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1. INTRODUCTION

Since Foschini and Gans [1] and Telatar [2] established that
the capacity of a Rayleigh distributed flat fading channel will
increase almost linearly with the minimum of the number of
transmit and receive antennas when the receiver has access
to perfect channel state information but not the transmitter,
multiple transmit and receive antenna (MIMO) systems and
spacetime coding have received great attention as a means
of providing substantial performance improvement against
channel fading in wireless communication systems. In [3],
Jayaweera and Poor extended the capacity result to the case
of Rician fading channel, considering that Rician fading is
a better model for some fading environments. For example,
when there is a direct line of sight (LOS) path in addition
to the multiple scattering paths, the natural fading model is
Rician.

In this paper, we will investigate how the capacity of
MIMO systems changes in a Nakagami fading [4] environ-
ment. The main reason that motivated our study is that
in some communication scenarios such as ultra-wideband
(UWB) wireless communications, which has become a very

hot topic recently, the Nakagami fading gives a better fit-
ting for the channel model [5]. Another reason is that the
Nakagami fading is an extension to the Rayleigh fading, and
therefore the results to be presented in this paper will be a
generalization of previousMIMO results. On the other hand,
there are no reports in the literature on the study of the chan-
nel capacity of MIMO systems with the Nakagami fading to
the best of the authors’ knowledge.

This paper is organized as follows. Section 2 describes the
model we are considering. The ergodic channel capacity for
the case of single transmit antenna and single receive antenna
is discussed in Section 3. Then the MIMO case is studied in
Section 4. The outage probability about the capacity is dis-
cussed in Section 5. In Section 6, numerical results are pro-
vided to demonstrate the dependence of the channel capacity
on various kinds of channel parameters. Finally, concluding
remarks are given in Section 7.

Notation 1. The notation in this paper is fairly standard. I is
an identity matrix whose dimension is either implied by con-
text or indicated by its subscript when necessary, Pr denotes
the probability of an event, PA(x) represents the cumulative
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distribution function of a random variableA, that is, PA(x) =
Pr{A ≤ x}, pA(x) stands for the probability density func-
tion of a random variable A, that is, pA(x) = Pr{x ≤ A <
x + dx}/dx, ϕA(ν) represents the characteristic function of a
random variable A, EA( f (A)) stands for the expectation of
a function of a random variable A, taking expectation over
the statistics of A, and tr represents the trace of a square ma-
trix. Throughout this paper, the function log is understood
as the natural logarithm of its argument. Hence the unit of
the channel capacity is nat.

2. MODEL DESCRIPTION

Consider a single user communications link in which the
transmitter and receiver are equipped with mX and mY an-
tennas, respectively. The received signal in such a system can
be written in vector form as

Y(t) = A(t)X(t) +N(t), (1)

where X(t) ∈ RmX and Y(t) ∈ RmY are the transmitted and
received signals, respectively, A(t) = [anm(t)]mY×mX is a ran-
dommatrix characterizing the amplitude fading of the chan-
nel, and N(t) ∈ RmY is the receiver noise. Note that all the
signals considered in this paper are in real spaces, in accor-
dance with some communication scenarios such as UWB.

Throughout this paper we will assume that all the ran-
dom processes are blockwise stationary. Therefore the nota-
tion of time will be omitted for briefness.

Tomake the analysis tractable, the following assumptions
are needed.

Assumption 2. It is assumed that all anm, n = 1, . . . ,mY ,m =
1, . . . ,mX , are independent and identically distributed.

Assumption 3. The noise N is zero-mean Gaussian with co-
variance matrix σ2NImY .

Assumption 4. The power of the transmitted signal is
bounded by S, that is, E(XTX) ≤ S.

Assumption 5. The receiver possesses complete knowledge of
the instantaneous channel parameters, while the transmitter
is not aware of the information about the channel parame-
ters.

In the following, we will describe the statistical property
of the matrix A. For this purpose, we will generically use a to
denote each entry of A. We suppose that the magnitude of a,
denoted as |a|, takes a Nakagami distribution, whose general
form of the probability density function (pdf) is as follows:

p|a|(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2mmx2m−1

Γ(m)Ωm
e−mx2/Ω when x ≥ 0,

0 when x < 0,
m ≥ 1

2
,

(2)

where Γ denotes the Gamma function, Ω = E(a2), and m =
[E(a2)]2/Var[a2]. In this paper, we substitutemwith another

parameter κ by simply defining κ = 2m.Hence it is clear that
κ ≥ 1. By doing so the pdf of |a| in (2) can be rewritten as

p|a|(x)

=

⎧
⎪⎪⎨

⎪⎪⎩

2
(

κ

2Ω

)κ/2 1
Γ(κ/2)

xκ−1e−κx2/2Ω when x ≥ 0,

0 when x < 0,

κ ≥ 1.

(3)

Note that we should specify the statistics of the sign of a to
describe completely the fading of a. However, for the purpose
of this paper, we do not need it.

Define η = a2. It is easy to get the pdf of η as follows:

pη(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
κ

2Ω

)κ/2 1
Γ(κ/2)

xκ/2−1e−κx/2Ω when x ≥ 0,

0 when x < 0.
(4)

In the sequel development, we need the characteristic func-
tion of the random variable η. First, we calculate the moment
generating function of η through which the characteristic
function of η can be easily obtained. The moment generat-
ing function of η is given by

ψη(s) =
∫ +∞

−∞
esx pη(x)dx

=
∫ +∞

0
esx

1
(2Ω/κ)κ/2Γ(κ/2)

xκ/2−1e−κx/2Ωdx.

(5)

Substituting the integral variable x with y = (κ/2Ω− s)x and
using the definition of the Gamma function, we obtain

ψη(s) = 1
(2Ω/κ)κ/2Γ(κ/2)(κ/2Ω− s)κ/2

∫ +∞

0
yκ/2−1e−ydy

= 1
(2Ω/κ)κ/2Γ(κ/2)(κ/2Ω− s)κ/2

Γ
(
κ

2

)

= 1
(1− (2Ω/κ)s)κ/2

.

(6)

Thus according to the relationship between moment gener-
ating function and characteristic function [6], the latter is
given by

ϕη(ν) = ψη(jν) = 1
(1− j(2Ω/κ)ν)κ/2

. (7)

Notice that the distribution defined by pdf (4) can be re-
garded as amodified χ2 distribution with κ degree of freedom
(we can write η = (Ω/κ)χ2).

Now we are ready to discuss the channel capacity.
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3. THE CASE OF SINGLE TRANSMIT AND
RECEIVE ANTENNA (SISO)

First we study the SISO case. For this case, the input-output
relation is simplified to

Y(t) = a(t)X(t) +N(t), (8)

where X , Y , and N become scalars, a assumes the distribu-
tion described by (3), and the noiseN is zero-mean Gaussian
and white with variance σ2N .

In this and next sections we will discuss ergodic chan-
nel capacity. So in the following we will assume that the fad-
ing process is ergodic, so that averaging the classical channel
capacity over the amplitude fading is of operational signifi-
cance.

The channel capacity for an AWGN channel with a given
fading amplitude a is given by

C|a =WX log

(

1 +
a2S

σ2N

)

, (9)

where WX is the bandwidth of the channel. So the ergodic
channel capacity, denoted as Ce, turns out to be

Ce = Ea
(
C|a
) =WX

∫∞

−∞
log
(

1 +
a2S

σ2N

)

pa(a)da

=WX

∫∞

−∞
log

(

1 +
ηS

σ2N

)

pη(η)dη

=WX

∫∞

0
log

(

1 +
xS

σ2N

)(
κ

2Ω

)κ/2

× 1
Γ(κ/2)

xκ/2−1e−κx/2Ωdx,

(10)

where η = a2 and the distribution of η is given by (4). Substi-
tuting the variable x with x = (2Ω/κ)u in the above integral
yields

Ce = WX

Γ(κ/2)

∫∞

0
log
(

1 +
u

β

)

uκ/2−1e−udu, (11)

where

β := κσ2N
2ΩS

= κ

2 SNR
, (12)

SNR := ΩS

σ2N
, (13)

can be considered as the ratio of signal power (at the receiver
side) to the noise power. Let us define

J(κ;β) :=
∫∞

0
log
(

1 +
u

β

)

uκ/2−1e−udu. (14)

Integrating the above integral by parts, we obtain

J(κ;β) =
∫∞

0

1
u + β

uκ/2−1e−udu

+
(
κ

2
− 1
)∫∞

0
log
(

1 +
u

β

)

u(κ−2)/2−1e−udu

=
∫∞

0

1
u + β

uκ/2−1e−udu +
(
κ

2
− 1
)

J(κ− 2;β).

(15)

From [7, page 319], one sees that

∫∞

0

1
u + β

uκ/2−1e−udu = eββ(κ−2)/2Γ
(
κ

2

)

Γ
(

1− κ

2
,β
)

,

(16)

where it is required that κ ≥ 1 to guarantee the integral to
converge and Γ(α, z) denotes the incomplete Gamma func-
tion, defined by (see [7, page 940])

Γ(α, z) =
∫∞

z
e−uuα−1du. (17)

Thus we have

J(κ;β) = eββ(κ−2)/2Γ
(
κ

2

)

Γ
(

1− κ

2
,β
)

+
(
κ

2
− 1
)

J(κ− 2;β).

(18)

To use the recursive formula (18) to calculate J(κ;β), we need
to know J(1;β) and J(2;β), respectively. By definition, we
have

J(1;β) =
∫∞

0

log(1 + u/β)e−u√
u

du

= π3/2 erfi
(√

β
)

− (γ + 2 log 2 + logβ)
√
π − 2

√
πβ

·2 F2
(

[1, 1],
[

2,
3
2

]

,β
)

= √π
[

π erfi
(√

β
)

− γ − 2 log 2− logβ − 2β

·2 F2
(

[1, 1],
[

2,
3
2

]

,β
)]

,

(19)

where γ ≈ 0.5772 is the Euler’s constant, erfi(z) and 2F2([α1,
α2], [α3,α4], z) are the imaginary error function and general-
ized hypergeometric function, respectively, which are defined
by (cf. [7, page 1045])

erfi(z) = 2√
π

∫ z

0
eu

2
du,

2F2
([
α1,α2

]
,
[
α3,α4

]
, z
) =

∞∑

k=0

(α1)k(α2)k
(α3)k(α4)k

zk

k!
,

(20)

where (α)k = α(α+1) · · · (α+k−1) = Γ(α + k)/Γ(α). While
using the definition of the incomplete Gamma function, we
obtain

J(2;β) =
∫∞

0
log
(

1 +
u

β

)

e−udu =
∫∞

0

e−u

u + β
du

= eβ
∫∞

β

e−v

v
dv = eβΓ(0,β).

(21)

Finally, the ergodic channel capacity can be calculated ac-
cording to

Ce = WX

Γ(κ/2)
J(κ;β). (22)
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From (22), (12), and (13), it is interesting to observe that the
channel capacity depends only on parameters WX , κ, and β,
and that parameter Ω plays the same role as S. This is an ex-
pected result sinceΩ is proportional to the power of a, which
can be seen from the fact that E(a2) = Ω.

4. THE CASE OFMULTIPLE TRANSMIT
AND RECEIVE ANTENNAS

In this case, the input-output relation (channel model) is de-
scribed by (1). The mutual information between X and Y for
a given A is

I(X;Y | A) =H(Y | A)−H(Y | X,A)
=H(Y | A)−H(N),

(23)

where H denotes the entropy of a random variable, whose
definition can be found in [8] for the case of continuous ran-
dom variables. It is well known that if X is constrained to
have covariance Q, the choice of X that maximizes I(X;Y |
A) is a Gaussian random variable with covariance Q. Thus
the channel capacity for a given fading matrix A turns out to
be [2, 8]

C|A = max
pX(x)

I(X;Y | A)

=WX log det
(
σ2NImY + AQAT

)−WX log det(σ2NImY )

=WX log det
(

ImY +
1
σ2N

AQAT
)

,

(24)

where AT represents the transpose of matrix A. Let us define

Ψ(Q) = EA

[

log det
(

ImY +
1
σ2N

AQAT
)]

. (25)

Then the ergodic channel capacity is given by

Ce =WX max
tr(Q)≤S

Ψ(Q). (26)

The optimization problem described by (25) and (26) is
difficult to solve. In the following we will solve the subopti-
mal problem described by (25) and

C
¯ e
=WX max

tr(Q)≤S
Q is diagonal

Ψ(Q). (27)

The constraint in (27) says that the transmitted signals
among all antennas are uncorrelated. As is well known, a nice
property for the case of the (complex) Gaussian fading chan-
nel is that the optimal solution ofQ for problem (25)-(26) is
a diagonal matrix, but for our problem, whether or not Q is
diagonal is still an open problem. In principle, a nondiagonal
Q may yield a greater maximum mutual information than a
diagonal Q for general fading matrix A. Therefore, we will
generally have Ce ≥ C

¯ e
. In some cases, we will see Ce = C

¯ e
.

Now following the same argument as that in [2], we show
that the optimal solution of Q for problem (25) and (27) is

Qopt = S

mX
I. (28)

Suppose thatQ is any given nonnegative diagonal matrix sat-
isfying tr(Q) ≤ S andΠ is any permutation matrix. Consider
QΠ := ΠQΠT and AΠ := AΠT . Since AΠ is obtained by in-
terchanging two corresponding columns, it can be inferred
from the independence of the elements in A that pA(Z) =
pAΠ(Z), where Z is a matrix with the same dimension as A.
Therefore, we have

Ψ(Q) = EA

[

log det
(

ImY +
1
σ2N

AΠT(ΠQΠT)ΠAT
)]

= EAΠ

[

log det
(

ImY +
1
σ2N

AΠQΠ
(
AΠ
)T
)]

= Ψ
(
QΠ
)
.

(29)

Let Q̃ = (1/mX !)
∑

ΠQΠ. It is well known [8] that the map-
ping Q �→ Ψ(Q) is convex ∩ (in the convention of [8])
over the set of positive definite matrices. Thus it follows that
Ψ(Q̃) ≥ Ψ(Q). Notice that Q̃ is simply a multiple of the iden-
tity matrix and tr(Q̃) = tr(Q). Thus C

¯ e
is achieved by let-

ting Q = αI. Applying the trace constraint to Q yields that
α = S/mX. Therefore, we arrive at

Ce ≥ C
¯ e
=WXEA

[

log det
(

ImY +
S

mXσ
2
N
AAT

)]

. (30)

Equation (30) provides a lower bound for the channel capac-
ity of the Nakagami fading channels. The conservativeness of
the lower bound comes from the diagonal assumption on Q.
If, on the other hand,Q is nondiagonal, some kind of knowl-
edge, either statistical property on or the exact value of the
fading matrix should be provided to the transmitter. Consid-
ering Assumption 5, we can conclude that the lower bound
described by (30) is a useful performance measure for the
wireless systems with the Nakagami fading.

To use (30), we need to know the distribution of det(ImY+
(S/mXσ

2
N)AA

T) or that of the eigenvalues of matrixAAT . Un-
fortunately, these distributions are known only when A pos-
sesses some special distribution (typically normal distribu-
tion) if both mX > 1 and mY > 1, see, for example, [9].
Therefore, we will consider some special cases in the follow-
ing.

Here we would like to point out that, in the above deriva-
tion, we have used the property that the distribution of A is
invariant under permutation transformations, but this prop-
erty does not hold for A under general unitary transforma-
tions, such as the case of normal distribution discussed in
[2].

4.1. Single transmit andmultiple receive antennas

In this case, mX = 1 and mY > 1. We denote A = [a1, . . . ,
amY ]

T . First notice the fact that for any two matricesM1 and
M2 with compatible dimensions, we have

det
(
I +M1M2

) = det
(
I +M2M1

)
. (31)
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Note also that in this case the matrix Q reduces to a scalar.
Applying these two facts to (30), one sees that

Ce = C
¯ e
=WXEA

[

log
(

1 +
S

σ2N
ATA

)]

. (32)

Let

Υ := ATA =
mY∑

l=1
a2l :=

mY∑

l=1
Υl, (33)

where Υl := a2l , l = 1, . . . ,mY. According to (7) and noticing
the fact that {Υl, l = 1, . . . ,mY} are independent, we can see
that the characteristic function of Υ is given by

ϕΥ(ν) =
[

1
(1− j(2Ω/κ)ν)κ/2

]mY

= 1
(1− j(2Ω/κ)ν)(κ/2)mY

.

(34)

From (34) we can see (cf. [6, page 148]) that ϕΥ(ν) is the
characteristic function of the Gamma distribution. Thus Υ
has the following pdf:

pΥ(x)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
(2Ω/κ)(κ/2)mYΓ((κ/2)mY )

x(κ/2)mY−1e−κx/2Ω when x ≥ 0,

0 when x < 0.
(35)

Therefore, the ergodic channel capacity is given by

Ce =WXEΥ

(

log

(

1 +
1
σ2N

SΥ

))

=WX

∫∞

0
log

(

1 +
S

σ2N
x

)

× 1
(2Ω/κ)(κ/2)mYΓ((κ/2)mY )

x(κ/2)mY−1e−κx/2Ωdx

=WX

∫∞

0
log

(

1 +
2ΩS

κσ2N
y

)
1

Γ((κ/2)mY )
y(κ/2)mY−1e−ydy

= WX

Γ((κ/2)mY )
J
(
mYκ;β

)
.

(36)

4.2. Multiple transmit and single receive antennas

In this case,mX > 1 andmY = 1. Thus AAT is a scalar. Define
Υ = AAT . It is clear that Υ has the following distribution:

pΥ(x)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
(2Ω/κ)(κ/2)mXΓ((κ/2)mX)

x(κ/2)mX−1e−κx/2Ω when x ≥ 0,

0 when x < 0.
(37)

Therefore, from (30), we have

Ce ≥ C
¯ e
=WXEΥ

[

log
(

1 +
S

mXσ
2
N
Υ
)]

=WX

∫∞

0
log

(

1 +
S

mXσ
2
N
x

)

× 1
(2Ω/κ)(κ/2)mXΓ((κ/2)mX)

x(κ/2)mX−1e−κx/2Ωdx

= WX

Γ((κ/2)mX)
J
(
mXκ;mXβ

)
.

(38)

Remark 6. Notice that when κ = 2, the fading model for
each element of A reduces to Rayleigh distribution, which
corresponds to the classic narrowband wireless communica-
tion channel. So we expect that the results obtained for this
specific κ also recover the results obtained in [2]. Substituting
κ = 2 into (36) and (38), respectively, readily reveals that (36)
and (38) indeed reduce to (12) and (13) in [2], respectively.

5. CAPACITY VERSUS OUTAGE PROBABILITY

The results we have obtained in the previous sections apply to
the case where the fading matrix is ergodic and there are no
constraints on the decoding delay on the receiver. In practical
communication systems, we often run into the case where the
fading matrix is generated or chosen randomly at the begin-
ning of the transmission, while no significant channel vari-
ability occurs during the whole transmission. In this case, the
fading matrix is clearly not ergodic. We suppose that the fad-
ing matrix still has the distribution defined in the previous
sections. In this case it is more important to investigate the
channel capacity in the sense of outage probability. An out-
age is defined as the event where the communication channel
does not support a target data rate. Thus, according to [10],
outage probability, denoted by Pout(R), is defined as follows.
With a given rate R, we associate a set ΘR in the space of the
fading matrix A. The set is the largest possible set for which
CΘ, the capacity of the compound channel with parameter
A ∈ ΘR, satisfies CΘ ≥ R. The outage probability is then de-
fined as Pout(R) = Pr{A /∈ ΘR}. Thus it is clear that

Pout(R) = Pr
{
A /∈ ΘR

} = Pr
{
C|A < R

} = Pr
{
C|A ≤ R

}
,
(39)

that is, the outage probability can be actually viewed as the
cumulative distribution function (cdf) of the conditional
Shannon capacity. Notice that the last equality of the above
equation follows from the fact that C(X;Y|A) is a continuous
function of the continuous random matrix A.

Based on the above discussion, we can evaluate the out-
age probability for the following three cases.
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(i) SISO case

Let us define η = a2. Recall that η has the pdf defined by (4).
Thus its cdf is as follows:

Pη(x) = Pr{η ≤ x}

=
∫ x

0

(
κ

2Ω

)κ/2 1
Γ(κ/2)

yκ/2−1e−κy/2Ωdy

= 1
Γ(κ/2)

γ
(
κ

2
,
κ

2Ω
x
)

,

(40)

where γ(α, z) is the incomplete Gamma function, defined by
(cf. [7, page 940])

γ(α, z) =
∫ z

0
e−xxα−1dx. (41)

Therefore, from (9) it follows that

Pout(R) = Pr

{

WX log

(

1 +
a2S

σ2N

)

≤ R

}

= Pr

{

η ≤ σ2N
S

(
eR/WX − 1

)
}

= Pη

(
σ2N
S

(
eR/WX − 1

)
)

= 1
Γ(κ/2)

γ
(
κ

2
,β
(
eR/WX − 1

)
)

.

(42)

(ii) SIMO case

Recalling the definition of Υ and its pdf (35), we can obtain
its cdf as follows:

PΥ(x) = Pr{Υ ≤ x}

=
∫ x

0

1
(2Ω/κ)(κ/2)mYΓ((κ/2)mY )

y(κ/2)mY−1e−κy/2Ωdy

= 1
Γ((κ/2)mY )

γ
(
κ

2
mY ,

κ

2Ω
x
)

.

(43)

Following the same argument as (32), the conditional capac-
ity can be derived as

C|A =WX log

(

1 +
1
σ2N

SATA

)

. (44)

Thus the outage probability turns out to be

Pout(R) = Pr

{

WX log

(

1 +
1
σ2N

SATA

)

≤ R

}

= Pr

{

Υ ≤ σ2N
S

(
eR/WX − 1

)
}

= PΥ

(
σ2N
S

(
eR/WX − 1

)
)

= 1
Γ((κ/2)mY )

γ
(
κ

2
mY ,β

(
eR/WX − 1

)
)

.

(45)

(iii) MISO case

First, we have

PΥ(x) =
1

Γ((κ/2)mX)
γ
(
κ

2
mX ,

κ

2Ω
x
)

. (46)

Then according to (38), we have

Pout(R) = Pr
{
C|A ≤ R

}

≤ Pr

{

WX log

(

1 +
S

mXσ
2
N
AAT

)

≤ R

}

= Pr

{

Υ ≤ mXσ
2
N

S

(
eR/WX − 1

)
}

= PΥ

(
mXσ

2
N

S

(
eR/WX − 1)

)

= 1
Γ
(
(κ/2)mX

)γ
(
κ

2
mX ,mXβ

(
eR/WX − 1

)
)

= Pout(R).

(47)

Pout, as defined in (47), provides an upper bound for the con-
cerned outage probability.

6. NUMERICAL RESULTS

In this section, we will investigate the variation of channel ca-
pacity with respect to various kinds of parameters. It is found
from (12), (22), (36), and (38) that the ergodic channel ca-
pacity depends only on channel bandwidthWX , the number
κ, mY , mX , and the signal-to-noise power ratio SNR in the
sense defined by (13), respectively, and it depends on WX

linearly, so we let WX = 1 and only focus our attention on
the variation of Ce with respect to κ, SNR, mY , and mX , re-
spectively.

Figure 1 depicts the variation of channel capacity Ce with
respect to the number κ for SISO case. We can see from this
figure that even though the channel capacity increases with
the number κ, the quantities increased are not large com-
pared to the base case (κ = 1), especially when κ ≥ 10. For
example, for the case of SNR = 0 dB, when κ is increased
from 1 to 10, Ce increases (0.6695−0.5335)/0.5335 = 25.5%,
while when κ is increased from 10 to 30, Ce increases only by
2.31%.

Figure 2 demonstrates the relationship between channel
capacity and SNR for SISO case, which shows that when SNR
becomes large, Ce is approximately a logarithmic function of
SNR. This is a result coinciding with our expectation.

Figure 3 shows the relationship between the channel ca-
pacity and the number of receive antennas for SIMO case.
It can be seen from this figure that C

¯ e
increases with mY al-

most logarithmically. This phenomenon is similar to the cor-
responding one in the case of the Rayleigh fading channels
(cf. [2, Example 3]).

Figure 4 shows the relationship between the lower bound
of the channel capacity and the number of transmit anten-
nas forMISO case. It is interesting to observe from this figure
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Figure 1: Variation of ergodic channel capacity Ce (in nats/s/Hz)
with the number κ for SISO case.
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Figure 2: Variation of ergodic channel capacity Ce (in nats/s/Hz)
with the ratio SNR (in dB ) for SISO case.

that the capacity increases withmX rapidly whenmX is small
(mX ≤ 6), however, the increase is very slow when mX be-
comes large (mX > 6). This phenomenon is different from
the one in the case of the Rayleigh fading channel, see [2,
Example 4], where it is found that Ce does not change with
mX when mX ≥ 2. An important phenomenon can also
be observed by comparing Figures 4(a) and 4(b), that is,
when the signal-to-noise ratio is low, the benefit obtained by
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Figure 3: Variation of ergodic channel capacity Ce (in nats/s/Hz)
with the number of receive antennas mY for SIMO case (SNR =
−10 dB).

distributing the available power to different transmit anten-
nas is very limited as far as the average capacity is concerned.

From Figures 3 and 4, we can see that increasing the
number of receiver antennas can obtain more benefit in
channel capacity than increasing the number of transmit an-
tennas. Principally, the channel capacity could be increased
infinitely by employing a large number of receive antennas,
but it appears to increase only logarithmically in this num-
ber; while employing 3—5 receive antennas can approach the
best advantage of the multiple transmit antenna systems (for
the case of single receive antenna). The reason for this phe-
nomenon is two fold. First, the power is constrained to be
a constant, for different mX , among all the transmit anten-
nas, while no such constraint is applied to receive antennas.
Second, it is assumed that the receiver possesses the full
knowledge about the channel state.

The variations of outage probability Pout or Pout with
respect to the transmission rate (in nats/s/Hz), R/WX , are
shown in Figures 5, 6, and 7 for SISO, SIMO, andMISO cases,
respectively. From these figures, it can be observed that for
a given SNR, the outage probability decreases considerably
with the number of receive antennas in the range of whole
transmission rate, while Pout(R) decreases with the number
of transmit antennas when R/WX is lower than some value
(denoted as R1), but increases instead when R/WX is larger
than another value (denoted as R2). Notice that the outage
probability is so large when R/WX is larger than R2 that to
transfer information at this rate is of little practical interest.
Therefore, we can conclude that increasing the number of
transmit antennas is of some significance at a transmission
rate of practical communications with tolerable outage prob-
ability.
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Figure 4: Variation of the lower bound of the ergodic channel ca-
pacity Ce (in nats/s/Hz) with the number of transmit antennas mX

for MISO case.

It would be difficult to calculate R2 exactly. However, R1

can be calculated in the following way. Notice the fact that
the total signal power S is equally distributed among transmit
antennas forMISO case withmX transmit antennas. Thus the
received power from the useful signals should be

SY =
mX∑

k=1
a2k ·

S

mX
=
∑mX

k=1 a
2
k

mX
· S. (48)

Therefore it is clear that the larger the number mX , the
smaller the variance of the received power from the useful
signals. In the extreme case, when mX approaches infinity,
we have

SY −→ ΩS with probability 1 asmX −→ ∞, (49)
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Figure 5: Outage probability Pout versus transmission rate R/WX

(in nats/s/Hz) for various κ and SNR for SISO case.
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Figure 6: Outage probability Pout versus transmission rate R/WX

(in nats/s/Hz) for variousmY and SNR for SIMO case (κ = 4).

according to strong law of large numbers [6]. Therefore in
this extreme case, we obtain

R

WX
= log

(

1 +
ΩS

σ2N

)

= log(1 + SNR) := Rc. (50)

The above says that the channel capacity will approach a
constant Rc when the number of transmit antennas ap-
proaches infinity. We call Rc the critical transmission rate.
From Figure 7, we can see that R1 and R2 satisfy the relation-
ships

R1 = Rc, R2 > Rc. (51)

The above analysis yields that Rc = 0.0953, 0.6931, and
2.3979 for SNR being −10 dB, 0 dB, and +10 dB, respectively
in the case of Figure 7. It is seen that R2 almost coincides with
Rc.

7. CONCLUDING REMARKS

In this paper, the analytic expression for the ergodic chan-
nel capacity or its lower bound of wireless communication
systems with the Nakagami fading is presented for three spe-
cial cases: (i) single transmit antenna and single receive an-
tenna, (ii) single transmit and multiple receive antennas, and
(iii) multiple transmit and single receive antennas, respec-
tively. Formulae on the outage probability about the channel
capacity are also presented. Numerical results are provided to
demonstrate the dependence of the channel capacity on var-
ious kinds of channel parameters. It is shown that increasing
the number of receive antennas can obtain more benefit in
channel capacity than increasing the number of transmit an-
tennas. Principally, the channel capacity could be increased
infinitely by employing a large number of receive antennas,
but it appears to increase only logarithmically in this num-
ber for SIMO case; while employing 3—5 transmit anten-
nas can approach the best advantage of the multiple transmit
antenna systems (irrespective of all other parameters consid-
ered herein) as far as channel capacity is concerned for MISO
case. We have also observed that when the signal-to-noise
ratio is low, the benefit in average capacity obtained by dis-
tributing the available power to different transmit antennas
is very limited. We have shown numerically that for a given
signal-to-noise ratio, the outage probability decreases consid-
erably with the number of receive antennas for SIMO case,
while for MISO case, the upper bound of the outage proba-
bility decreases with the number of transmit antennas when
the communication rate is lower than the critical transmis-
sion rate (Rc), but increases when the rate is higher than an-
other value (R2). The gap between R2 and Rc is not big for the
cases considered here. Rc is determined by the fading power
and the signal-to-noise ratio of the system at the transmit-
ter side. We can roughly say that it is not beneficial to use
multiple transmit antennas if the required transmission rate
(normalized by system bandwidth) is higher than the critical
transmission rate.

Due to the fact that the probability density function of
the eigenvalues of nonnormal distributed randommatrices is
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Figure 7: The upper bound of the outage probability Pout versus
transmission rate R/WX (in nats/s/Hz) for variousmX and SNR for
MISO case (κ = 4).

unknown yet, the problem about the calculation of the chan-
nel capacity for the general MIMO case is still open.
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