cations. Frederik is a Member of the ProRISC Technical Program
Committee and Secretary of the IEEE Benelux Section on Com-
munications and Vehicular Technology (CVT). In 2005, he served
as a Guest Editor for the EURASIP Journal on Wireless Commu-
nications and Networking (JWCN), resulting in a special issue on
Reconfigurable Radio for Future Generation Wireless Systems. From
January 2004 till December 2005, he was a Member of the Execu-
tive Board of the European 6th frameworkNetwork of Excellence in
Wireless Communications (NEWCOM) and the Leader of NEW-
COM Project D on Flexible Radio.

André Bourdoux received the M.S. degree
in electrical engineering (specialization in
microelectronics) in 1982 from the Univer-
sité Catholique de Louvain-la-Neuve, Bel-
gium. He is coordinating the research on
multiantenna communications in theWire-
less Research Group at IMEC. His current
interests span the areas of wireless com-
munications theory, signal processing, and
transceiver architectures with a special em-
phasis on broadband and multiantenna systems. Before joining
IMEC, his research activities were in the field of algorithms and RF
architectures for coherent and high-resolution radar systems. He
is the author and coauthor of several conference and journal pa-
pers and of 2 patents applications in the field of SDMA and MIMO
transmission.

	Introduction
	System architecture
	Platform architecture
	Matlab-to-hardware design methodology
	HW-architecture development
	Matlab fixed-point and hardware refinement
	System integration
	RTL design
	IP-reuse

	Conclusions
	REFERENCES

