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This paper discusses robust coding of visual content for a distributed multimedia system. The system encodes independently two
correlated video signals and reconstructs them jointly at a central decoder. The video signals are captured from a dynamic scene,
where each signal is robustly coded by amotion-compensatedHaar wavelet. The efficiency of the decoder is improved by a disparity
analysis of the first image pair of the sequences, followed by disparity compensation of the remaining images of one sequence. We
investigate how this scene analysis at the decoder can improve the coding efficiency. At the decoder, one video signal is used as side
information to decode efficiently the second video signal. Additional bitrate savings can be obtained with disparity compensation
at the decoder. Further, we address the theoretical problem of distributed coding of video signals in the presence of correlated
video side information. We utilize a motion-compensated spatiotemporal transform to decorrelate each video signal. For certain
assumptions, the optimal motion-compensated spatiotemporal transform for video coding with video side information at high
rates is derived. It is shown that the motion-compensated Haar wavelet belongs to this class of transforms. Given the correlation
of the video side information, the theoretical bitrate reduction for the distributed coding scheme is investigated. Interestingly, the
efficiency of multiview side information is dependent on the level of temporal decorrelation: for a given correlation SNR of the
side information, bitrate savings due to side information are decreasing with improved temporal decorrelation.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Robust coding of visual content is not just a necessity for
multimedia systems with heterogeneous networks and di-
verse user capabilities. It is also the key for video systems that
utilize distributed compression. Let us consider the problem
of distributed coding of multiview image sequences. In such
a scenario, a dynamic scene is captured by several spatially
distributed video cameras and reconstructed at a single cen-
tral decoder. Ideally, each encoder associated with a cam-
era operates independently and transmits robustly its con-
tent to the central decoder. But as each encoder has a priori
no specific information about its potential contribution to
the reconstruction of the dynamic scene at the central de-
coder, a highly flexible representation of the visual content is
required. In this work, we use a motion-compensated lifted
wavelet transform to generate highly scalable bitstreams that
can be processed in a coordinated fashion by the central de-
coder. Moreover, the central decoder receives images of the
scene from different viewpoints and is able to perform an
analysis of the scene. This analysis helps the central receiver
to decode more reliably the incoming robust bitstreams.
That is, the decoder is able of content-aware decoding which

improves the coding efficiency of the distributed multimedia
system that we discuss in the following.

Our distributed system captures a dynamic scene with
spatially distributed video cameras and reconstructs it at a
single central decoder. Scene information that is acquired by
more than one camera can be coded efficiently if the cor-
relation among camera signals is exploited. In one possi-
ble compression scenario, encoders of the sensor signals are
connected and compress the camera signals jointly. In an al-
ternative compression scenario, each encoder operates inde-
pendently but relies on a joint decoding unit that receives
all coded camera signals. This is also known as distributed
source coding. A special case of this scenario is source cod-
ing with side information. Wyner and Ziv [1] showed that
for certain cases, the encoder does not need the side infor-
mation to which the decoder has access to achieve the rate
distortion bound. Practical coding schemes for our applica-
tion may utilize a combination of both scenarios and may
permit a limited communication between the encoders. But
both scenarios have in common that they achieve the same
rate distortion bound for certain cases.

Each camera of our system [2] is associated with an
encoder utilizing a motion-compensated temporal wavelet
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transform [3–5]. With that, we are able to exploit the tem-
poral correlation of each image sequence. In addition, such
a wavelet transform provides a scalable representation that
permits the desired robust coding of video signals. Inter-
view correlation between the camera signals cannot be ex-
ploited as signals from neighboring cameras are not directly
available at each encoder. This constraint will be handled by
distributed source coding principles. Therefore, the subband
coefficients of the wavelet transform are represented by syn-
dromes that are suitable for distributed source coding. A con-
structive practical framework for the problem of compress-
ing correlated distributed sources using syndromes is pre-
sented in [6–8]. To increase the robustness of the syndrome
representation, we additionally use nested lattice codes [9].
Syndrome-based distributed source coding is a principle, and
several techniques can be employed. For example, [8] inves-
tigates memoryless and trellis-based coset construction. For
binary sources, turbo codes [10] or low-density parity-check
(LDPC) codes [11] increase coding efficiency. Improvements
are also possible for nonbinary sources [12–14].

A transform-based approach to distributed source cod-
ing for multimedia systems seems promising. The work in
[15–18] discusses a framework for the distributed compres-
sion of vector sources: first, a suitable distributed Karhunen-
Loeve transform is applied and, second, each component
is handled by standard distributed compression techniques.
That is, each encoder applies a suitable local transform to its
input and encodes the resulting components separately in a
Wyner-Ziv fashion, that is, treating the compressed descrip-
tion of all other encoders as side information available to the
decoder. Similar to that framework, Wyner-Ziv quantization
and transform coding of noisy sources at high rates is also in-
vestigated in [19, 20]. An application to this framework is the
transform-based Wyner-Ziv codec for video frames [21]. In
the present article, we capture the efficiency of video coding
with video side information based on a high rate approxi-
mation. For motion-compensated spatiotemporal transform
coding of video with video side information, we derive the
optimal transform at high rates, the conditional Karhunen-
Loeve transform [22, 23]. For our video signal model, we can
show that the motion-compensated Haar wavelet is an opti-
mal transform at high rates.

The coding of multiple views of a dynamic scene is just
one part of the problem. The other part addresses which
viewpoint will be captured by a camera. Therefore, the un-
derlying problem of our application is sampling and cod-
ing of the plenoptic function. The plenoptic function was
introduced by Adelson and Bergen [24]. It corresponds to
the function representing the intensity and chromaticity of
the light observed from every position and direction in the
3D space, at every time. The structure of the plenoptic func-
tion determines the correlation in the visual information re-
trieved from the cameras. This correlation can be estimated
using geometrical information such as the position of the
cameras and some bounds on the location of the objects
[25, 26].

In the present work, two cameras observe the dynamic
scene from different viewpoints. Knowing the relative camera

position, we are able to compensate the disparity of the ref-
erence viewpoint given the current viewpoint. With that, we
increase the correlation of the intensity values between the
disparity-compensated reference viewpoint and the current
viewpoint which lowers the transmission bitrate for a given
distortion. Obviously, the higher the correlation between the
disparity-compensated reference viewpoint and the view-
point to be encoded, the lower is the transmission bitrate for
a given distortion. As the relative camera positions are not
known a priori at the decoder, the first image pair of the two
viewpoints is analyzed, and disparity values are estimated.
Using these disparity estimates, the decoder can exploit more
efficiently the robust representation of the Wyner-Ziv video
encoder.

As the present article discusses distributed source cod-
ing of highly correlated image sequences, we mention related
works of applied research on distributed image coding. For
example, [27] enhances analog image transmission systems
using digital side information, [28] discussesWyner-Ziv cod-
ing of inter-pictures in video sequences, and [29] investi-
gates distributed compression of light field images. In [30],
an uplink-friendly multimedia coding paradigm (PRISM)
is proposed. The paradigm is based on distributed source
coding principles and renders multimedia systems more ro-
bust to transmission losses. Also taking advantage of this
paradigm, [31] proposes Wyner-Ziv coding of motion pic-
tures.

The article is organized as follows: Section 2 outlines our
distributed coding scheme for two viewpoints of a dynamic
scene. We discuss the utilized motion-compensated tempo-
ral transform, the cosetencoding of transform coefficients
with nested lattice codes, decoding with side information,
and enhancing the side information by disparity compen-
sation. Section 3 studies the efficiency of video coding with
video side information. Based on a model for transform
coded video signals, we address the rate distortion problem
with video side information and determine the conditional
Karhunen-Loeve transform to obtain performance bounds.
The theoretical study finds a tradeoff between the level of
temporal decorrelation and the efficiency of decoding with
side information. Section 4 provides experimental rate dis-
tortion results for decoding of video signals with side infor-
mation. Moreover, it discusses the relation between the level
of temporal decorrelation and the efficiency of decoding with
side information.

2. DISTRIBUTED CODING SCHEME

We start with an outline of our distributed coding scheme for
two viewpoints of a dynamic scene. We utilize an asymmet-
ric coding scheme; that is, the first viewpoint signal is coded
with conventional source coding principles, that is, side in-
formation cannot improve decoding of the first viewpoint;
and the second viewpoint signal is coded with distributed
source coding principles, that is, side information improves
decoding of the second viewpoint. The first viewpoint signal
is used as video side information to improve decoding of the
second viewpoint signal.
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sk(x, y) R2 ŝk(x, y)

Figure 1: Distributed coding scheme for two viewpoints of a dy-
namic scene with disparity compensation. The first viewpoint signal
is coded at bitrate R1, the second viewpoint signal at the Wyner-Ziv
bitrate R2.
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Figure 2: Haar wavelet with motion-compensated lifting steps.

Figure 1 depicts the distributed coding scheme for two
viewpoints of a dynamic scene. The dynamic scene is rep-
resented by the image sequences sk[x, y] and wk[x, y]. The
coding scheme comprises of Encoder 1 and Encoder 2 that
operate independently as well as of Decoder 2 that is depen-
dent on Decoder 1. The side information for Decoder 2 can
be improved by considering the spatial camera positions and
by performing disparity compensation. As the video signals
are not stationary, Decoder 2 is decoding with feedback.

2.1. Motion-compensated temporal transform

Each encoder in Figure 1 exploits the correlation between
successive pictures by employing a motion-compensated
temporal transform for groups of K pictures (GOP). We per-
form a dyadic decomposition with a motion-compensated
Haar wavelet as depicted in Figure 2. The temporal transform
provides K output pictures that are decomposed by a spatial
8 × 8 DCT. The motion information that is required for the
motion-compensated wavelet transform is estimated in each
decomposition level depending on the results of the lower
level. The correlation of motion information between two
image sequences is not exploited yet, that is, coded motion
vectors are not part of the side information. Figure 2 shows
the Haar wavelet withmotion-compensated lifting steps. The
even frames of the video sequence s2k are used to predict the

odd frames s2k+1 with the estimated motion vector d̂2k,2k+1.
The prediction step is followed by an update step which uses
the negative motion vector as an approximation. We use a
block size of 16× 16 and half-pel accurate motion, compen-
sation with bilinear interpolation in the prediction step, and

o0 o2 o4 o6

z

Figure 3: Coset coding of transform coefficients, where Encoder 2
transmits at a rate RTX of 1 bit per transform coefficient.

select the motion vectors such that they minimize a La-
grangian cost function based on the squared error in the
high-band hk [5]. Additional scaling factors in low- and
high-band are necessary to normalize the transform.

Encoder 1 in Figure 1 encodes the side information for
Decoder 2 and does not employ distributed source coding
principles yet. A scalar quantizer is used to represent the DCT
coefficients of all temporal bands. The quantized coefficients
are simply run-level encoded. On the other hand, Encoder 2
is designed for distributed source coding and uses nested lat-
tice codes to represent the DCT coefficients of all temporal
bands.

2.2. Nested lattice codes for transform coefficients

The 8× 8 DCT coefficients of Encoder 2 are represented by a
1-dimensional nested lattice code [9]. Further, we construct
cosets in a memoryless fashion [8].

Figure 3 explains the coset-coding principle. Assume that
Encoder 2 transmits at a rate RTX of 1 bit per transform co-
efficient, and utilizes two cosets C1,0 = {o0, o2, o4, o6} and
C1,1 = {o1, o3, o5, o7} for encoding. Now, the transform co-
efficient o4 will be encoded and the encoder sends one bit to
signal coset C1,0. With the help of the side information coef-
ficient z, the decoder is able to decode o4 correctly. If Encoder
2 does not send any bit, the decoder will decode o3 and we
observe a decoding error.

Consider the 64 transform coefficients ci of the 8×8 DCT
at Encoder 2. The correlation between the ith transform co-
efficient ci at Encoder 2 and the ith transform coefficient of
the side information zi depends strongly on the coefficient
index i. In general, the correlation between corresponding
DC coefficients (i = 0) is very high, whereas the correla-
tion between corresponding high-frequency coefficients de-
creases rapidly. To encounter the problem of varying corre-
lation, we adapt the transmission rate RTX to each transform
coefficient. For weakly correlated coefficients, a higher trans-
mission rate has to be chosen.

Adapting the transmission rate to the actual correlation is
accomplished with nested lattice codes [9]. The idea of nested
lattices is, roughly, to generate diluted versions of the origi-
nal coset code. As we use uniform scalar quantization, we
consider the 1-dimensional lattice. Figure 4 depicts the fine
code C0 in the Euclidean space with minimum distance Q.
C1, C2, and C3 are nested codes with the νth coset Cμ,ν of Cμ

relative to C0. The nested codes are coarser and the union of
their cosets gives the fine code C0, that is,

⋃
ν C1,ν = C0.

The binary representation of the quantized transform co-
efficients determines its coset representation in the nested
lattice. If the transmission rate for a coefficient is RTX = μ,
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then the μ least significant bits of the binary representation
determine the νth coset Cμ,ν. For highly correlated coeffi-
cients, the number of required cosets and, hence, the trans-
mission rate are small. To achieve efficient entropy coding
of the binary representation of all 64 transform coefficients,
we define bitplanes. Each bitplane is run-length encoded and
transmitted to Decoder 2 upon request.

2.3. Decodingwith side information

At Encoder 2, the quantized transform coefficients are repre-
sented with 10 bitplanes, where 9 are used for encoding the
absolute value, and one is used for the sign. Encoder 2 is able
to provide the full bitplanes, independent of any side infor-
mation at the Decoder 2. Encoder 2 is also able to receive a
bitplane mask to weight the current bitplane. The masked
bitplane is run-length encoded and transmitted to Decoder
2.

Given the side information at Decoder 2, masked bit-
planes are requested from Encoder 2. For that, Decoder 2 sets
the bitplane mask to indicate the bits that are required from
Encoder 2. Dependent on the received bitplane mask, Encoder
2 transmits the weighted bitplane utilizing run-length encod-
ing. Decoder 2 attempts to decode the already received bit-
planes with the given side information. In case of decoding
error, Decoder 2 generates a new bitplane mask and requests
a further weighted bitplane.

Decoder 2 has the following options for each mask bit:
if a bit in the bitplane is not needed, the mask value is 0.
The mask value is 1 if the bit is required for error-free de-
coding. If the information at the decoder is not sufficient for
this decision, the mask is set to 2 and the encoded transform
coefficient that is used as side information is transmitted to
Encoder 2. With this side information zi for the ith transform
coefficient ci, Encoder 2 is able to determine its best transmis-
sion rate μ = RTX[i] and cosetCμ,ν. This information is incor-
porated into the current bitplane and transmitted to Decoder
2: bits that are not needed for error-free decoding are marked
with 0. Further, 1 indicates that the bit is needed and its value
is 0, and 2 indicates that the bit is needed with value 1.

Decoder 2 aims to estimate the ith transform coefficient
ĉi based on the current transmission rate μ = RTX[i], the
partially received coset Cμ,ν, and the side information zi:

ĉi = argmin
ci∈Cμ,ν

[
ci − zi

]2
given μ = RTX[i]. (1)

With increasing number of received bitplanes, that is, in-
creasing transmission rate RTX[i], this estimate gets more ac-
curate and stays definitely constant for rates beyond the crit-
ical transmission rate R∗TX[i]. Therefore, a simple decoding
algorithm is as follows: an additional bit is required if the es-
timated coefficient changes its value when the transmission
rate increases by 1. An unchanged value for an estimated co-
efficient is just a necessary condition for having achieved the
critical transmission rate. This condition is not sufficient for
error-free decoding and, in this case, Encoder 2 has to deter-
mine the critical transmission rate to resolve any ambiguity.

0 Q 2Q 3Q 4Q 5Q 6Q 7Q

C0 C0 C0 C0 C0 C0 C0 C0

C1,0 C1,1 C1,0 C1,1 C1,0 C1,1 C1,0 C1,1

C2,0 C2,1 C2,2 C2,3 C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3 C3,4 C3,5 C3,6 C3,7

Figure 4: Nested lattices. The 1-dimensional fine codeC0 is embed-
ded into the Euclidean space with minimum distanceQ.C1,C2, and
C3 are nested codes with the νth coset Cμ,ν of Cμ relative to C0.

Note that Decoder 2 receives the coded information in
bitplane units, starting with the plane of least significant bits.
With each new bitplane, Decoder 2 utilizes a coarser lattice
where the number of cosets as well as the minimum Eu-
clidean distance increases exponentially.

Depending on the quality of the side information, De-
coder 2 gives feedback to Encoder 2 about the status of its
decoding attempts. If the correlation of the side information
is high, Decoder 2 will decode successfully without sending
much feedback information. On the other hand, weakly cor-
related side information will cause decoding errors at De-
coder 2 and more feedback information is sent to Encoder 2
untilDecoder 2 is successful. That is, inefficient side informa-
tion is compensated by the feedback.

2.4. Disparity-compensated side information

To improve the efficiency of Decoder 2, the side information
from Decoder 1 is disparately compensated in the image do-
main. If the camera positions are unknown, the coding sys-
tem estimates the disparity information from sample frames.
During this calibration process, the side information for De-
coder 2 is less correlated, and Encoder 2 has to transmit at a
higher bitrate. Our system utilizes block-based estimates of
the disparity values which are constant for all correspond-
ing image pairs in the stereoscopic sequence. We estimate the
disparity from the first pair of images in the sequences. The
right image is subdivided horizontally into 4 segments and
vertically into 6 segments. For each of the 24 blocks in the
right image, we estimate half-pel accurate disparity vectors.
Intensity values for half-pel positions are obtained by bilinear
interpolation. The estimated disparity vectors are applied in
the image domain and improve the side information in the
transform domain. For our experiments, the camera posi-
tions are unaltered in time. Therefore, the disparity informa-
tion is estimated from the first frames of the image sequences
and is reused for disparity compensation of the remaining
images.

3. EFFICIENCY OF VIDEO CODINGWITH
SIDE INFORMATION

In this section, we outline a signal model to study video cod-
ing with video side information in more detail. We derive
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Figure 5: Signal model for a group of K pictures.

performance bounds and compare to coding without video
side information.

3.1. Model for transform-coded video signals

We build upon a model for motion-compensated subband
coding of video that is outlined in [5, 32]. Let the video pic-
tures sk = {sk[x, y], (x, y) ∈ Π} be scalar random fields over
a two-dimensional orthogonal grid Π with horizontal and
vertical spacing of 1.

As depicted in Figure 5, we assume that the pictures sk
are shifted versions of the model picture v and degraded by
independent additive white Gaussian noise nk [5]. Δk is the
displacement error in the kth picture, statistically indepen-
dent from the model picture v and the noise nk but corre-
lated to other displacement errors. We assume a 2D normal
distribution with variance σ2Δ and zero mean where the x-
and y-components are statistically independent. As outlined
in [5], it is assumed that the true displacements are known at
the encoder. Consequently, the true motion can be set to zero
without loss of generality. Therefore, only the displacement
error but not the true motion is considered in the model.

From [5], we adopt the matrix of the power spectral den-
sities of the pictures sk and normalize it with respect to the
power spectral density of themodel picture v. We write it also
with the identity matrix I and the matrix 11T with all entries
equal to 1. Note that ω denotes the 2D frequency:

Φss(ω)
Φvv(ω)

=

⎛
⎜⎜⎜⎜⎝
1 + α(ω) P(ω) · · · P(ω)
P(ω) 1 + α(ω) · · · P(ω)
...

...
. . .

...
P(ω) P(ω) · · · 1 + α(ω)

⎞
⎟⎟⎟⎟⎠

= [1 + α(ω)− P(ω)
]
I + P(ω)11T ,

(2)

and α = α(ω) is the normalized power spectral density of the

Encoder 2

Decoder

R∗

ŝ0

...
ŝK−1

ŵ0

...
ŵK−1

s0

...
sK−1

w0

...
wK−1

Figure 6: Coding of K pictures sk at rate R∗ with side information
of K pictures wk at the decoder.

noise Φnknk (ω) with respect to the model picture v:

α(ω) = Φnknk (ω)
Φvv(ω)

for k = 0, 1, . . . ,K − 1. (3)

It captures the error of the optimal displacement estimator
and will be statistically independent of the model picture.
P = P(ω) is the characteristic function of the continuous 2D
Gaussian displacement error. For details, please see (3)–(6)
in [5],

P(ω) = E
{
e− jωTΔk

} = e−(1/2)ω
Tωσ2Δ . (4)

3.2. Rate distortion with video side information

Now, we consider the video coding scheme in Figure 1 at
high rates such that the reconstructed side information ap-
proaches the original side information ŵk → wk. With that,
we have a Wyner-Ziv scheme (Figure 6), and the rate distor-
tion function R∗ of Encoder 2 is bounded by the conditional
rate distortion function [1].

In the following, we assume very accurate optimal dispar-
ity compensation and consider only disparity compensation
errors. We model the side information as a noisy version of
the video signal to be encoded, that is, wk = sk + uk, and as-
sume that the noise uk is also Gaussian with variance σ2u and
independent of sk. Further, the side information noise uk is
assumed to be temporally uncorrelated. This is realistic as the
video side information is captured by a second camera which
provides temporally successive images that are corrupted by
statistically independent camera noise. In this case, the ma-
trix of the power spectral densities of the side information
pictures is simply Φww(ω) = Φss(ω) +Φuu(ω) with the ma-
trix of the normalized power spectral densities of the side in-
formation noise:

Φuu(ω)
Φvv(ω)

=

⎛
⎜⎜⎜⎜⎝
γ(ω) 0 · · · 0
0 γ(ω) · · · 0
...

...
. . .

...
0 0 · · · γ(ω)

⎞
⎟⎟⎟⎟⎠ = γ(ω)I. (5)
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γ = γ(ω) is the normalized power spectral density of the side
information noiseΦukuk (ω) with respect to themodel picture
v:

γ(ω) = Φukuk (ω)
Φvv(ω)

for k = 0, 1, . . . ,K − 1. (6)

With these assumptions, the rate distortion function R∗ of
Encoder 2 is equal to the conditional rate distortion function
[1]. Now, it is sufficient to use the conditional Karhunen-
Loeve transform to code video signals with side information
and achieve the conditional rate distortion function.

3.3. Conditional Karhunen-Loeve transform

In the case of motion-compensated transform coding of
video with side information, the conditional Karhunen-
Loeve transform is required to obtain the performance
bounds. We determine the well-known conditional power
spectral density matrix Φs|w(ω) of the video signal sk given
the video side information wk:

Φs|w(ω) = Φss(ω)−ΦH
ws(ω)Φ

−1
ww(ω)Φws(ω). (7)

With the model in Section 3.1, the assumptions in Section
3.2, and the mathematical tools presented in [33], we obtain
for the normalized conditional spectral density matrix

Φs|w(ω)
Φvv(ω)

= A(ω)
A(ω) + γ(ω)

γ(ω)I +
P(ω)

A(ω) + γ(ω)

· γ(ω)
A(ω) + KP(ω) + γ(ω)

γ(ω)11T ,

(8)

where A(ω) = 1 + α(ω) − P(ω). For our signal model, the
conditional Karhunen-Loeve transform is as follows: the first
eigenvector just adds all components and scales with 1/

√
K .

For the remaining eigenvectors, any orthonormal basis can
be used that is orthogonal to the first eigenvector. The Haar
wavelet that we use for our coding scheme meets these re-
quirements. Finally, K eigendensities are needed to deter-
mine the performance bounds:

Λ∗0 (ω)
Φvv(ω)

= A(ω)+KP(ω)γ(ω)/
(
A(ω) + KP(ω) + γ(ω)

)
A(ω) + γ(ω)

γ(ω),

Λ∗k (ω)
Φvv(ω)

= A(ω)
A(ω) + γ(ω)

γ(ω), k = 1, 2, . . . ,K − 1.

(9)
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Figure 7: Rate difference between motion-compensated transform
coding with side information and without side information versus
correlation SNR for groups of K pictures. The displacement inac-
curacy β is −1 (half-pel accuracy) and the residual noise is −30 dB.

3.4. Coding gain due to side information

With the conditional eigendensities, we are able to determine
the coding gain due to side information. We normalize the
conditional eigendensities Λ∗k (ω) with respect to the eigen-
densities Λk(ω) that we obtain for coding without side infor-
mation as Λ∗k (ω)→ Λk(ω) for γ(ω)→∞:

Λ∗0 (ω)
Λ0(ω)

= γ(ω)
A(ω) + γ(ω)

· A(ω) + KP(ω)γ(ω)/
(
A(ω) + KP(ω) + γ(ω)

)
A(ω) + KP(ω)

,

Λ∗k (ω)
Λk(ω)

= γ(ω)
A(ω) + γ(ω)

, k = 1, 2, . . . ,K − 1.

(10)

The rate difference is used tomeasure the improved com-
pression efficiency for each picture k in the presence of side
information:

ΔR∗k =
1
4π2

∫∫ π

−π
1
2
log2

(
Λ∗k (ω)
Λk(ω)

)
dω. (11)

It represents the maximum bitrate reduction (in bit/sample)
possible by optimum encoding of the eigensignal with
side information, compared to optimum encoding of the
eigensignal without side information for Gaussian wide-
sense stationary signals for the same mean-square recon-
struction error. The overall rate difference ΔR∗ is the average
over all K eigensignals [32, 34].
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Figure 8: Rate difference between motion-compensated transform
coding with side information and without side information versus
displacement inaccuracy β for groups of K pictures. The residual
noise is −30 dB and the correlation-SNR is 20 dB.

Figure 7 depicts the overall rate difference for a resid-
ual noise level RNL = 10 log10(σ

2
n) of −30 dB over the c-

SNR = 10 log10([σ
2
v + σ2n]/σ

2
u) for a displacement inaccuracy

β = log2(
√
12σΔ) = −1. Note that the variance of the model

picture v is normalized to σ2v = 1. We observe for a given
correlation SNR of the side information that larger bitrate
savings are achievable if the GOP size K is smaller. The ex-
perimental results in Figures 10 and 12 will verify this obser-
vation. Finally, for highly correlated video signals, the gain
due to side information increases by 1 bit/sample if the c-
SNR increases by 6 dB.

Figure 8 depicts the overall rate difference for a resid-
ual noise level RNL = 10 log10(σ

2
n) of −30 dB over the dis-

placement inaccuracy β = log2(
√
12σΔ) for a c-SNR =

10 log10([σ
2
v + σ2n]/σ

2
u) of 20 dB. Again, the variance of the

model picture v is normalized to σ2v = 1. We observe that for
K = 32, half-pel accurate motion compensation (β = −1),
and a c-SNR of 20 dB, the rate difference is limited to −0.3
bit/sample. Also, the bitrate savings due to side informa-
tion increase for less accurate motion compensation. That
is, there is a tradeoff between the gain due to accurate mo-
tion compensation and side information. Practically speak-
ing, less accurate motion compensation reduces the coding
efficiency of the encoder, and with that, its computational
complexity, but improved side information may compensate
for similar overall efficiency.

4. EXPERIMENTAL RESULTS

For the experiments, we select the stereoscopic MPEG-4 se-
quences Funfair and Tunnel in QCIF resolution. We divide
each view with 224 frames at 30 fps into groups of K =
32 pictures. The GOPs of the left view are encoded with

0 2 4 6 8 10 12 14 16 18 20 22
×102R2 (kbit/s)

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

P
SN

R
Y
2
(d
B
)

Decoder 2 without side information
Decoder 2 with side information
Decoder 2 with disparity-compensated side information

Figure 9: Luminance PSNR versus total bitrate at Decoder 2 for
the sequence Funfair 2 (right view). Compared are decoding with
disparity-compensated side information, decoding with coefficient
side information only, and decoding without side information. For
all cases, groups of K = 32 pictures are used.

Encoder 1 at high quality by setting the quantization param-
eter QP = 2, where Q = 2QP. This coded version of the left
view is used for disparity compensation. The compensated
frames provide the side information for Decoder 2 to decode
the right view.

Figures 9 and 11 show the luminance PSNR over the total
bitrate of the distributed codec Encoder 2 for the sequences
Funfair 2 and Tunnel 2, respectively. The sequences are the
right views of the stereoscopic sequences. The rate distortion
points are obtained by varying the quantization parameter
for the nested lattice in Encoder 2. When compared to de-
coding without side information, decoding with coefficient
side information reduces the bitrate of Funfair 2 by up to 5%
and that of Tunnel 2 by up to 8%. Decoding with disparity-
compensated side information reduces the bitrate of Funfair
2 by up to 8%. The block-based disparity compensation has
limited accuracy and is not beneficial for Tunnel 2. But utiliz-
ing more accurate geometrical information about the scene
will improve the side information for Decoder 2 and, hence,
will further reduce the bitrate of Encoder 2.

Figures 10 and 12 show the bitrate difference between
decoding with side information and decoding without side
information over the luminance PSNR at Decoder 2 for the
sequences Funfair 2 (right view) and Tunnel 2 (right view),
respectively. The bitrate savings due to side information are
depicted for weak temporal filtering with K = 8 pictures per
GOP and strong temporal filtering with K = 32 pictures
per GOP. Note that both the coded signal (right view) and
the side information (left view) are encoded with the same
GOP length K . It is observed that strong temporal filtering
results in lower bitrate savings due to side information when
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Figure 10: Bitrate difference versus luminance PSNR at Decoder 2
for the sequence Funfair 2 (right view). The rate difference is the
bitrate for decoding with side information minus the bitrate for de-
coding without side information and reflects the bitrate savings due
to decoding with side information. Smaller bitrate savings are ob-
served for strong temporal decorrelation (K = 32) when compared
to the bitrate savings for weak temporal decorrelation (K = 8).
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Figure 11: Luminance PSNR versus total bitrate at Decoder 2 for
the sequence Tunnel 2 (right view). Compared are decoding with
disparity-compensated side information, decoding with coefficient
side information only, and decoding without side information. For
all cases, groups of K = 32 pictures are used.

compared to the bitrate savings due to side information for
weaker temporal filtering. Obviously, there is a tradeoff be-
tween the level of temporal decorrelation and the efficiency
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Figure 12: Bitrate difference versus luminance PSNR at Decoder 2
for the sequence Tunnel 2 (right view). The rate difference is the
bitrate for decoding with side information minus the bitrate for de-
coding without side information and reflects the bitrate savings due
to decoding with side information. Smaller bitrate savings are ob-
served for strong temporal decorrelation (K = 32) when compared
to the bitrate savings for weak temporal decorrelation (K = 8).

of multiview side information. This tradeoff is also found in
the theoretical investigation on the efficiency of video coding
with side information.

5. CONCLUSIONS

This paper discusses robust coding of visual content for a
distributed multimedia system. The distributed system com-
presses two correlated video signals. The coding scheme is
based on motion-compensated temporal wavelets and trans-
form coding of temporal subbands. The scalar transform co-
efficients are represented by a nested lattice code. For this
representation, we define bitplanes and encode these with
run-length coding. As the correlation of the transform coef-
ficients is not stationary, we decode with feedback and adapt
the coarseness of the code to the actual correlation. Also, we
investigate how scene analysis at the decoder can improve the
coding efficiency of the distributed system. We estimate the
disparity between the two views and perform disparity com-
pensation.With disparity-compensated side information, we
observe up to 8% bitrate savings over decoding without side
information.

Finally, we investigate theoretically motion-compensated
spatiotemporal transforms. We derive the optimal motion-
compensated spatiotemporal transform for video coding
with video side information at high rates. For our video
signal model, we show that the motion-compensated Haar
wavelet is an optimal transform at high rates. Given the cor-
relation of the video side information, we also investigate
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the theoretical bitrate reduction for the distributed coding
scheme. We observe a tradeoff in coding efficiency between
the level of temporal decorrelation and the efficiency of mul-
tiview side information. A similar tradeoff is found between
the level of accurate motion compensation and the efficiency
of multiview side information.
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