
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 42568, Pages 1–14
DOI 10.1155/ASP/2006/42568

High Efficiency EBCOTwith Parallel Coding
Architecture for JPEG2000

Jen-Shiun Chiang, Chun-Hau Chang, Chang-Yo Hsieh, and Chih-Hsien Hsia

Department of Electrical Engineering, College of Engineering, Tamkang University, Tamsui, Taipei 25137, Taiwan

Received 8 October 2004; Revised 13 October 2005; Accepted 29 January 2006

Recommended for Publication by Jar-Ferr Kevin Yang

This work presents a parallel context-modeling coding architecture and a matching arithmetic coder (MQ-coder) for the em-
bedded block coding (EBCOT) unit of the JPEG2000 encoder. Tier-1 of the EBCOT consumes most of the computation time in
a JPEG2000 encoding system. The proposed parallel architecture can increase the throughput rate of the context modeling. To
match the high throughput rate of the parallel context-modeling architecture, an efficient pipelined architecture for context-based
adaptive arithmetic encoder is proposed. This encoder of JPEG2000 can work at 180MHz to encode one symbol each cycle. Com-
pared with the previous context-modeling architectures, our parallel architectures can improve the throughput rate up to 25%.

Copyright © 2006 Jen-Shiun Chiang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The newest international standard of JPEG2000 (ISO/IEC
15444-1) [1–4] was proposed in December 2000. It has bet-
ter quality at low bit rate and higher compression ratio than
the widely used still image compression standard JPEG. The
decompressed image is more refined and smoother [2]. Fur-
thermore, JPEG2000 has more novel functions such as pro-
gressive image transmission by quality or resolution, lossy
and lossless compressions, region-of-interest encoding, and
good error resilience. Based on these advantages, JPEG2000
can be used in many applications such as digital photogra-
phy, printing, mobile applications, medical imagery, and In-
ternet transmissions.

The architecture of JPEG2000 consists of discrete wavelet
transform (DWT), scalar quantization, context-modeling
arithmetic coding, and postcompression rate allocation [1–
4]. The block diagram of the JPEG2000 encoder is shown
in Figure 1. It handles both lossless and lossy compressions
using the same transform-based framework, and adopts the
idea of the embedded block coding with optimized trunca-
tion (EBCOT) [5–7]. Although the EBCOT algorithm of-
fers many benefits for JPEG2000, the EBCOT entropy coder
consumes most of the time (typically more than 50%) in
software-based implementations [8]. In EBCOT, each sub-
band is divided into rectangular blocks (called code blocks),

and the coding of the code blocks proceeds by bit-planes.
To achieve efficient embedding, the EBCOT block coding
algorithm further adopts the fractional bit-plane coding
ideas, and each bit-plane is coded by three coding passes.
However, each sample in a bit-plane is coded in only one
of the three coding passes and should be skipped in the
other two passes. Obviously, considerable computation time
is wasted in the straightforward implementations due to the
multipass characteristics of the fractional bit-plane coding of
the EBCOT.

Recently, many hardware architectures have been ana-
lyzed and designed for EBCOT to improve the coding speed
[9–11]. A speedup method, sample skipping (SS) [9], was
proposed to realize the EBCOT in hardware to accelerate the
encoding process. Since the coding proceeds column by col-
umn, a clock cycle is still wasted whenever the entire col-
umn is empty. In order to solve the empty column problems
of SS, a method called group-of-column skipping (GOCS)
[10] was proposed. However GOCS is restricted by its prede-
fined group arrangement and it requires an additional mem-
ory block. An enhanced method of GOCS called multiple-
column skipping (MCOLS) [11] was also proposed. MCOLS
performs tests throughmultiple columns concurrently to de-
termine whether the column can be skipped. The MCOLS
method has to modify the memory arrangements to sup-
ply status information for determining the next column to



2 EURASIP Journal on Applied Signal Processing

EncoderSource
image

Component
transform

Forward
transformation Quantization

Entropy
encoding

Compressed
image data

Figure 1: JPEG2000 encoder block diagram.

DWT
&

quantization

Wavelet
coefficient

Sign
bit-plane

Code-block memory

Magnitude
bit-plane

Rate-distortion
optimization

Compressed
bit-stream

Block coder

Context
modeling

Arithmetic
encoder

CX

D

Figure 2: Block diagram of the embedded block coder.

be coded, and it limits the number of simultaneously com-
bined columns. Besides the intensive computation, EBCOT
needs massive memory locations. In conventional architec-
tures, the block coder requires at least 20 Kbit memory.

Chiang et al. proposed another approach to increase the
speed of computation and reduce the memory requirement
for EBCOT [12]. They use pass-parallel context modeling
(PPCM) technique for the EBCOT entropy encoder. The
PPCM can merge the multipass coding into a single pass,
and it can also reduce memory requirement by 4Kbits and
requires less internal memory accesses than the conventional
architecture.

In order to increase the throughput of the arithmetic
coder (MQ-coder), people like to design MQ-coder by
pipelined techniques [13]. However, the pipelined approach
needs a high-performance EBCOT encoder, otherwise the
efficiency of the MQ-coder may be reduced. This paper
proposes a parallel context-modeling scheme based on the
PPCM technique to generate several CX-D data each cycle,
and a matched pipelined MQ-coder is designed to accom-
plish a high-performance Tier-1 coder. Since the EBCOT en-
coder takes most of the computation time, our proposed par-
allel context-modeling architecture can further be applied to
the multirate approach [14] to reduce the power consump-
tion.

The rest of this paper is organized as follows. Section 2
describes the embedded block coding algorithm. Section 3
introduces the speedup scheme of our proposed context
modeling. Section 4 describes the pipelined arithmetic en-
coder architecture. The experimental results and perfor-
mance comparisons are shown in Section 5. Finally, the con-
clusion of this paper is given in Section 6.

2. BLOCK CODING ALGORITHM

In this section, we will focus on the concept of EBCOT.
EBCOT consists of two major parts: context modeling and
arithmetic encoder (Tier-1), and rate-distortion optimiza-
tion (Tier-2). Figure 2 shows the block diagram of the em-
bedded block coder. As introduced in the previous section,
the EBCOT block coder of Tier-1 consumes most of the time
in the JPEG2000 encoding flow. At the beginning, the dis-
crete wavelet transform and scalar quantization are applied
to the input image data. After that, the quantized transform
coefficients are coded by the context modeling and the adap-
tive binary arithmetic coder to generate the compressed bit-
stream. Finally, the bit stream is truncated by a postcompres-
sion rate-distortion optimization algorithm to achieve the
target bit-rate. The key algorithms about the context mod-
eling and arithmetic encoder are described in the following
sections.

2.1. Contextmodeling

The encoding method in the context modeling is bit-plane
coding. In this module, each wavelet coefficient is divided
into one-sign bit-plane and several magnitude bit-planes.
Each bit-plane is coded by three coding passes to generate
a context-decision (CX-D) pair.

The concept of bit-plane coding is to encode the data ac-
cording to the contribution for data recovery. The most im-
portant data for data recovery is encoded firstly. Figure 3 is
an example of bit-plane coding. All data can be divided into
one-sign bit-plane and several magnitude bit-planes. Since
the most significant bit (MSB) is more important than least



Jen-Shiun Chiang et al. 3

Row data 3 −1 7

+ − +

Sign bit-plane

0 0 1

1 0 1

1 1 1

Scanning
order MSB

LSB
Magnitude bit-plane

Figure 3: An example of the bit-plane coding.

Code-block width

4
samples

Stripe 1

Stripe 2 B
it
-p
la
n
e

Figure 4: The scanning order of a bit-plane.

significant bits (LSBs), the scanning order is from MSB to
LSB. During the process of the bit-plane coding, every four
rows form a stripe. A bit-plane is divided into several stripes,
and each bit-plane of the code block is scanned in a par-
ticular order. In each stripe, data are scanned from left to
right. The scanning order is stripe by stripe from top to bot-
tom until all bit-planes are scanned. The scanning order of
each bit-plane is shown in Figure 4. In order to improve the
embedding of the compressed bit-stream, a fractional bit-
plane coding is adopted. Under this fractional bit-plane cod-
ing method, each bit-plane is encoded by three passes. These
three passes are significance propagation (Pass 1), magnitude
refinement (Pass 2), and cleanup (Pass 3). For the EBCOT
algorithm, each bit in the code block has an associated bi-
nary state variable called “significant state.” Symbols “0” and
“1” represent insignificant and significant states, respectively.
The significant state is set to significant after the first 1 is met.
The pass type is determined according to these “significant”
states. The conditions for each pass are described as follows.

Pass 1. The coded sample is insignificant and at least one of
the neighbor samples is significant.

Pass 2. The relative sample of the previous bit-plane is set
significant.

Pass 3. Those samples have not been coded by Pass 1 or
Pass 2 in the current bit-plane.

These three passes are composed of four coding prim-
itives: zero coding (ZC), sign coding (SC), magnitude re-
finement coding (MR), and run-length coding (RLC). These
primitives are determined according to the neighbor states.
Figure 5 depicts the different neighborhood states used for
each type of coding primitives. There are total 19 contexts
defined in the JPEG2000 standard. The MQ-coder encodes
every sample in each bit-plane according to these data pairs.
The details about these primitives are described as follows.

ZC is used in Passes 1 and 3. The samples that are insignif-
icant must be coded in ZC.

SC is used in Passes 1 and 3. The sample set to significant
just now must be coded by this operation.

MR is only used in Pass 2. The samples that have been sig-
nificant in the previous bit-planemust be coded by this
operation.

RLC is only used in Pass 3. This operation is used when four
consecutive samples in the same stripe column are un-
coded and all neighboring states of these samples are
insignificant.

During the process of coding, we need two types of mem-
ory to store the bit-plane data and the neighboring states,
respectively. For the bit-plane data, the memory requirement
is two; while for the state variable, the memory requirement
is three. The functions about the memory requirements are
described as follows.



4 EURASIP Journal on Applied Signal Processing

D0 V0 D1

H0 H1

D2 V1 D3

(a)

V0

H0 H1

V1

(b)

Current
stripe

(c)

Figure 5: The neighbor states referred to by different primitives (a) ZC and MR, (b) SC, and (c) RLC.

Table 1: The number of “wasted samples” for each pass.

Image
Total Wasted samples

sample Pass 1 Pass 2 Pass 3

Boat 1646592 1255591 1323978 713615

Pepper 1589248 1211206 1329045 638245

Zelda 1343488 998658 1135374 552944

Average 1526442 1155152 1262799 634935

Bit-plane data

X[n] is used to store the sign bit-plane data of each code
block.

Vp[n] is used to store the magnitude bit-plane of each code
block.

State variable

σ[n] is used to store the significant state of each sample in a
code block.

Π[n] is used to record whether or not the sample has been
coded by one of the three coding passes.

γ[n] is used to record whether or not the sample has been
processed by MR operation.

Each memory is 4 Kbits in size to support the maximum
block size, and therefore the total internal memory is
20 Kbits.

2.2. Adaptive context-based arithmetic encoder

The compression technique adopted in JPEG2000 standard
is a statistical binary arithmetic coding, which is also called
MQ-coder. The MQ-coder utilizes the probability (CX) to
compress the decision (D).

In the MQ-Coder, symbols in a code stream are classi-
fied as either most-probable symbol (MPS) or least-probable
symbol (LPS). The basic operation of the MQ-coder is to di-
vide the interval recursively according to the probability of
the input symbols. Figure 6 shows the interval calculation of
MPS and LPS for JPEG2000. We can find out whether MPS
or LPS is coded, and the new interval will be shorter than
the original one. In order to solve the finite-precision prob-
lems when the length of the probability interval falls below a
certain minimum size, the interval must be renormalized to

Qe A-Qe

LPS MPS

Code MPS

C = C + Qe
A = A-Qe

(a)

Qe A-Qe

LPS MPS

Code LPS

C = C

A = Qe

(b)

Figure 6: Interval calculation for code MPS and code LPS.

become greater than the minimum bound.

3. SPEEDUP ALGORITHM FOR CONTEXTMODELING

As introduced in the previous section, the block coding algo-
rithm adopts the fractional bit-plane coding idea, in which
three individual coding passes are involved for each bit-
plane. In a JPEG2000 system, each sample in the bit-plane
is coded by one pass and skips the other two. These skipped
samples are called “wasted samples.” Table 1 shows the num-
ber of “wasted samples” obtained from the coding of three
512× 512 gray-scale images. For the “Boat” image, 1 646 592
samples need to be coded, but only 391 001 (1 646 592–
1 255 591) samples are encoded by Pass 1. The EBCOT
algorithm consumes a great number of times due to the te-
dious coding process. Besides, the multipass bit-plane coding
also increases the frequency of memory access state variables
that may cause much dynamic power of internal memory.
From these observations, we use two speedup methods to re-
duce the execution time. The first method is to process three
coding passes of the same bit-plane in parallel. The second
method is to encode several samples concurrently. The tech-
niques about these two methods are discussed in the follow-
ing sections.



Jen-Shiun Chiang et al. 5

?

?

??

Stripe n

Current sample

Coded sample

Uncoded sample?

Figure 7: An example of the location of the predicted sample.

Scanning
order

CN−2 CN−1 CN CN+1 CN+2

Stripe Shift

2 2

1 1

3 3

3 3

(a)

Scanning
order

CN−2 CN−1 CN CN+1 CN+2

Stripe

2 2 2

1 1 1

3 3 1

3 3 3

(b)

Figure 8: The scanning order of the pass-parallel algorithm.

3.1. Pass-parallel algorithm

Because of the inefficiency of the context-modeling of
EBCOT, the pass-parallel method, pass-parallel context
modeling (PPCM) [12, 15], can increase the efficiency by
merging the three coding passes to a single one. If we want
to process the three passes in parallel, there are two problems
that must be solved. First, the scanning order of the origi-
nal EBCOT is Passes 1, 2, and then Pass 3, and this scanning
order may become disordered in the parallel-coding process
[15]. Since the significant state may be set to one in Passes
1 and 3, the sample belonging to Pass 3 may become signif-
icant earlier than the other two prior coding passes and this
situation may confuse the subsequent coding for samples be-
longing to Passes 1 and 2. Second, in parallel coding, those
uncoded samples may become significant in Pass 1, and we
have to predict the significant states of these uncoded sam-
ples correctly while Passes 2 and 3 are executed. Figure 7 gives
an example about the location needed to be predicted.

In order to solve these problems, some algorithmic mod-
ifications are required. Here the Causal mode is adopted to
eliminate the significance dependent on the next stripe. In
order to prevent the samples belonging to Pass 3 to be coded
prior to the other two coding passes, the coding operations

of Pass 3 are delayed by one stripe column. Figure 8 shows
an example of the scanning order of the pass-parallel algo-
rithm. The numbers shown in Figure 8 are the pass numbers.
At the first-column scanning, samples belonging to Passes
1 and 2 are scanned, but samples belonging to Pass 3 are
skipped. At the second-column scanning, the scanning pro-
cedure goes to the next column and scans from top to bot-
tom, and then goes to the previous column to scan the sam-
ples belonging to Pass 3. The samples belonging to Pass 3 in
the current column should be skipped for the next-column
scanning. Therefore in Figure 8(a), the scanning order starts
from the first two samples of the current column CN (Passes
2 and 1), respectively, and then goes to the previous column
CN−1 to finish the scanning of the unscanned samples (Passes
3 and 3), respectively. Then the scanning procedure goes to
the next column as shown in Figure 8(b). In the same man-
ner, the scanning order starts from the first 3 samples in the
current column CN+1 (Passes 2, 1, and 1), respectively, and
then scans the last two samples in the previous column CN

(Passes 3 and 3), respectively.
Moreover, in PPCM two significant state variables σ0 and

σ1 are used to represent the significant states of Passes 1 and
3, respectively. Besides, both the significant states are set to
“1” immediately after the first MR primitive is applied. Since



6 EURASIP Journal on Applied Signal Processing

Table 2: The state information of the two significant states in pass-parallel algorithm for current sample.

Significant states Description

σ0 σ1
Significance for First refinement for

current sample current sample

0 0 Insignificant False

0 1 Significant True

1 0 Significant True

1 1 Significant False

Table 3: The significant states of the pass-parallel algorithm for three coding passes. The symbol “‖” means the logic operation of OR.

Samples
Significant states

Pass 1 Pass 2 Pass 3

Coded sample σ0[n] σ0[n] σ0[n]‖σ1[n]
Uncoded sample σ0[n]‖σ1[n] σ0[n]‖σ1[n]‖Vp σ0[n]‖σ1[n]

the refinement state variable γ[n] can be replaced by the logic
operation

γ[n] = σ0[n]⊕ σ1[n], (1)

the memory requirement is not increased even if two signif-
icant states are introduced. The significant state and refine-
ment state can be calculated as shown in Table 2.

Because two significant states are used, the significant
state σ[n] of the original onemust bemodified.We divide the
significant states into two parts, coded sample and uncoded
sample. For samples belonging to Pass 1, the significant states
of the coded samples are equal to σ0[n]; the significant states
of the uncoded samples are

σP1[n] = σ0[n]‖σ1[n]. (2)

For samples belonging to Pass 2, the significant states of the
coded samples are equal to σ0[n]. By utilizing the property
that a sample will become significant if and only if its magni-
tude bit is “1,” the significant states of the uncoded samples
are determined by

σP2[n] = σ0[n]
∥
∥σ1[n]

∥
∥Vp[n]. (3)

For samples belonging to Pass 3, the significant states of all
neighbors are determined by

σP3[n] = σ0[n]‖σ1[n]. (4)

The significant state for Passes 1, 2, and 3 can be calculated
as shown in Table 3.

The pass-parallel algorithm needs four blocks of mem-
ory. These four blocks are classified as X[n] (records all signs
of samples in a bit-plane), Vp[n] (records all magnitudes
of samples in a bit-pane), σ0[n] (records the significance of
Pass 1), and σ1[n] (records the significance of Pass 3). Each
size of these memory blocks is 4 Kbits, and the total size of
the memory requirement is 16 Kbits. Four Kbit memory is
saved compared to the conventional one [1, 2].

3.2. Parallel coding

As introduced in the previous section, the pass-parallel al-
gorithm can process three passes in parallel, and therefore
no samples will be skipped. However, the operation speed
can be increased further. In order to increase the computa-
tion efficiency further, we propose a parallel-coding archi-
tecture to process several samples concurrently. In the par-
allel architecture, the encoder will generate several CX-D
pairs a time, however we have only one MQ-coder, and the
MQ-coder can only encode a CX-D pair a time. Therefore
a parallel-in-serial-out (PISO) buffer is needed for the MQ-
coder to store the CX-D data generated by the parallel en-
coder temporarily. Before discussing the suitable size of the
PISO buffer, we must determine the number of samples to be
coded concurrently in a stripe column. For the parallel pro-
cessing, as shown in Figure 9, we can either process two sam-
ples (Group 2) or four samples (Group 4) concurrently. Since
two samples (Group 2) or four samples (Group 4) are en-
coded concurrently, the systemmust detect how many CX-D
pairs are generated in a clock cycle. Group 2 or Group 4 gen-
erates different numbers of CX-D pair in a clock cycle, and
the quantity of the generated CX-D pairs is called the output
number of CX-D pair. A Group 4 process cycle may have out-
put numbers from 1 to 10, and a Group 2 process cycle may
have output numbers from 1 to 6. In Group 4, if the four en-
coded samples belong to Pass 3 and the magnitudes are all
1, respectively, under the run-length coding condition, it will
generate 10 CX-D pairs. The 10 CX-D pairs include one RLC
datum, 2 UNIFORM data, 3 ZC data, and 4 SC data. In the
similar manner, Group 2 will generate 6 CX-D pairs at most,
and the 6 CX-D pairs include one RLC datum, 2 UNIFORM
data, one ZC datum, and 2 SC data.

A statistical analysis is used to determine which one,
Group 2 or Group 4, can have the optimal hardware effi-
ciency. Let us analyze Group 4 first. If the EBCOT encoder
processes four samples concurrently, the output number of
CX-D pair can be from 1 to 10. Six test images with two



Jen-Shiun Chiang et al. 7

Group 2

Stripe

(a)

Group 4

Stripe

(b)

Figure 9: The parallel coding of Group 2 and Group 4.

Table 4: The probability of output numbers for processing 4 samples.

Image Test Output number

size image 1 2 3 4 5 6 7 8 9 10

515∗ 512

Lena
184643 21206 26551 74479 65142 34910 11221 1672 71 11

43.972% 5.050% 6.323% 17.737% 15.513% 8.314% 2.672% 0.398% 0.017% 0.003%

Jet
207898 25514 30803 79569 67169 34227 10565 1568 66 14

45.453% 5.578% 6.734% 17.396% 14.685% 7.483% 2.310% 0.343% 0.014% 0.003%

Baboon
138568 19739 27996 147592 96889 38805 9297 1105 56 10

28.865% 4.112% 5.832% 30.745% 20.183% 8.083% 1.934% 0.230% 0.012% 0.002%

2048∗ 2560

Bike
4306661 571842 713555 2125985 1584469 722201 193532 27016 1106 160

42.030% 5.581% 6.964% 20.748% 15.463% 7.048% 1.889% 0.264% 0.011% 0.002%

Cafe
3900550 631006 756489 2859833 1812041 726830 176424 22719 1041 179

35.827% 5.796% 6.948% 26.268% 16.644% 6.676% 1.620% 0.209% 0.010% 0.002%

Woman
3436608 422442 559734 2061204 1588258 757961 208006 26929 1144 196

37.921% 4.661% 6.176% 22.744% 17.526% 8.364% 2.295% 0.297% 0.013% 0.002%

Average 39.011% 5.130% 6.494% 22.606% 16.669% 7.661% 2.120% 0.290% 0.013% 0.002%

different sizes are used to find the probability of each out-
put number (from 1 to 10). Table 4 shows the simulation
result. In order to increase the operation speed, the MQ-
coder proposed in this paper is a pipelined approach. For
the pipelined approach, the frequency of the MQ-coder can
operate about twice faster than the original context model-
ing. From the simulation results of Table 4, around 44.141%
(39.011% + 5.130%) possibilities can be processed by the
MQ-coder immediately, however more than half of the pos-
sibilities cannot be processed immediately and a large size
of PISO buffer is needed. Therefore the size of PISO buffer
must be very large. Besides the size of the PISO buffer, there
is another problem to be considered. Since the output num-
ber of CX-D is not constant, the encoder must determine
the output state at the current clock cycle before the CX-D
pairs are put into the PISO buffer. For four samples coded
concurrently, there are 1024 possibilities and it must be de-
termined within one clock cycle, and it is a long clock cycle.

On the other hand, let us analyze the effect of Group
2. Table 5 shows the simulation results of Group 2 with

the same image of Group 4. Around 74.202% (30.444% +
43.758%) possibilities of the data can be processed immedi-
ately. The size of the PISO buffer is much smaller than that
of Group 4. The output number of CX-D pairs is from 1 to 6,
and there are only 64 possibilities. Compared to 1024 possi-
bilities of Group 4, the clock cycle time can be much shorter
in the Group 2 approach. By the above analyses, Group 2
is better for the hardware integration between the context
modeling and the MQ-coder for parallel processing.

In fact, even though the MQ-coder is faster than the con-
text modeling, the valid data still can be overwritten in the
limited size of the buffer. Therefore a “stop” signal is needed
to halt the operation of the context modeling. Figure 10 is the
block diagram of our proposed block coder. The size of the
PISO buffer decides the stop time of the context modeling.
According to Figure 10, we use the six images with different
buffer sizes to analyze the stop times. Table 6 shows the stop
times and gate counts for different buffer sizes. Each buffer is
with a 9-bit register. Since the maximum number of output
is 6, the buffer size to simulate starts from 6.



8 EURASIP Journal on Applied Signal Processing

Context
modeling

CX-D-pass

CX-D-pass

CX-D-pass

CX-D-pass

Stop

Clock

PISO
CX-D-pass

MQ-coder

2 ∗ clock

Compressed
data

Figure 10: Proposed architecture of Tier-1.

Table 5: The probability of output numbers for processing 2 samples.

Image Test Output number

size image 1 2 3 4 5 6

512∗ 512

Lena
213596 232360 133997 37356 373 145

34.572% 37.609% 21.688% 6.046% 0.060% 0.023%

Jet
241125 251715 135527 36001 431 126

36.263% 37.856% 20.382% 5.414% 0.065% 0.019%

Baboon
169038 409818 170974 34891 464 120

21.525% 52.186% 21.772% 4.443% 0.059% 0.015%

2048∗ 2560

Bike
5083006 6465530 3002632 714731 7583 2351

33.275% 42.325% 19.656% 4.679% 0.050% 0.015%

Cafe
4728482 8226924 3224414 704373 6855 2181

27.990% 48.700% 19.087% 4.170% 0.041% 0.013%

Woman
4049392 6117527 3030085 737384 7939 2395

29.039% 43.870% 21.729% 5.288% 0.057% 0.017%

Average 30.444% 43.758% 20.719% 5.007% 0.055% 0.017%

From Table 6, increasing the buffer size may reduce the
stop times. However, the larger the buffer size is, the less the
effect reaches. For example, the buffer size changes from 6
to 7 and it has 70.7%, ((3931 − 1150)/3931), improvement.
When the buffer size changes from 14 to 15, there is only
11%, ((71 − 63)/71), improvement. Considering the hard-
ware cost and efficiency, we select the buffer size to be 10.

In order to code two samples concurrently, the signifi-
cant states of Table 3 must be modified. Figure 11 shows the
parallel-coding status. There are two parts (Part I and Part
II) in the parallel-coding status. At the beginning, both sam-
ples A and B are coded concurrently and then both samples C
and D are coded subsequently. Let us use Part I as an exam-
ple to explain the modification of the significant state. The
neighbor states of A and B are included in the coding win-
dow (shaded area). The area circled by the dotted line is the
neighbor states of sample A. The significant states referred to
by sample A are the same as that we introduced in Table 3.
The area circled by the solid line is the neighbor states of
sample B. Since A and B are coded concurrently, the neighbor
significance of A that sample B refers to must be predicted. If
sample B is coded by Pass 1 or Pass 2, significance σ[A] is pre-
dicted as (5). If sample B is coded by Pass 3, σ[A] is predicted

as (6),

σ[A] = σ0[A]‖Sp,

Sp=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Vp[A], pass type of A is 1,

where Vp[A] is the magnitude of sample A,

1, pass type of A is 2,

0, pass type of A is 3,
(5)

σ[A] = σ0[A]‖Vp[A]. (6)

The detail operations of the proposed parallel context mod-
eling are described in Figure 12, and the block diagram of the
proposed parallel context-modeling architecture is described
in Figure 13.

4. ARITHMETIC ENCODER DESIGN

For a general EBCOT, the order of the CX-D pairs sent into
the MQ-coder is Passes 1, 2, and 3, respectively. If the pass-
parallel method is applied, the system needs a very large
buffer to store the CX-D pairs belonging to Passes 2 and 3.
The data dependency on coding order can be cut off if RESET



Jen-Shiun Chiang et al. 9

Table 6: The gate counts and the stop times for different buffer sizes.

Buffer size Gate count
Stop number

Average
Lena Jet Baboon Boat Pepper Zelda

6 764 3502 4397 2591 4221 4252 4624 3931

7 850 979 1409 604 1215 1326 1369 1150

8 970 413 647 182 537 599 527 484

9 1105 235 362 74 309 317 240 256

10 1185 162 221 41 224 199 124 161

11 1241 129 154 26 190 163 73 122

12 1323 106 112 17 172 126 48 96

13 1476 93 93 12 162 111 31 83

14 1586 77 78 9 152 93 20 71

15 1767 66 72 5 145 80 12 63

Coding window

Neighbor states
for A

Neighbor states
for B

A

B

Stripe-causal

Stripe
C

D

Stripe-causal

Figure 11: The parallel-coding status: (a) Part I and (b) Part II.

and RESTART modes are used. By RESET and RESTART
modes we can use three MQ-coders to replace the large
buffer. Since the CX-D data pairs of each coding pass gen-
erated by the context modeling are interleaved rather than
concurrent, as shown in Figure 14, instead of using three
MQ-coders, a low-hardware-cost pass switching arithmetic
encoder (PSAE) was proposed in our previous work [12]. It
uses three sets of context registers and coding state registers
to achieve resource sharing of the MQ-coder for interleaved
data.

Based on this concept, a pipelined MQ-coder is pro-
posed, as shown in Figure 15. There are four stages in our

design. The operation for each stage is described as follows.
In Stage 1, in order to process the CX data belonging to dif-
ferent passes, respectively, it must increase the number of the
context registers in the “CX table.” However, there are only
14 contexts generated in Pass 1, 3 contexts in Pass 2, and 16
contexts in Pass 3. At the beginning, CX and “pass” are sent
to the CX table to select an index and the MPS symbol. The
MPS symbol is used to determine whether LPS or MPS is
coded. The index is used to find the probability (Qe) of the
current symbol and two new indexes (NLPS and NMPS).
The correct updated index of current CX is not known until
Stage 2 is finished. Therefore, the predicting scheme must be



10 EURASIP Journal on Applied Signal Processing

Process a
stripe-column

Check 2 samples
concurrently

Pass 1 or Pass 2
coding?

No Record the sample as
an uncoded sample

Yes

Code the samples
that belong to Pass 1

or Pass 2

Check next 2
samples concurrently

Pass 1 or Pass 2
coding?

No Record the sample as
an uncoded sample

Yes

Code the samples
that belong to Pass 1

or Pass 2

All samples are coded in
the last stripe-column?

No Code the uncoded
sample with Pass 3

Yes

Done

Figure 12: The detail operations of the proposed parallel context
modeling.

Table 7: The chip features of parallel coding architecture.

Process technology TSMC 0.35 um 1P4M

Chip size 2.44× 2.45mm2

Frequency
Context modeling: 90MHz

Others: 180MHz

Power consumption 92mW

Synopsis
reports for area

Component Gate counts

Context-modeling 8871

MQ-coder 13611

Memory 15247

PISO buffer 1152

Total 38881

used to select the correct index when the next CX and “pass”
are the same as the current CX and “pass.”

In Stage 2, the new interval (A) is calculated. After cal-
culating the interval, the shift number of A is obtained ac-
cording to the leading zeros of A. In order to increase the
clock rate, the 28-bit lower bound (C) is divided into 16 bits
and 12 bits. The operation of the low 16 bits is calculated in
Stage 2 and the other is in Stage 3. This technique has been
adopted in [10]. In Stage 3, the Byteout procedure and final
calculation of C are executed. Note that the sizes of the cod-
ing state registers (A, C, CT, B) in Stage 2 and Stage 3 must be
triple of the original ones. In Stage 4, since the output from
the Byteout procedure is 0, 1, or 2 bytes, a FIFO is needed to
make the last bit string in order. For a compression system,
a large amount of input data are compressed into a smaller
amount of output data. The probability of a 2-byte output
is low. Therefore, a large size of the FIFO is not needed, and
in general five bytes are enough. The maximum frequency of
this MQ-coder can reach 180MHz.

5. EXPERIMENTAL RESULTS

Based on the proposed techniques and architecture, we de-
signed a test chip for the context modeling and MQ-coder.
The chip features are summarized in Table 7.

5.1. Execution time

In order to increase the performance of the context model-
ing, both pass-parallel and coding-parallel (CP) are used in
our proposed architecture. The execution time of our pro-
posed architecture is compared with sample skipping (SS)
and pass-parallel methods. The results of MCOLS are not
compared here, since the number of the columns in a group
and the number of simultaneously examined columns for
MCOLS may affect the coding speed by an extra cost. We use
six images of size 512×512 to simulate, and the experimental
results are shown in Tables 8 and 9.



Jen-Shiun Chiang et al. 11

Memory
control

Coding
control

Pass
Stop

Sign
4Kbits

Magnitude
4Kbits

Pass 1 sig.
4 Kbits

Pass 3 sig.
4 Kbits

Coding-window
register

Neighbor
states

Context engine

ZC
SC
MR

ZC
SC
MR

RLC

CX-D

CX-D

CX-D

CX-D

Pass

CX-D
PISO
buffer

Figure 13: The block diagram of the proposed parallel context modeling.

1 1 1 1 1

2 2

3 3

1

2

3

Pass 1 CX-D

Pass 2 CX-D

Pass 3 CX-D

Time

Figure 14: Parts of the CX-D pairs of image “Baboon.”

Table 8: Execution time comparison.

Gray-scale test image
Execution time (clock cycles)

SS SS + GOCS Pass-parallel Pass-parallel + CP (proposed)
Lena 1998998 1750322 1431739 1083918
Jet 1865079 1665888 1309989 979650
Baboon 2367662 2106508 1748425 1383739
Boat 1778578 1523707 1359648 1017169
Pepper 1758413 1531577 1277950 945675
Zelda 1573185 1353883 1142081 816326
Average 1890319 1655314 1378305 1037740

Table 9: Performance comparison.

Gray-scale test image

Reduced percentage Execution performance
Proposed architecture/other works (megasamples/second)

SS SS + GOCS Pass-parallel
Pass-parallel + CP

(proposed)
Lena 45.77% 38.07% 24.29% 123.67
Jet 47.47% 41.19% 20.86% 148.24
Baboon 41.55% 34.31% 25.22% 112.24
Boat 42.81% 33.24% 25.19% 145.90
Pepper 46.22% 38.25% 26.00% 151.27
Zelda 48.11% 39.70% 28.52% 148.40
Average 45.1% 37.30% 25.01% 138.29



12 EURASIP Journal on Applied Signal Processing

Table 10: The differences of the PSNR between default mode and particular mode.

Test image Compression ratio

PSNR (dB)

Code block = 64× 64 Code block = 32× 32

Default Pass-parallel Difference Default Pass-parallel Difference

Lena
(512× 512)

8 : 1 41.4971 41.3599 0.1372 41.3813 41.1244 0.2589

16 : 1 37.9316 37.7575 0.1741 37.8227 37.5185 0.3042

32 : 1 34.4089 34.1876 0.2213 34.2363 34.0203 0.2160

64 : 1 31.0082 31.0045 0.0037 30.9883 30.8024 0.1859

100 : 1 29.1360 29.0952 0.0408 28.9808 28.8722 0.1086

200 : 1 26.3491 26.2493 0.0998 26.1488 26.0265 0.1223

Baboon
(512× 512)

8 : 1 30.6148 30.5189 0.0959 30.5301 30.3007 0.2294

16 : 1 26.6769 26.5923 0.0846 26.5890 26.4380 0.1510

32 : 1 23.9612 23.8928 0.0684 23.9091 23.8432 0.0659

64 : 1 22.1755 22.1680 0.0075 22.1494 22.1253 0.0241

100 : 1 21.5192 21.3797 0.1395 21.5139 21.4880 0.0259

200 : 1 20.2068 20.0599 0.1469 20.6728 20.6008 0.0720

Jet
(512× 512)

8 : 1 40.8825 40.6983 0.1842 40.8825 40.6983 0.1842

16 : 1 36.7044 36.5029 0.2015 36.7044 36.5029 0.2015

32 : 1 32.8160 32.5639 0.2521 32.8160 32.5639 0.2521

64 : 1 29.3317 29.0414 0.2903 29.3317 29.0414 0.2903

100 : 1 27.3779 27.0489 0.3290 27.3779 27.0489 0.3290

200 : 1 24.8169 24.7857 0.0312 24.7587 24.6169 0.1418

Bike
(2048× 2560)

8 : 1 37.3174 37.1299 0.1875 37.1106 36.7397 0.3709

16 : 1 32.9317 32.7512 0.1805 32.6763 32.3803 0.2960

32 : 1 29.0480 28.9138 0.1342 28.8052 28.6223 0.1829

64 : 1 25.8353 25.7501 0.0852 25.6222 25.5111 0.1111

100 : 1 24.0939 24.0128 0.0811 23.9551 23.8677 0.0874

200 : 1 21.8572 21.7936 0.0636 21.7363 21.6562 0.0801

Café
(2048× 2560)

8 : 1 31.5286 31.3333 0.1953 31.2841 30.8391 0.4450

16 : 1 26.3112 26.1728 0.1384 26.1002 25.8465 0.2537

32 : 1 22.7029 22.6191 0.0838 22.5484 22.4209 0.1275

64 : 1 20.3345 20.2952 0.0393 20.2456 20.1643 0.0813

100 : 1 19.2259 19.1954 0.0305 19.1502 19.1009 0.0493

200 : 1 17.8733 17.8378 0.0355 17.8379 17.7816 0.0563

Woman
(2048× 2560)

8 : 1 37.5158 37.3455 0.1723 37.5158 37.0353 0.4805

16 : 1 32.8517 32.7111 0.1406 32.6878 32.4885 0.1993

32 : 1 29.2674 29.1784 0.0890 29.1473 28.9764 0.1709

64 : 1 26.7952 26.7476 0.0476 26.7014 26.6232 0.0782

100 : 1 26.5695 25.5301 0.0394 25.5144 25.4447 0.0697

200 : 1 24.2154 24.1874 0.0280 24.1837 24.1340 0.0497

5.2. Compression performance

In our design, since three particular modes (RESET, RE-
START, and Causal) are used, the image quality may be af-

fected by these modes. In order to find the affection, three
images with size 512×512 (Lena, Baboon, Jet) and three im-
ages with size 2048 × 2560 (Bike, Cafe, Woman) are used to
evaluate the effects. Table 10 shows the differences of PSNR



Jen-Shiun Chiang et al. 13

CX
Pass CX

table

D MPS

Index
predict

Qe
table

n MPS
n LPS

Qe
Stage 1

M
u
x

M
u
x

P1 A
P2 A
P3 A M

u
x A

processing

A new
M
u
x

P1 C low
P2 C low
P3 C low M

u
x C low

processing
Shift
table

C low Carry in Shift num Stage 2

M
u
x

P1 C hight

P2 C hight
P3 C hight M

u
x +

M
u
x

P1 CT
P2 CT
P3 CT M

u
x

M
u
x

P1 B
P2 B
P3 B M

u
x

C hight B b out1 b out2 CT

C high processing

&
byteout

Stage 3

FIFO

Pass Byteout Stage 4

Figure 15: The proposed architecture of MQ-coder.

between the default mode and particular mode in differ-
ent compression ratios. The combination of these modes
introduces degradation on image quality as small as 0.0037
to 0.4805 dB that depends on the content of the encoded im-
age.

6. CONCLUSION

There are two parts in our design: context-modeling and
arithmetic encoder. For context-modeling, the pass-parallel
method is adopted to merge the three-pass coding into a
single-pass coding and reduce the frequency of memory ac-
cess. Moreover, the coding-parallel method is used to re-
duce the execution time further. The throughput rate of the
context-modeling is 45% better than SS method and is 25%
better than the pass-parallel method. For the arithmetic en-
coder, we use a 4-stage pipelined architecture to reduce the
clock cycle time. In order to process the interleaved data, a
three-input multiplexer is used to replace three MQ-coders,
and therefore the hardware cost can be reduced dramatically.

REFERENCES

[1] Information technology—JPEG 2000 image coding system—
Part 1: Core coding system, ISO/IEC 15444-1, December 2000.

[2] D. Taubman and M. Marcellin, JPEG2000: Image Compres-
sion Fundamentals, Standards, and Practice, Kluwer Academic,
Dordrecht, The Netherlands, 2001.

[3] C. Christopoulos, A. Skodras, and T. Ebrahimi, “JPEG2000
still image coding system: an overview,” IEEE Transactions on
Consumer Electronics, vol. 46, no. 4, pp. 1103–1127, 2000.

[4] C. Christopoulos, T. Ebrahimi, and A. N. Skodras, “JPEG2000:
the new still picture compression standard,” in Proceedings of
the ACMMultimedia 2000 Workshops, pp. 45–49, Los Angeles,
Calif, USA, October-November 2000.

[5] D. Taubman, “High performance scalable image compression
with EBCOT,” IEEE Transactions on Image Processing, vol. 9,
no. 7, pp. 1158–1170, 2000.

[6] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I.
Ueno, and F. Ono, “Embedded block coding in JPEG2000,”
Tech. Rep. HPL-2001-35, HP Labs, Palo Alto, Calif, USA,
February 2001.

[7] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I.
Ueno, and F. Ono, “Embedded block coding in JPEG2000,”
in Proceedings of IEEE International Conference on Image Pro-
cessing, vol. 2, pp. 33–36, Vancouver, BC, Canada, September
2000.

[8] M. D. Adams and F. Kossentini, “JasPer: a software-based
JPEG-2000 codec implementation,” in Proceedings of IEEE In-
ternational Conference on Image Processing, vol. 2, pp. 53–56,
Vancouver, BC, Canada, September 2000.



14 EURASIP Journal on Applied Signal Processing

[9] D. Santa-Cruz and T. Ebrahimi, “An analytical study of JPEG
2000 functionalities,” in Proceedings of IEEE International Con-
ference on Image Processing, vol. 2, pp. 49–52, Vancouver, BC,
Canada, September 2000.

[10] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Analy-
sis and architecture design of block-coding engine for EBCOT
in JPEG 2000,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 3, pp. 219–230, 2003.

[11] H.-H. Chen, C.-J. Lian, T.-H. Chang, and L.-G. Chen, “Anal-
ysis of EBCOT decoding algorithm and its VLSI implementa-
tion for JPEG 2000,” in Proceedings of IEEE International Sym-
posium on Circuits and Systems, vol. IV, pp. 329–332, Scotts-
dale, Ariz, USA, May 2002.

[12] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel
architecture for EBCOT in JPEG2000,” in Proceedings of IEEE
International Symposium on Circuits and Systems, vol. I, pp.
773–776, Scottsdale, Ariz, USA, May 2002.

[13] K.-K. Ong, W.-H. Chang, Y.-C. Tseng, Y.-S. Lee, and C.-Y. Lee,
“A high throughput context-based adaptive arithmetic codec
for JPEG2000,” in Proceedings of IEEE International Sympo-
sium on Circuits and Systems, vol. 4, pp. 133–136, Scottsdale,
Ariz, USA, May 2002.

[14] A.-Y. Wu, K. J. R. Liu, Z. Zhang, K. Nakajima, and A. Raghu-
pathy, “Low-power design methodology for DSP systems us-
ing multirate approach,” in Proceedings of IEEE International
Symposium on Circuits and Systems, vol. 4, pp. 292–295, At-
lanta, Ga, USA, May 1996.

[15] J.-S. Chiang, C.-H. Chang, Y.-S. Lin, C.-Y. Hsieh, and C.-H.
Hsia, “High-speed EBCOT with dual context-modeling cod-
ing architecture for JPEG2000,” in Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems, vol. 3, pp. 865–868,
Vancouver, BC, Canada, May 2004.

Jen-Shiun Chiang received the B.S. degree
in electronics engineering from Tamkang
University, Taipei, Taiwan, in 1983, the M.S.
degree in electrical engineering from Uni-
versity of Idaho, Idaho, USA, in 1988, and
the Ph.D. degree in the electrical engineer-
ing from Texas A&M University, College
Station; Tex, USA, in 1992. He joined the
faculty members of the Department of Elec-
trical Engineering at Tamkang University in
1992 as an Associate Professor. Currently, he is a Professor at the
department. His research interest includes digital signal process-
ing for VLSI architecture, architecture for image data compression,
SOC design, analog-to-digital data conversion, and low-power cir-
cuit design.

Chun-Hau Chang was born in Taipei city,
Taiwan, in 1978. He received the B.Eng.
degree in electronics engineering from
Southern Taiwan University of Technology,
Tainan, Taiwan, the M.S. degree in elec-
trical engineering from Tamkang Univer-
sity, Taipei, Taiwan, in 2002 and 2004, re-
spectively. His research interests are efficient
implementations of multimedia hardware,
high-performance parallel signal process-
ing, and digital image signal processing.

Chang-Yo Hsieh received the B.S. degree in
electrical engineering from Tamkang Uni-
versity, Taipei, Taiwan, in 2003. He is cur-
rently pursuing the M.S. degree in the De-
partment of Electrical Engineering, Tam-
kang University. His research focuses on the
image/video signal processing, and digital
signal processing for VLSI design.

Chih-Hsien Hsia was born in Taipei city,
Taiwan, in 1979. He received the B.S. de-
gree in electronics engineering from North-
ern Taiwan Institute of Science and Tech-
nology, Taipei, Taiwan, in 2003. He received
the M.S. degree in electrical engineering
from Tamkang University, Taipei, Taiwan,
in 2005. Currently he is pursuing the Ph.D.
degree at the Department of Electrical En-
gineering, Tamkang University, Taipei, Tai-
wan. His research interests include DSP/IC design, VLSI architec-
ture for image/video data compression, multimedia system design,
multiresolution signal processing algorithms, and subband coding.


	Introduction
	Block Coding Algorithm
	Context modeling
	Bit-plane data
	State variable

	Adaptive context-based arithmetic encoder

	Speedup Algorithm for Context Modeling
	Pass-parallel algorithm
	Parallel coding

	Arithmetic Encoder Design
	Experimental Results
	Execution time
	Compression performance

	Conclusion
	REFERENCES

