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We address a new approach to solve the ill-posed nonlinear inverse problem of high-resolution numerical reconstruction of the
spatial spectrum pattern (SSP) of the backscattered wavefield sources distributed over the remotely sensed scene. An array or
synthesized array radar (SAR) that employs digital data signal processing is considered. By exploiting the idea of combining the
statistical minimum risk estimation paradigm with numerical descriptive regularization techniques, we address a new fused sta-
tistical descriptive regularization (SDR) strategy for enhanced radar imaging. Pursuing such an approach, we establish a family of
the SDR-related SSP estimators, that encompass a manifold of existing beamforming techniques ranging from traditional matched
filter to robust and adaptive spatial filtering, and minimum variance methods.
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1. INTRODUCTION

In this paper, we address a new approach to enhanced array
radar or SAR imaging stated and treated as an ill-posed non-
linear inverse problem. The problem at hand is to perform
high-resolution reconstruction of the power spatial spectrum
pattern (SSP) of the wavefield sources scattered from the
probing surface (referred to as a desired image). The recon-
struction is to be performed via space-time processing of fi-
nite dimensional recordings of the remotely sensed data sig-
nals distorted in a stochastic measurement channel.

The SSP is defined as a spatial distribution of the pow-
er (i.e., the second-order statistics) of the random wave-
field backscattered from the remotely sensed scene observed
through the integral transform operator [1, 2]. Such opera-
tor is explicitly specified by the employed radar signal mod-
ulation and is traditionally referred to as the signal forma-
tion operator (SFO) [2, 3]. Moreover, in all practical remote
sensing scenarios, the backscattered signals are contaminated
with noise, that is, randomly distorted. Next, all digital signal
recording schemes employ data sampling and quantization
operations [2, 4], that is, projection of the continuous-form
observations onto the finite dimensional data approximation
subspaces; thus an inevitable loss of information is induced
when performing such practical array data recordings. That
is why the problem at hand has to be qualified and treated

as a statistical ill-conditioned nonlinear inverse problem. Be-
cause of the stochastic nature and nonlinearity, no unique
analytical method exists for reconstructing the SSP from the
finite dimensional measurement data in an analytic closed
form, that is, via designing some nonlinear solution operator
that produces the unique continuous estimate of the desired
SSP [4]. Hence, the particular solution strategy to be devel-
oped and applied must unify the practical data observation
method with some form of statistical or descriptive regular-
ization that incorporates the a priori model knowledge about
the SSP to alleviate the problem ill-posedness.

The classical imaging with array radar or SAR implies ap-
plication of the method called “matched spatial filtering” to
process the recorded data signals [4–6]. Stated formally [4],
such a method implies application of the adjoint SFO to the
recorded data, computation of the squared norm of a filter’s
outputs and their averaging over the actually recorded sam-
ples (the so-called snapshots [7]) of the independent data ob-
servations. Although a number of authors have proposed dif-
ferent linear and nonlinear postprocessing approaches to en-
hance the images formed using such matched estimator (see,
e.g., [8–10, 16]), all those are not a direct inference from the
Bayesian optimal estimation theory [1]. Other approaches
had focused primarily on designing the constrained regular-
ization techniques for improving the resolution of the closely



2 EURASIP Journal on Applied Signal Processing

spaced components in the SSP obtained by ways different
from matched spatial filtering [7, 10–12] but again without
aggregating the regularization principles with the minimum
risk estimation strategy.

In this study, we propose a new fused statistical de-
scriptive regularization (SDR) approach for estimating the
SSP that aggregates the statistical minimum risk inference
paradigm [2, 3] with the descriptive regularization tech-
niques [4, 13]. Pursuing such an approach, we establish a
family of the robust SDR-related estimators that encompass a
manifold of existing imaging techniques ranging from tradi-
tional array matched spatial filtering to high-resolution min-
imum variance adaptive array beamforming. We also present
robust SDR-related imaging algorithms that manifest en-
hanced resolution of the numerically reconstructed array im-
ages with substantially decreased computational load. The
efficiency of two particular SDR algorithms (the robust spa-
tial filtering (RSF) algorithm and the adaptive spatial filter-
ing (ASF) algorithm) is illustrated through computer simu-
lations of reconstructing the digital images provided with the
SAR operating in some typical remote sensing scenarios.

2. SSP ESTIMATION AS AN INVERSE PROBLEM

2.1. Problem statement

The generalized mathematical formulation of the problem
at hand presented here is similar in notation and structure
to that in [4, 14], and some crucial elements are repeated
for convenience to the reader. Consider a remote sensing ex-
periment performed with a coherent array imaging radar or
SAR (radar/SAR) that is traditionally referred to as radar
imaging (RI) problem [2, 4, 15]. Here, we employ the con-
ventional narrowband space-time model of the radar/SAR
signals [1, 2]. In such a model [2], the wavefield backscat-
tered from the remotely sensed scene is associated with the
time invariant complex random scattering function e(x) dis-
tributed over the probing surface X � x. The measurement
data wavefield u(y) = s(y) + n(y) consists of the echo signals
s and additive noise n, and is available for observations and
recordings within the prescribed time(t)-space(p) observa-
tion domain Y = T × P; t ∈ T , p ∈ P, where y = (t,p)T

defines the time-space points in Y . The model of the ob-
servation wavefield u is defined by specifying the stochastic
equation of observation (EO) of an operator form [4]:

u = Se + n; e ∈ E; u,n ∈ U ; S : E −→ U. (1)

Here, S is referred to as the regular signal formation opera-
tor (SFO). It defines the transform of random scattered sig-
nals e(x) ∈ E(X) distributed over the remotely sensed scene
(probing surface) X � x into the echo signals (Se(x))(y) ∈
U(Y) over the time-space observation domain Y = T × P;
t ∈ T , p ∈ P. In the functional terms [4, 6], such transform
is referred to as the operator S : E → U that maps the scene
signal space E (the space of the signals scattered from the re-
motely sensed scene) onto the observation data signal space
U . The energy of any signal in (1) is inevitably bounded;
hence following the generalized mathematical formulation

[3, 4], both spaces E and U must be considered as Hilbert
signal spaces. The inner products in such Hilbert spaces are
defined via the integrals [4, 14]

[
e1, e2

]
E =

∫

X
e1(x)e∗2 (x)dx,

[
u1,u2

]
U =

∫

Y
u1(y)u∗2 (y)dy,

(2)

respectively, where asterisk stands for complex conjugate.
Next, using these definitions (2), the metrics structures in
both spaces are imposed as [4, 14]

d2E
(
e1, e2

) = ∥∥e1 − e2
∥
∥2
E =

[(
e1 − e2

)
,
(
e1 − e2

)]
E

=
∫

X

∣
∣e1(x)− e2(x)

∣
∣2dx,

d2U
(
u1,u2

) = ∥∥u1 − u2
∥
∥2
U =

[(
u1 − u2

)
,
(
u1 − u2

)]
U

=
∫

Y

∣
∣u1(y)− u2(y)

∣
∣2dy,

(3)

respectively. The metrics structures (3) define the square dis-
tances d2E(e1, e2) between arbitrary different elements e1,e2 ∈
E and d2U(u1,u2) between arbitrary u1,u2 ∈ U . These square
distances are imposed by the corresponding squared norms
‖·‖2E and ‖·‖2U and are represented by the inner products at
the right-hand side in (3). Equations (1)–(3) explicitly define
the general functional formulation of the EO and specify the
corresponding metrics structures in the scene signal space E
and observation data space U , respectively. Applying these
formulations, in the following text we will adhere ourselves
to the concise inner product notations [·, ·]E and [·, ·]U im-
plying their integral-form definitions given by (2).

The operator model (1) of the stochastic EO may be also
rewritten in the conventional integral form [2, 4, 7] as

u(y) = (Se(x))(y) + n(y)=
∫

X
S(y, x)e(x)dx + n(y). (4)

The functional kernel S(y, x) of the SFO given by (4) defines
the signal wavefield formation model. It is specified by the
time-space modulation of signals employed in a particular
imaging radar system [2, 7, 15].

All the fields e, n, u in (1), (4) are assumed to be zero-
mean complex-valued Gaussian random fields. Next, we as-
sume an incoherent nature of the backscattered field e(x).
This is naturally inherent to all RI experiments [2, 4, 7, 14,
15] and leads to the δ-form of the scattering field correlation
function, Re(x1, x2) = B(x1)δ(x1 − x2), where the averaged
square, B(x) = 〈|e(x)|2〉 (i.e., the second-order statistics of
the complex scattering function e(x)), is referred to as the
power scattering function or spatial spectrum pattern (SSP)
of the remotely sensed scene X � x.

The nonlinear SSP estimation problem implies recon-
struction of the SSP B(x) distributed over the probing sur-
face X � x from the available finite dimensional array (syn-
thesized array) measurements of the data wavefield u(y) ∈
U(Y) performed in some statistically optimal way. Recall that
in this paper we intend to develop and follow the fused SDR
strategy.
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2.2. Projection statistical model of
the datameasurements

The formulation of the data discretization and sampling in
this paper follows the unified formalism given in [3, 4, 14]
that enables us to generalize the finite-dimensional approxi-
mations of (1), (4) independent of the particular system con-
figuration and themethod of datameasurements and record-
ings employed.

Following [4], consider an array composed of L antenna
elements characterized by a set of complex amplitude-phase
tapering functions {τ∗l (p); l = 1, . . . ,L} (the complex conju-
gate is taken for convenience). In general, the tapering func-
tions may be considered to be either identical or different
for the different elements of the array. In practice, the an-
tenna elements in an array (synthesized array) are always dis-
tanced in space (do not overlap); that is, the tapering func-
tions {τl(p)} have the distanced supports in P � p. Hence,
{τl(p)} compose an orthogonal set because these tapering
functions satisfy the orthogonal criteria: [τl, τn]U = ‖τl‖2δln
∀l,n = 1, . . . ,L, where δln represents the Kronecker oper-
ator. Consider, next, that the sensor output signal in every
spatial measurement channel is then converted to I samples
at the outputs of the temporal filters defined by their impulse
response functions {χ∗i (t); i = 1, . . . , I}. Without loss of gen-
erality [3, 4], the set {χi(t)} is also assumed to be orthogonal
(e.g., via proper filter design and calibration [2, 7]); that is,
[χi, χj]U = ‖χi‖2δi j for all i, j = 1, . . . , I .

The composition {hm(y) = τl(p)χi(t); m = (l, i) =
1, . . . , M = L × I} of all these L × I = M functions or-
dered by multiindex m = (l, i) composes a set of orthogonal
spatial-temporal weighting functions that explicitly deter-
mine the outcomes {Um = [u,hm]U =

∫
Y u(y)h

∗
m(y)dy;m =

1, . . . ,M} of such an M-dimensional (M-d in our notation)
data recording channel.

Viewing it as an approximation problem leads one to the
projection concept for a transformation of the continuous
data field u(y) to theM×1 vectorU = (U1, . . . ,UM)T of sam-
pled spatial-temporal data recordings. TheM-d observations
in the terms of projections [14] can be expressed as

u(M)(y) =
(
PU(M)u

)
(y) =

M∑

m=1
Umφm(y) (5)

with coefficients {Um = [u,hm]U}, where PU(M) represents a
projector onto theM-d observation subspace

U(M) = PU(M)U = Span
{
φm(y)

}
(6)

uniquely defined by a set of the orthogonal functions
{φm(y) = ‖hm(y)‖−2hm(y); m = 1, . . . ,M} that are relat-
ed to {hm(y)} as a dual basis in U(M); that is, [hm,φn]U =
δmn ∀m,n = 1, . . . ,M.

In the observation scene X � x, the discretization of
the scattering field e(x) is traditionally performed over a
Q × N rectangular grid where Q defines the dimension of
the grid over the horizontal (azimuth) coordinate x1, and
N defines the grid dimension over the orthogonal coor-
dinate x2 (the number of the range gates projected onto

the scene). The discretized complex scattering function is
represented by coefficients [14] Ek = E(q,n) = [e, gk]E =∫
x e(x)gk(x)dx, k = 1, . . . ,K = Q×N , of its decomposition
over the grid composed of such identical shifted rectangu-
lar functions {gk(x) = g(q,n)(x) = 1 if x ∈ ρ(q,n)(x) =
rect(q,n)(x1, x2) and gk(x) = 0 for other x /∈ ρ(q,n)(x) for all
q = 1, . . . ,Q, n = 1, . . . ,N ; k = 1, . . . ,K = Q × N}. Tradi-
tionally [2, 15, 16], these orthogonal grid functions are nor-
malized to one pixel width and lexicographically ordered by
multiindex k = (q,n) = 1, 2, . . . ,K = Q×N . Hence, the K-d
approximation of the scattering field becomes

e(K)(x) =
(
PE(K)e

)
(x) =

K∑

k=1
Ekgk(x), (7)

where PE(K) represents a projector onto the K-d signal ap-
proximation subspace

E(K) = PE(K)E = Span
{
gk(x)

}
(8)

spanned by K-orthogonal grid functions (pixels) {gk(x)}.
Using such approximations, we proceed from the

operator-form EO (4) to its conventional vectorized form

U = SE +N, (9)

where U, N, and E define the vectors composed of the coeffi-
cients Um, Nm, and Ek of the finite-dimensional approxima-
tions of the fields u, n, and e, respectively, and S is the matrix-
form representation of the SFO with elements [4] {Smk =
[Sgk,hm]U = ∫

Y (Sgk(x))(y)h
∗
m(y)dy; k = 1, . . . ,K ; m =

1, . . . ,M}.
Zero-mean Gaussian vectors E, N, and U in (9) are char-

acterized by the correlation matrices, RE, RN, and RU =
SRES++RN, respectively, where superscript + defines theHer-
mitian conjugate when it stands with a matrix. Because of
the incoherent nature of the scattering field e(x), the vector
E has a diagonal correlation matrix, RE = diag{B} = D(B) ,
in which the K × 1 vector of the principal diagonal B is com-
posed of elements Bk = 〈EkE∗k 〉; k = 1, . . . ,K . This vector B
is referred to as a vector-form representation of the SSP, that
is, the SSP vector [4, 14]. The K-d approximation of the SSP
estimate B̂(K)(x) as a continuous function of x ∈ X over the
probing scene X is now expressed as follows:

B̂(K)(x) = est
{〈∣∣e(K)(x)

∣
∣2〉} =

K∑

k=1
B̂kgk(x); x ∈ X , (10)

where est{ f } = f̂ defines the estimate of a function.
Analyzing (10), one may deduce that in every particu-

lar measurement scenario (specified by the corresponding
approximation spaces U(M) and E(K)) one has to derive the
estimate B̂ of a vector-form approximation of the SSP that
uniquely defines via (10) the approximated continuous SSP
distribution B̂(K)(x) over the observed scene X � x.

3. SDR STRATEGY FOR SSP ESTIMATION

In the descriptive statistical formalism, the desired estimate
of the SSP vector B̂ is recognized to be a vector that com-
poses a principal diagonal of the estimate of the correlation
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matrix RE(B); that is, B̂ = {R̂E}diag. Thus one can seek to

estimate B̂ = {R̂E}diag given the data correlation matrix RU

preestimated by some means, for example, via averaging the
correlations over J independent snapshots [1, 16]

R̂U = Y = aver
j∈J

{
U( j)U+

( j)

}
= 1

J

J∑

j=1
U( j)U+

( j) (11)

by determining the solution operator that we also refer to as
the image formation operator (IFO) F such that

B̂ = {R̂E
}
diag =

{
FYF+

}
diag. (12)

To optimize the search of such IFO F, we address the follow-
ing SDR strategy: to design the IFO

F −→ min
F

{
Risk(F)

}
, (13)

that minimizes the composite objective function

Risk(F) = trace
{
(FS− I)A(FS− I)+

}
+ α trace

{
FRNF+

}
,

(14)

where I defines an identity matrix.
We refer to the objective function defined by (14) as the

composite descriptive risk. Such Risk(F) is composed of the
weighted sum of the systematic error function specified as
trace{(FS − I)A(FS − I)+} (the first addend in Risk(F)) and
the fluctuation error function specified as trace{FRNF+} (the
second addend in Risk(F)). These two functions define the
systematic and fluctuation error measures in the desired so-
lution B̂, correspondingly, and the regularization parameter
α controls the balance between such two measures. The se-
lection (adjustment) of the parameter α and the metrics or
weight matrix A provides additional regularization degrees
of freedom incorporating any descriptive properties of a so-
lution if those are known a priori [8, 10], hence the accepted
definition, descriptive risk. Thus, the proposed SDR strategy
(13) implies minimization of the balanced composition of
two error measures (systematic and fluctuation), that is, en-
hancement of the spatial resolution attained in the recon-
structed image balanced with the admissible image degrada-
tion due to the impact of the resulting noise.

In the hypothetical case of a solution-dependent A, for
example, when A = D = diag(B), the SDR strategy stated by
(13) is recognized to coincide with the Bayes minimum risk
(BMR) inference paradigm that optimally balances the spa-
tial resolution and the noise energy in the resulting SSP esti-
mate in the metrics adjusted to the a priori statistical infor-
mation induced by the corresponding correlation matrices,
A = D and RN, respectively [3]. In our case of estimating the
SSP, the signal correlation matrix RE = D = D(B) = diag{B}
is itself unknown (as that defines the SSP B to be estimated).
That is why, in the SDR strategy, we propose to use any ad-
missible (i.e., selfadjoint real-valued invertible) weight ma-
trix A; hence, we robustify the absence of the a priori knowl-
edge about the SSP B via introducing the additional regu-
larization degrees of freedom (selection of the matrix A and
tolerance factor α) into the desired solution. Nevertheless, it

is worthwhile to note that the proposed SDR strategy (13)
admits also the use of the solution-dependent metrics (i.e.,
A = D̂ = diag{B̂}) that requires the adaptive structure of the
resulting SSP estimator. All such structures are to be detailed
later in Section 5.

4. UNIFIED SDR ESTIMATOR FOR SSP

Routinely solving the optimization problem (13), we obtain
(see the appendix where this solution is detailed)

F = KA,αS+R−1N , (15)

where

KA,α =
(
S+R−1N S + αA−1

)−1
. (16)

For the solution operator (15) (i.e., for the image formation
operator (IFO) defined by (15)), the minimal possible value
of the descriptive risk function Riskmin(F) = tr{KA,α} is at-
tained.

In the general case of arbitrary fixed α and A, the unified
SDR estimator of the SSP becomes

B̂FBR =
{
KA,αS+R−1N YR−1N SKA,α

}
diag

=
{
KA,α aver

j∈J
{
Q( j)Q+

( j)

}
KA,α

}

diag
,

(17)

where Q( j) = {S+R−1N U( j)} is recognized to be an output of a
matched spatial filter with preliminary noise whitening after
processing the jth data snapshot; j = 1, . . . , J [1]. Although
in practical scenarios the noise correlation matrix RN is usu-
ally unknown, it is a common practice in such cases to accept
the robust white noise model, that is, R−1N = (1/N0)I, with
the noise intensity N0 preestimated by some means [1, 2].

5. FAMILY OF THE SDR-RELATED ESTIMATORS

5.1. Robust spatial filtering

Consider white zero-mean noise in observations and no pref-
erence to any prior model information; that is, putting A = I.
Let the regularization parameter be adjusted as an inverse
of the signal-to-noise ratio (SNR), for example, α = N0/B0,
where B0 represents the prior average gray level of the SSP
specified, for example, via image calibration [6]. In this case,
the IFO F is recognized to be the Tikhonov-type robust spa-
tial filtering (RSF) operator:

FRSF = F(1) = (S+S + N0

B0
I
)−1

S+. (18)

5.2. Matched spatial filtering

Consider the model from the previous example for an as-
sumption, α 
 ‖S+S‖, that is, the case of a priority of
suppression of the noise over minimization of the system-
atic error in the optimization problem (13). In this case, we
can roughly approximate (18) as the matched spatial filtering
(MSF) operator:

FMSF = F(2) ≈ const ·S+. (19)



Yuriy Shkvarko 5

5.3. Adaptive spatial filtering

Consider the case of zero-mean noise with an arbitrary cor-
relation matrix RN, equal importance of two error measures
in (14), that is, α = 1, and the solution-dependent weight
matrix A = D̂ = diag{B̂}. In this case, the IFO F becomes
the adaptive spatial filtering (ASF) operator:

FASF = F(3) = (S+R−1N S + D̂−1
)−1

S+R−1N (20)

that defines the corresponding solution-dependent ASF esti-
mator

B̂ASF =
{
F(3)YF(3)+

}
diag. (21)

In this paper, we refer to (21) with the corresponding IFO
(20) as the first representation form for the ASF method.

5.4. MVDR version of the ASF algorithm

As it was shown in [4, Appendix B], the solution (IFO) op-
erator F(3) defined by (20) can be represented also in another
equivalent form:

FASF = F(4) = D̂S+Y−1, (22)

in which case, (17) with such a solution-dependent IFO (22)
can be expressed as

B̂ASF =
{
D̂
}
diag=

{
F(4)YF(4)+

}
diag=

{
D̂S+Y−1SD̂

}
diag. (23)

From (23), it follows now that for a diagonal-form matrix
D̂ = diag{B̂}, the desired B̂ASF is to be found as a solution to
the equation

D̂ = D̂diag
{{
S+Y−1S

}
diag

}
D̂. (24)

Solving this equation with respect to B̂ASF = {D̂}diag, we ob-
tain the second representation form for the same ASF esti-
mator

B̂ASF =
{
F(4)YF(4)+

}
diag =

{
[diag

{{
S+Y−1S

}
diag

}]−1}

diag

(25)

that coincides with the celebrated minimum variance distor-
tionless response (MVDR) method [1],

B̂kMVDR =
(
s+kY

−1sk
)−1

; k = 1, . . . ,K. (26)

In (26), sk represents the so-called steering vector [1] for the
kth look direction, which in our notational conventions is
essentially the kth column vector of the SFO matrix S.

Examining the formulae (20) and (22), one may easily
deduce that F(3) = F(4). Thus, on one hand, the celebrated
MVDR estimator (26) may be viewed as a convenient prac-
tical form of implementing the ASF algorithm derived here
in a framework of the SDR strategy. On the other hand, it
is obvious now that the MVDR beamformer may be consid-
ered as a particular case of the derived above unified SDR im-
age formation algorithm (17) under the solution-dependent
metrics model assumptions A = diag{B̂} with the uniform
tolerance factor α = 1, that result in the ASF method.

6. COMPUTER SIMULATIONS ANDDISCUSSIONS

We simulated a conventional side-looking SAR with the frac-
tionally synthesized aperture; that is, the array was synthe-
sized by the moving antenna. The SFO of such a SAR is fac-
tored along two axes in the image plane [14]: the azimuth
(horizontal axis, x1) and the range (vertical axis, x2). In the
simulations, we considered the conventional triangular SAR
range ambiguity function (AF)Ψr(x2) and Gaussian approx-
imation; that is, Ψa(x1) = exp(−(x1)2/a2), of the SAR az-
imuth AF with the adjustable fractional parameter a [15].
Note that in the imaging radar theory [2, 14] the AF is re-
ferred to as the continuous-form approximation of the am-
biguity operator matrixΨ = S+S and serves as an equivalent
to the point spread function in the conventional image pro-
cessing terminology [6, 8]. In this paper, we present the sim-
ulations performed with two characteristic scenes. The first
one, of the 256-by-180 pixel format, was borrowed from the
artificial SAR imagery of the urban areas [15]. The second
one, of the 512-by-512 pixel format, was borrowed from the
real-world terrain SAR imagery (south-west Guadalajara re-
gion, Mexico [17]). The first scene was used as a test for ad-
justment of the RSF and ASF algorithms to attain the desired
improvement in the image enhancement performances (the
IOSNR defined below). In the reported simulations, the res-
olution cell along the x2 direction was adjusted to the effec-
tive width of the range AF for both simulated scenarios. In
the x1 direction, the fractional parameter a was controlled to
adjust different effective widths ΔΨa(x1) of the azimuth AF.
Figure 1(a) shows the numerically modeled high-resolution
hypothetical (not observed) image of the first original scene
of the 256-by-180 pixel format. The simulations of SAR
imaging of this scene and computer-aided image enhance-
ment that employ the IFOs given by (19), (18), and (20) are
displayed in Figures 1(b), 1(c), and 1(d), respectively. The en-
hanced images presented in Figures 1(c) and 1(d) were nu-
merically reconstructed from the rough image of Figure 1(b)
for the case of white Gaussian observation noise with the
signal-to-noise ratio (SNR) μ = 20 dB and the fractional pa-
rameter a adjusted to provide the horizontal width ΔΨa(x1)
of the discretized azimuth AF Ψa(x1) at half of its peak level
equal to 4 pixels.

For the purpose of objectively testing the performances
of different SDR-related SSP estimation algorithms, a quan-
titative evaluation of the improvement in the SSP estimates
(gained due to applying the suboptimal and optimal IFOs
F(1) and F(3) instead of the adjoint operator F(2) = S+) was
accomplished. In analogy to image reconstruction [15, 16],
we use the quality metric defined as an improvement in the
output signal-to-noise ratio (IOSNR),

IOSNR(RSF) = 10 log10

∑K
k=1
(
B̂(MSF)
k − Bk

)2

∑K
k=1
(
B̂(RSF)
k − Bk

)2 ;

IOSNR(ASF) = 10 log10

∑K
k=1
(
B̂(MSF)
k − Bk

)2

∑K
k=1
(
B̂(ASF)
k − Bk

)2 ,

(27)
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(a)

(b)

(c)

(d)

Figure 1: Simulation results with the first test scene: (a) original
high-resolution numerically modeled scene image (not observed
in the imaging experiment); (b) scene image formed applying the
MSF method (simulated observed low-resolution noised image);
(c) scene image enhanced with the RSF method; (d) scene image
optimally enhanced applying the ASF method.

where Bk represents a value of the kth element (pixel) of the
original SSP B, B̂(MSF)

k represents a pixel value of the kth el-

ement (pixel) of the rough SSP estimate B̂MSF, B̂
(RSF)
k repre-

sents a value of the kth pixel of the suboptimal SSP estimate
B̂RSF, and B̂(ASF)

k corresponds to the kth pixel value of the
SDR-optimised SSP estimate B̂ASF, respectively. IOSNR

(RSF)

corresponds to the RSF estimator and IOSNR(ASF) corre-
sponds to the ASF method. According to (27), the higher the
IOSNR is, the better the improvement in the SSP estimate is,
that is, the closer the estimate is to the original SSP.

Table 1: IOSNR values provided with the two simulated methods:
RSF and ASF. The results are reported for two SAR system models
with different resolution parameters and different SNRs.

SNR First system Second system

μ ΔΨa = 4 ΔΨa = 10

IOSNR(RSF) IOSNR(ASF) IOSNR(RSF) IOSNR(ASF)

[dB] [dB] [dB] [dB] [dB]

15 2.17 3.13 2.55 3.82

20 3.27 4.25 4.39 5.71

25 4.13 5.05 5.24 7.35

30 5.48 6.17 6.38 9.12

In Table 1, we report the IOSNRs (in the dB scale) gained
with the derived above RSF and ASF estimators for typical
SAR system models that operate under different SNRs levels
μ for two typical operation scenarios with different widths
of the fractionally synthesised apertures: ΔΨa(x1) = 4 pix-
els (first system) and ΔΨa(x1) = 10 pixels (second system).
The higher values of IOSNR(RSF) as well as IOSNR(ASF) were
obtained in the second scenario. Note that IOSNR (27) is
basically a squire-type error metric. Thus, it does not qual-
ify quantitatively the “delicate” visual features in the im-
ages, hence, small differences in the corresponding IOSNRs
reported in Table 1. In addition, both enhanced estimators
manifest the higher IOSNRs in the case of more smooth
azimuth AFs (larger values of ΔΨa(x1)) and higher SNRs
μ.

Finally, the qualitative results of the simulations of the
same MSF, RSF, and ASF imaging algorithms in their appli-
cation to the second scene (borrowed from the real-world
SAR imagery [17]) are displayed in Figures 2(a), 2(b), and
2(c), respectively, where the horizontal width ΔΨa(x1) of the
discretized azimuth AFΨa(x1) at half of its peak level was ad-
justed now to 10 pixels of the 512-by-512 image pixel format
(second simulated operation scenario).

The advantage of the SDR-reconstructed images (cases
B̂RSF and B̂ASF) over the conventional case B̂MSF is evident
in both simulated scenarios. Due to the performed regular-
ized SFO inversions, the resolution was improved in the both
cases, B̂RSF and B̂ASF, respectively. The SDR-optimized recon-
structed (ASF), in addition, manifests the reduced ringing
effects, while the robust SDR estimator (RSF) with the IFO
given by (18) did not require adaptive iterative computing,
thus resulted in the processing with substantial reduced com-
putational load (e.g., in the reported simulations, the RSF al-
gorithm required approximately 40 times less computations
than the ASF (23) (or MVDR (26)). These results qualita-
tively demonstrate that with some proper adjustment of the
degrees of freedom in the general SDR-optimized estimator
(17), one could approach the quality of the MVDR image
formation method avoiding the cumbersome adaptive com-
putations. Such optimization is a matter of the further stud-
ies.
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(a)

(b)

(c)

Figure 2: Simulation results with the second scene: (a) acquired
SAR image (formed applying theMSFmethod); (b) scene image en-
hanced with the RSF method; (c) scene image optimally enhanced
applying ASF method.

7. CONCLUDING REMARKS

In this paper, we have presented the fused statistical descrip-
tive regularization (SDR) approach for solving the nonlinear
inverse problem of estimation of the SSP of the backscat-
tered wavefields via space-time processing of the finite-
dimensional space-time measurements of the imaging radar

signals as it is required, for example, for enhanced remote
sensing imaging with array radar/SAR. Our study revealed
some new aspects of designing the optimal/suboptimal SSP
estimators and imaging techniques important for both the
theory and practical implementation. To derive the optimal
SSP estimator, we proposed the fused SDR strategy that in-
corporated the nontrivial a priori information on the de-
sired SSP through unifying the regularization considerations
with the minimum risk statistical estimation paradigm. Be-
ing nonlinear and solution dependent, the general optimal
solution-dependent SDR estimator requires adaptive signal
processing operations that result in a rather cumbersome
computing. The computational complexity arises due to the
necessity to perform simultaneously the solution-dependent
operator inversions with control of the regularization de-
grees of freedom. However, we have proposed a robusti-
fied approach for some simplifications of the general SDR-
optimal ASF estimator that leads to the computationally effi-
cient RSF method. In the terms of regularization theory, this
method may be interpreted as robustified image enhance-
ment/reconstruction technique. Indeed, with an adequate se-
lection of some design parameters that contain the RSF and
ASF estimators, the remotely sensed image performances can
be substantially improved if compared with those obtained
using the conventional MSF method that is traditionally im-
plemented in all existing remote sensing and imaging systems
that employ the array sensor radars, side looking airborne
radars, or SAR. This was demonstrated in the simulation ex-
periment of enhancement of the SAR images related to some
typical remote sensing operational scenarios.

APPENDIX

DERIVATION OF THE FUSED SDR-OPTIMAL IMAGE
FORMATION (SOLUTION) OPERATOR (15)

The problem to be resolved in this appendix is to derive the
solution operator (i.e., the IFO) that is optimal in a sense of
the SDR strategy; that is,

F −→ min
F

{
Risk(F)

}

−→ min
F

{
trace

{
(FS− I)A(FS− I)+

}
+ α trace

{
FRNF+

}}
.

(A.1)

To determine the optimum solution operator, F, we have to
differentiate the objective function, Risk(F), with respect to
F, set the result to zero, and solve the corresponding varia-
tional equation. To proceed with calculations, we, first, de-
compose the first addend in the risk function using the for-
mula, FSA(FS)+ = FSAS+F+, and rewrite (A.1) as follows:

F −→ min
F

{
trace{FSAS+F+}

− [ trace {FSA} + trace
{
AS+F+

}]

+ trace{A} + α trace
{
FRNF+

}}
.

(A.2)
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Next, we invoke the following formulae for differentiating the
traces of the composition of matrices with respect to a ma-
trix:

∂ trace
{
FCF+

}

∂F
= 2FC,

∂
{
trace

{
FT
}
+ trace

{
T+F+

}}

∂F
= 2T+.

(A.3)

To apply these formulae for solving the minimization prob-
lem (A.2), we associateCwith SAS+ for the first addend from
(A.2) and with RN for the last addend from (A.2), corre-
spondingly, while T is associated with SA. Also, in calcula-
tions, we take into account that the A is a selfadjoint real-
valued square matrix; that is, A = A+, hence T+ = AS+.

Following the specified above notational conventions, we
apply now formulae (A.3) to (A.2) to get the expression for
the matrix derivative ∂{Risk(F)}/∂F and then set the result
to zero. This yields the following variational equation:

∂
{
Risk(F)

}

∂F
= 2FSAS+ − 2AS+ + 2αFRN

= 2(FS− I)AS+ + 2αFRN = 0.
(A.4)

Rearranging (A.4), we obtain

F
(
SAS+ + αRN

) = AS+ (A.5)

that yields the desired solution (IFO) operator in its initial
form,

F = AS+
(
SAS+ + αRN

)−1
. (A.6)

Next, we make use of the dual form of representation of the
matrix composition defined by (A.6):

F = AS+
(
SAS+ + αRN

)−1

= (S+R−1N S + αA−1
)−1

S+R−1N ,
(A.7)

detailed, for example, in [4, Appendix B] that results in the
desired solution operator

F = KA,αS+R−1N (A.8)

with

KA,α =
(
S+R−1N S + αA−1

)−1
; (A.9)

that is, the desired solution operator (IFO) defined by (15),
(16). Such solution (IFO) operator (A.8) is recognized to
be a composition of the whitening filter (defined by opera-
tor R−1N ), matched filter (given by operator S+), and the A-
dependent and α-dependent reconstructive filter (specified
by operator (A.9), i.e., KA,α = (S+R−1N S + αA−1)−1).
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