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This paper deals with the problem of designing linear time-varying (LTV) finite-impulse response zero-forcing (ZF) equalizers for
time- and frequency-selective (so-called doubly selective) single-input multiple-output (SIMO) channels. Specifically, relying on
a basis expansion model (BEM) of the rapidly time-varying channel impulse response, we derive the canonical frequency-domain
representation of the minimal norm LTV-ZF equalizer, which allows one to implement it as a parallel bank of linear time-invariant
filters having, as input signals, different frequency-shift (FRESH) versions of the received data. Moreover, on the basis of this
FRESH representation, we propose a simple and effective low-complexity version of the minimal norm LTV-ZF equalizer and
we discuss the relationships between the devised FRESH equalizers and a LTV-ZF equalizer recently proposed in the literature.
The performance analysis, carried out by means of computer simulations, shows that the proposed FRESH-LTV-ZF equalizers
significantly outperform their competitive alternative.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

In many wireless applications, such as high-speed Internet
access, networking, digital audio, and video broadcasting,
the increasing need to provide either high data-rate services
for low-mobility users or low data-rate services for high-
mobility users has made Doppler spreading and intersymbol
interference the main performance limiting factors.

The design of low-complexity reliable detection strategies
for wireless communication systems operating over time-
and frequency-selective, so-called doubly selective, channels
requires an accurate description of the time-varying be-
haviour of the transmission media. Several approaches for
modeling finite-impulse response (FIR) linear time-varying
(LTV) channels have been developed in the last decade (see
[1] for a comprehensive review). Among all the others, de-
terministic basis expansion models (BEMs) [2–6] seem to
be favoured for representing rapidly time-varying channels,
since they offer well-structured parsimonious modeling of
channel time variations. Specifically, BEMs allow one to ex-
press the channel impulse response as a superposition of
time-varying complex exponentials with time-invariant co-
efficients. As pointed out in [1, 7], BEMs with complex ex-
ponentials approximate well the Jakes statistical model [8],
which is widely adopted for simulating wireless communica-
tion channels.

Recently, relying on a BEM to represent doubly se-
lective channels, serial and block FIR-LTV equalizers have
been developed in [9], which are synthesized by resorting
to both zero-forcing (ZF) and minimum mean-square error
(MMSE) criteria. In particular, it was argued in [9] that
since a doubly selective channel cannot be diagonalized by
a channel-independent transformation, the implementation
of block LTV equalizers, which collect and process in blocks
all the available data in the received frame, leads to an un-
sustainable computational complexity. On the other hand,
serial LTV equalizers, which process few data at a time, ex-
hibit a good tradeoff between complexity and performance.
Given these considerations, in this paper, we focus atten-
tion exclusively on serial LTV equalizers and, in particular,
we consider only ZF solutions. This last choice is motivated
by the fact that, for many modulation formats, the bit er-
ror rate performances of ZF equalizers can be evaluated in
closed form in the presence of additive white Gaussian noise
(AWGN), without resorting to any approximation; more-
over, the performances of MMSE equalizers strongly depend
on the existence of ZF solutions. Before [9], the synthe-
sis of LTV-ZF serial equalizers for doubly selective channels
has been considered in [1, 10]. In these papers, however,
the authors have derived only an implicit time-domain rep-
resentation of the equalizer weight vector, without fully ex-
ploiting the particular time variation of the BEM either for
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synthesis of LTV-ZF equalizers or for discussing the math-
ematical conditions assuring their existence. On the con-
trary, the authors in [9] have provided an explicit frequency-
domain representation of a LTV-ZF equalizer, by turning a
challenging LTV equalization problem in a simpler linear
time-invariant (LTI) filtering design, which involves only the
time-invariant coefficients of the BEM of the doubly selective
channel.

In this paper, borrowing concepts from the well-known
theory of polyperiodic linear filtering [11], we provide a
unified framework to design LTV-ZF equalizers for dou-
bly selective channels. In particular, we derive the canoni-
cal frequency-domain representation of the minimal norm
LTV-ZF equalizer, which leads to an implementation con-
figuration having an embedded predominant time-invariant
component. In this representation, the time-varying compo-
nent of theminimal norm LTV-ZF equalizer consists solely of
computing frequency-shift (FRESH) versions of the received
data. Themain advantage of the FRESH representation of the
minimal norm LTV-ZF equalizer is threefold: (i) it allows us
to establish many similarities to LTI conventional equaliza-
tion techniques; (ii) it allows us to individuate a simple and
effective low-complexity suboptimal implementation of the
minimal norm LTV-ZF equalizer; (iii) it allows us to provide
an alternative interpretation of the LTV-ZF equalizer pro-
posed in [9], by showing in particular that the frequency-
domain representation derived in [9] is not canonical and,
moreover, does not lead to the minimal norm LTV-ZF equal-
izer.

The paper is organized as follows. In Section 2, we in-
troduce the BEM of the wireless doubly selective channel
and discuss the assumptions that hold throughout the pa-
per. In Section 3, the time-domain representation of themin-
imal norm LTV-ZF equalizer is introduced, and the math-
ematical conditions assuring its existence are discussed. In
Section 4, we derive the frequency-domain representation of
the minimal norm LTV-ZF equalizer and synthesize its low-
complexity suboptimal implementation. In Section 5, we
discuss in depth the relationships between the proposed ap-
proaches and the previously proposed technique [9]. Section
6 provides numerical results, obtained by means of Monte
Carlo simulations, aimed at assessing the performances of
the proposed FRESH equalization algorithms and compar-
ing them with those of [9]. Concluding remarks are drawn
in Section 7.

1.1. Basic notations

Upper- and lower-case bold letters denote matrices and vec-
tors; the superscripts ∗, T , H , −1, −, and † denote the con-
jugate, the transpose, the Hermitian (conjugate transpose),
the inverse, the generalized (1)-inverse [12], and the Moore-
Penrose generalized inverse [12] of a matrix; C, R, and Z
are the fields of complex, real, and integer numbers; Cn [Rn]
denotes the vector-space of all n-column vectors with com-
plex [real] coordinates; similarly, Cn×m [Rn×m] denotes the
vector-space of all the n×mmatrices with complex [real] el-
ements; 0n, On×m, and In denote the n-column zero vector,

the n × m zero matrix, and the n × n identity matrix; ‖a‖
denotes the Frobenius norm of any vector a; rank(A),N (A),
and {A}i, j indicate the rank, the null space, and the (i, j)th
entry of any matrix A; A = diag[A11,A22, . . . ,Ann] is the
(block) diagonal matrix wherein {Aii}ni=1 are the block diag-
onal entries; vec(A) associates with any matrix A the vector
obtained by stacking its columns, E[·] denotes statistical av-
eraging; 〈a(k)〉K � (1/K)

∑k0+K−1
k=k0 a(k) denotes temporal av-

eraging of the arbitrary sequence a(k) over the time interval
{k0, k0 +1, . . . , k0 +K−1}, with k0 ∈ Z; and, finally, (·)P , �·�,
⊗, and j �

√−1 denote modulo-P operation, integer ceiling,
Kronecker product, and imaginary unit.

2. THEMATHEMATICALMODEL

Let us consider a single-input multiple-output (SIMO) dig-
ital communication system, equipped with one transmitter
antenna and N receiver antennas, employing linear modu-
lation with baud-rate 1/Ts and transmitting over a double
selective channel. The complex envelope of the received sig-
nal at the nth antenna, after filtering, ideal carrier-frequency
recovering, and baud-rate sampling, can be expressed as

rn(k) =
Lh∑

�=0
hn(k, �)s(k − �) + vn(k), (1)

where s(k), with k ∈ Z, is the sequence of the transmitted
symbols, hn(k, �) denotes the composite impulse response
(including transmitting filter, physical channel, and receiving
filter) of the LTV (discrete-time) channel corresponding to
the nth receiver antenna, which is assumed to be a causal FIR
filter of order Lh > 0, and vn(k) is additive noise at the out-
put of the receiving filter employed at the nth antenna. The
following assumptions will be considered throughout the pa-
per:

(A1) the information symbols s(k) are modeled as1 a QPSK
sequence of independent and identically distributed
(i.i.d.) random variables assuming equiprobable val-
ues in S = {±1/√2,± j/

√
2};

(A2) the noise samples {vn(k)}Nn=1 are modeled as mu-
tually independent i.i.d. complex circular zero-mean
Gaussian random sequences, with variance σ2v �
E [|vn(k)|2], independent of s(k).

Let us consider a K-length observation window K �
{k0, k0 +1, . . . , k0 +K −1}, with k0 ∈ Z denoting an arbitrary
time instant, we rely in this paper on the following BEM [6]
of the nth time-varying channel:

hn(k, �) =
Qh/2∑

q=−Qh/2

hq,n(�)e j(2π/P)qk,

for k ∈K , � ∈ {
0, 1, . . . ,Lh

}
,

(2)

1 This assumption is made only for the sake of simplicity and all the results
derived in the sequel can be straightforwardly extended to other linear
modulation formats.
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wherein the time-varying behaviour of the transmission me-
dia is represented by means of Qh + 1 harmonically related
complex exponentials with a frequency spacing of 2π/P. In
this representation, hq,n(�) are deterministic coefficients2 and

Qh � 2� fmaxPTs�, where fmax denotes the Doppler spread
of the channel defined as in [13]. Note that, in compari-
son with previously proposed BEMs (see, e.g., [4]), wherein
hn(k, �) is represented over theK-length observation window
K as a linear combination of complex exponentials with a
frequency spacing of 2π/K , that is, P = K , the BEM con-
sidered in (2) employs complex exponentials with a smaller
frequency spacing of 2π/P ≤ 2π/K , that is, P ≥ K . As it is
shown in [6], reducing the frequency spacing between the
complex exponentials allows one to obtain more accurate
representations of hn(k, �) over the whole observation inter-
val K . The channel model (2) is particularly useful for the
receiver synthesis. First, since it turns out that fmaxTs 
 1
for many practical systems and, hence, Qh 
 P, model (2)
is a parsimonious representation of the time-varying trans-
mission channel. Second, since both Lh and fmax can be mea-
sured experimentally, model (2) shows that, for k ∈ K , the
nth time-varying channel hn(k, �) is unknown up to only
time-invariant scalars hq,n(�), which can be estimated blindly
[1, 10, 14] or by employing training sequences [15, 16].
In this paper, we assume that, for each antenna, the coef-
ficients {hq,n(�)}Qh/2

q=−Qh/2 are perfectly known at the receiver,
for all � ∈ {0, 1, . . . ,Lh}.

Finally, accounting for (2) and collecting the samples
{rn(k)}Nn=1 received by the N antennas into the vector r(k) �
[r1(k), r2(k), . . . , rN (k)]T ∈ CN , we obtain the compact
SIMO vector model

r(k)=
Lh∑

�=0

Qh/2∑

q=−Qh/2

hq(�)s(k − �)e j(2π/P)qk + v(k), for k ∈K ,

(3)

where hq(�)�[hq,1(�),hq,2(�), . . . ,hq,N (�)]T∈CN and v(k) �
[v1(k), v2(k), . . . , vN (k)]T ∈ CN .

3. LINEAR TIME-VARYING ZERO-FORCING
EQUALIZATION

In order to compensate for the channel-induced impair-
ments, we consider a causal LTV equalizer of order Le > 0,
whose output y(k) can be written in vector form as

y(k) = fH(k)z(k), (4)

where the vector f(k) ∈ CN(Le+1) collects all the equalizer pa-
rameters whereas, by virtue of (3), the input vector z(k) �
[rT(k), rT(k−1), . . . , rT(k−Le)]T ∈ CN(Le+1) can be explicitly

2 It is worth noting that although the coefficients hq,n(�) are allowed to
change with k0, for the sake of notation simplicity, we do not explicitly
indicate the dependence of hq,n(�) on k0.

expressed as

z(k) =

⎡

⎢
⎢
⎢
⎣

Qh/2∑

q=−Qh/2

JqHq
︸ ︷︷ ︸
H̃q

e j(2π/P)qk

⎤

⎥
⎥
⎥
⎦
s(k) +w(k), for k ∈K ,

(5)

with

Jq � diag
[
IN , e− j(2π/P)qIN , . . . , e− j(2π/P)qLeIN

]

∈ CN(Le+1)×N(Le+1),
(6)

s(k) �
[
s(k), s(k − 1), . . . , s

(
k − Le − Lh

)]T ∈ CLe+Lh+1,
(7)

w(k) �
[
vT(k), vT(k − 1), . . . , vT

(
k − Le

)]T ∈ CN(Le+1),
(8)

and, moreover, we have defined the block Toeplitz matrices

Hq �

⎡

⎢
⎢
⎢
⎢
⎣

hq(0) · · · hq
(
Lh
)

0N 0N · · · 0N
0N hq(0) · · · hq

(
Lh
)

0N · · · 0N
...

. . . · · · . . .
. . . · · · ...

0N · · · 0N 0N hq(0) · · · hq
(
Lh
)

⎤

⎥
⎥
⎥
⎥
⎦

∈ CN(Le+1)×(Le+Lh+1).
(9)

Our aim is to reliably estimate the transmitted symbol s(k −
d), with d ∈ {0, 1, . . . ,Le + Lh} denoting a suitable equaliza-
tion delay. To this goal, we focus attention exclusively on ZF
designs of the equalizer weight vector f(k). In Sections 3.1
and 3.2, the time-domain representation of the minimum-
norm LTV-ZF equalizer is discussed.

3.1. Time-domain representation of the
minimum-norm LTV-ZF equalizer

As it can be seen from (4) and (5), in the absence of noise,
imposing the ZF condition y(k) = s(k − d) leads to the fol-
lowing system of linear equations:

fH(k)

⎡

⎣
Qh/2∑

q=−Qh/2

H̃qe
j(2π/P)qk

⎤

⎦

︸ ︷︷ ︸
H̃(k)

= fH(k)H̃(k)= eTd , for k ∈K ,

(10)

with ed � [

d
︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ RLe+Lh+1. This system is

consistent [12] if and only if H̃H(k)[H̃H(k)]−ed = ed, for all
k ∈K . If the time-varying matrix

H̃(k) ∈ CN(Le+1)×(Le+Lh+1) (11)
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is full-column rank, that is, rank[H̃(k)] = Le + Lh + 1, for
all k ∈K , it results that H̃H(k)[H̃H(k)]− = ILe+Lh+1, for all
k ∈K , and, then, the system (10) turns out to be consistent
independently of the equalization delay d. In this case, the
minimal norm solution of (10), that is, the solution of the
constrained optimization problem

fopt(k) = argmin
f(k)

∥
∥f(k)

∥
∥2, subject to H̃H(k)f(k) = ed,

(12)

is given by (see, e.g., [12])

fopt(k) =
[
H̃H(k)

]†
ed

= H̃(k)
[
H̃H(k)H̃(k)

]−1
ed, for k ∈K .

(13)

Before providing sufficient conditions assuring the existence
of LTV-ZF equalizers, it is useful to derive, in the presence of
noise, the expression of the average bit error rate (ABER) for
an arbitrary equalizer f(k) satisfying the LTV-ZF condition
(10). We define the ABER of the detected symbol block as
follows:

ABER �
〈
Pe(k)

〉
K , (14)

where Pe(k) denotes the bit error probability associated with
the detection of the kth symbol s(k − d), for k ∈ K . By in-
voking assumptions (A1) and (A2), it can be shown [17] that

Pe(k) = Q

(
1

σv
∥
∥f(k)

∥
∥

)

, for k ∈K , (15)

where Q(x) � (1/
√
2π)

∫ +∞
x e−u2/2du denotes the Q function.

Relations (12), (14) and (15) show that, in the presence of
AWGN, the minimal norm equalizer fopt(k) is optimal, in the
sense that it achieves the minimum ABER among all the LTV
equalizers satisfying the ZF condition (10). In the sequel, we
refer to (13) as the time-domain representation of the optimal
LTV-ZF equalizer fopt(k).

Since the condition rank[H̃(k)] = Le + Lh + 1, for all k ∈
K , assures the consistency of the system (10) and, thus, the
existence of LTV-ZF equalizers, it seems natural now to inves-
tigate the rank properties of H̃(k). On this subject, we pro-
vide the following theorem.

Theorem 1 (existence of LTV-ZF equalizers). For a given in-
dex q ∈ {−Qh/2,−Qh/2 + 1, . . . ,Qh/2}, let zq,1, zq,2, . . . , zq,Mq

denote the 0 ≤Mq ≤ Lh common zeros of the N channel trans-

fer functions Hq,n(z) =
∑Lh

�=0 hq,n(�)z−� associated with the se-
quences {hq,n(�)}Lh�=0, for n ∈ {1, 2, . . . ,N}. Then, the time-

varying matrix H̃(k) is full-column rank, for all k ∈ Z, if the
following conditions are satisfied:

(C1) N(Le + 1) ≥ Le + Lh + 1;
(C2) zq1,n1 �= zq2,n2 , for all q1 �= q2 ∈ {−Qh/2,−Qh/2 +
1, . . . ,Qh/2} and for all n1 �= n2 ∈ {1, 2, . . . ,N}.

Proof. See Appendix A.

It is worth noting that, similarly to the results assuring
identifiability of linear time-invariant channels [18], condi-
tion (C1) requires a minimum number Nmin = 2 of receiver
antennas. Moreover, for a fixed number of antennas N ≥
Nmin, the minimum value Le,min of the equalizer order Le
is given by Le,min = Lh/(N − 1) − 1, which does not de-
pend on the number Qh + 1 of complex exponentials em-
ployed in (2) to represent the N time-varying channels; in
particular, forN = Nmin, one has Le,min = Lh − 1. Finally, ob-
serve that condition (C2) imposes a very mild constraint on
the time-invariant channels {hq,n(�)}Lh�=0, for q ∈ {−Qh/2,
−Qh/2 + 1, . . . ,Qh/2} and n ∈ {1, 2, . . . ,N}. Specifically, if
the polynomials Hq,1(z),Hq,2(z), . . . ,Hq,N (z) have no com-
mon zeros, that is,Mq = 0, for all q ∈ {−Qh/2,−Qh/2+1, . . . ,

Qh/2}, then the matrix H̃(k) turns out to be full-column
rank, for all k ∈ Z. More generally, the matrix H̃(k) is full-
column rank, for all k ∈ Z, even when, for a given index
q1 ∈ {−Qh/2,−Qh/2 + 1, . . . ,Qh/2}, the channel transfer
functions Hq1,1(z),Hq1,2(z), . . . ,Hq1,N (z) have 0 < Mq1 ≤ Lh
common zeros, provided that, for all n ∈ {1, 2, . . . ,N}, the
complex number zq1,n is not a common zero of Hq2,1(z),
Hq2,2(z), . . . ,Hq2,N (z), for all q2 �= q1 ∈ {−Qh/2,−Qh/2 +
1, . . . ,Qh/2}. Hereinafter, it is assumed that conditions (C1)
and (C2) are fulfilled.

3.2. Implementation issues

Let us return to the synthesis of the optimal LTV-ZF equalizer
given by (13). To obtain an estimate of the transmitted block
of symbols, one has to build the time-varying matrix H̃(k)
and, then, to compute the equalizer weight vector fopt(k) for
each value of k ∈ K , by performing various mathemati-
cal operations on H̃(k), such as, matrix multiplications and
inversions. Therefore, notwithstanding its simple form, the
time-domain implementation of fopt(k) may lead to a high
run-time complexity (in terms of floating point operations,
subscripting, and memory traffic), especially for large values
of the block size K .

In Section 4, by fully exploiting the particular time vari-
ation of the channel model (2), we derive the frequency-
domain representation of fopt(k), which represents the time-
frequency dual of the time-domain representation (13) and
allows us to show that the implementation of the optimal
LTV-ZF equalizer can be obtained by resorting to LTI filter-
ing of frequency-shifted versions of the received vector z(k).

4. FREQUENCY-DOMAIN REPRESENTATION
OF THE OPTIMAL LTV-ZF EQUALIZER

Although the LTV-ZF condition given by (10) is valid only
for k ∈ K , without loss of generality, it is mathematically
convenient for the synthesis of f(k) to regard (10) as a con-
dition defined for all values of k ∈ Z, but where only the K
values f(k0), f(k0 + 1), . . . , f(k0 + K − 1) of the synthesized
f(k) will be used for producing the equalizer outputs y(k),
for k ∈K .
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4.1. FRESH representation of the optimal
LTV-ZF equalizer

As a first step, accounting for (10), let us equivalently express
the time-varying matrix H̃(k) as follows:

H̃(k) =
P−1∑

p=0
Hpe

j(2π/P)pk, (16)

where we have defined the (matrix-valued) sequence

Hp �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̃p, for p ∈ {
0, 1, . . . ,Qh/2

}
,

ON(Le+1)×(Lh+Le+1), for p ∈ {
Qh/2 + 1,Qh/2

+2, . . . ,P−Qh/2− 1
}
,

H̃p−P , for p ∈ {
P −Qh/2,P −Qh/2

+1, . . . ,P − 1
}
.

(17)

Note that, when k ∈ Z, relation (16) can be regarded as the
discrete Fourier series (DFS) expansion of the periodically
time-varying matrix H̃(k), that is, H̃(k + P) = H̃(k), where
the Fourier coefficients Hp can be interpreted to be a se-
quence of finite length P, given by (17) for p ∈ {0, 1, . . . ,P −
1}, and zero otherwise. Consequently, the minimal norm
vector f(k) satisfying the LTV-ZF condition (10), for all k ∈
Z, turns out to be also periodic with period P and, thus, it
can be expressed by means of its DFS representation:

f(k) =
P−1∑

p=0
fpe j(2π/P)pk, (18)

where the P-length sequence {fp}P−1p=0 represent the Fourier
coefficients of f(k). By substituting (16) and (18) in (10), af-
ter straightforward manipulations, one obtains the equiva-
lent form

P−1∑

p=0

[ P−1∑

m=0
HH

(m−p)P fm

]

e j(2π/P)pk = ed, (19)

which comes from the property that the Fourier coefficients
of a product of two periodic sequences is the circular convo-
lution of their respective Fourier coefficients. Since identity
(19) must hold for all values of k ∈ Z, and the complex ex-
ponentials in (19) are linearly independent functions, we can
equate factors of corresponding exponential terms, obtaining
thus the following P systems of linear equations:

P−1∑

m=0
HH

(m−p)P fm =
⎧
⎨

⎩

ed, for p = 0,

0Le+Lh+1, for p ∈ {1, 2, . . . ,P − 1},
(20)

which can be concisely written in matrix form as follows:

HH
circψ = jd, (21)

where

Hcirc�

⎡

⎢
⎢
⎢
⎢
⎣

H0 HP−1 · · · H2 H1

H1 H0 · · · H3 H2
...

...
...

...
...

HP−1 HP−2 · · · H1 H0

⎤

⎥
⎥
⎥
⎥
⎦
∈ CNP(Le+1)×P(Le+Lh+1)

(22)

is a block circulant [19] matrix, the vector ψ � [fT0 , f
T
1 , . . . ,

fTP−1]T ∈ CNP(Le+1) collects all the Fourier coefficients of f(k),
and, finally, jd � [eTd , 0

T
Le+Lh+1, . . . , 0

T
Le+Lh+1]

T ∈ RP(Le+Lh+1).
Note that (21) represents the equivalent frequency-domain
representation of the time-domain LTV-ZF condition (10)
and, moreover, it can be shown that, under conditions (C1)
and (C2), the block circulant matrix Hcirc is full-column
rank. At this point, we note that, using the method of La-
grange multipliers, the potential solutions of the constrained
optimization problem (12) are all vectors f(k) satisfying the
linear system

f(k) + H̃(k)λ(k) = 0N(Le+1), (23)

where, when k ∈ Z, the Lagrange multiplier λ(k) ∈ CLe+Lh+1

turns out to be periodically time-varying with period P,
whose DFS expansion is given by

λ(k) =
P−1∑

p=0
λpe

j(2π/P)pk, (24)

with the P-length sequence {λp}P−1p=0 representing the Fourier
coefficients of λ(k). The periodically time-varying nature of
λ(k) can be readily proven from (23) by observing that, since
f(k) and H̃(k) are periodically time-varying with period P,
one has f(k + P)+H̃(k + P)λ(k + P)= f(k)+H̃(k)λ(k + P) =
0N(Le+1), for all k ∈ Z, which, accounting again for (23),
implies that H̃(k)λ(k + P) = H̃(k)λ(k) or, equivalently,
H̃(k)[λ(k) − λ(k + P)] = 0N(Le+1). Since H̃(k) is full-column
rank for any k ∈ Z (see Theorem 1), this matrix equation
admits the unique solution λ(k) = λ(k + P), for all k ∈ Z.
By substituting (16), (18), and (24) in (23), and reason-
ing as previously done, it can be verified that the equivalent
frequency-domain representation of (23) can be expressed as

ψ +Hcircχ = 0NP(Le+1), (25)

where the vector χ � [λT0 , λ
T
1 , . . . , λ

T
P−1]T ∈ CP(Le+Lh+1) col-

lects all the Fourier coefficients of λ(k). By solving (25) with
respect to vector ψ and substituting the result into the con-
straint (21), one obtains χopt = −(HH

circHcirc)−1jd which, in
its turn, can be substituted in (25), obtaining thus

ψopt �

⎡

⎢
⎢
⎢
⎢
⎣

f0,opt
f1,opt
...

fP−1,opt

⎤

⎥
⎥
⎥
⎥
⎦
= (

HH
circ

)†jd =Hcirc
(
HH

circHcirc
)−1jd.

(26)
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fH0,opt

fH1,opt

fHP�1,opt

z(k)

e
� j

2π
P

k

e
� j

2π
P

(P�1)k

yopt(k)

...
...

Figure 1: FRESH representation of the minimal norm LTV-ZF equalizer.

Remarkably, relation (26) shows that the equivalent frequ-
ency-domain representation of fopt(k) turns out to be the
minimal norm solution of the frequency-domain LTV-ZF
condition (21), that is,

ψopt = argmin
ψ
‖ψ‖2, subject toHH

circψ = jd. (27)

Furthermore, accounting for (4), (18), and (26), the output
yopt(k) of the optimal LTV-ZF equalizer fopt(k) can be written
as

yopt(k) = fHopt(k)z(k) =
[ P−1∑

p=0
fp,opte j(2π/P)pk

]H

z(k)

= ψH
optz̃(k), for k ∈K ,

(28)

where, by virtue of (5) and (22), the extended vector

z̃(k) � ζ(k)⊗ z(k) ∈ CNP(Le+1), (29)

with ζ(k) � [1, e− j(2π/P)k, . . . , e− j(2π/P)(P−1)k]T ∈ CP , can be
explicitly written as

z̃(k) =Hcircs̃(k) + w̃(k), (30)

where s̃(k) � ζ(k) ⊗ s(k) ∈ CP(Le+Lh+1) and w̃(k) � ζ(k) ⊗
w(k) ∈ CNP(Le+1). Relations (28) and (30) describe the FRE-
SH representation [11] of fopt(k), wherein the minimal norm
LTV-ZF equalizer is represented in the frequency-domain as
a parallel bank of LTI equalizers, each one of them is driven
by a different frequency-shifted version of z(k), and the out-
put yopt(k) is formed by summing the outputs of the equaliz-
ers. A graphical representation for this parallel configuration
is sketched in Figure 1.

4.2. Explicit expression of the optimal
Fourier coefficients

At first sight, it may seem that the inversion of the large ma-
trix HH

circHcirc ∈ CP(Le+Lh+1)×P(Le+Lh+1) must be performed
in order to obtain the optimal Fourier coefficients given by
(26). Interestingly, we show that, by suitably exploiting the

block circulant nature of Hcirc, the optimal Fourier coef-
ficients can be instead obtained by performing only inver-
sions of (Le + Lh + 1)-dimensional square matrices. To see
this, we preliminarily observe that, by using (22), the ma-
trixHH

circHcirc turns out to be also block circulant having the
form

HH
circHcirc

=

⎡

⎢
⎢
⎢
⎢
⎣

A0 A1 · · · AP−2 AP−1
AP−1 A0 · · · AP−3 AP−2
...

...
...

...
...

A1 A2 · · · AP−1 A0

⎤

⎥
⎥
⎥
⎥
⎦
∈CP(Le+Lh+1)×P(Le+Lh+1),

(31)

where Aq � ∑P−1
p=0HH

p H(p−q)P ∈ C(Le+Lh+1)×(Le+Lh+1). Ac-
counting for (17) and observing that the matrices {Aq}P−1q=0
are Hermitian symmetric, that is, Aq = AH

(P−q)P , one obtains

Aq =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P−1∑

p=0
HH

p H(p−q)P , for q ∈ {
0, 1, . . . ,Qh

}
,

O(Lh+Le+1)×(Lh+Le+1), for q ∈ {
Qh + 1,Qh + 2, . . . ,P

−Qh − 1
}
,

AH
P−q, for q ∈ {

P −Qh,P −Qh

+1, . . . ,P − 1
}
,

(32)

which shows that, practically, one has to evaluate only Qh +1
of the P matrices {Aq}P−1q=0 . At this point, we exploit the fact
that the inverse of a block circulant matrix is again block cir-
culant exhibiting a very nice structure [20]. Specifically, for
the problem at hand, we have that the inverse (HH

circHcirc)−1

is a block circulant matrix of the form
(
HH

circHcirc
)−1

=

⎡

⎢
⎢
⎢
⎢
⎣

B0 B1 · · · BP−2 BP−1
BP−1 B0 · · · BP−3 BP−2
...

...
...

...
...

B1 B2 · · · BP−1 B0

⎤

⎥
⎥
⎥
⎥
⎦
∈ CP(Le+Lh+1)×P(Le+Lh+1),

(33)
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where Bq � (1/P2)
∑P−1

p=0B−1
p e j(2π/P)pq ∈ C(Le+Lh+1)×(Le+Lh+1),

withBp � (1/P)
∑P−1

q=0 Aqe− j(2π/P)pq representing the discrete

Fourier transform (DFT) of the matrices {Aq}P−1q=0 . Account-
ing for (32), these DFT matrices can be explicitly written as

Bp = 1
P

(
A0 + Δp + ΔH

p

)
, for p ∈ {0, 1, . . . ,P − 1},

(34)

where

Δp �
Qh∑

q=1
Aqe

− j(2π/P)pq ∈ C(Le+Lh+1)×(Le+Lh+1). (35)

On the basis of (34), the matrices {Bq}P−1q=0 assume the final
form:

Bq � 1
P

P−1∑

p=0

(
A0 + Δp + ΔH

p

)−1
e j(2π/P)pq,

for q ∈ {0, 1, . . . ,P − 1}.
(36)

It is interesting to note that the computation of the matri-
ces {Bq}P−1q=0 requires the inversion of only the small matrices

A0 +Δp +ΔH
p ∈ C(Le+Lh+1)×(Le+Lh+1), for p ∈ {0, 1, . . . ,P − 1}.

Moreover, observe that, since A0 is a Hermitian matrix, the
matrices {Bq}P−1q=0 turn out to be Hermitian symmetric, that
is, Bq = BH

(P−q)P and, consequentially, in order to construct

the inverse (HH
circHcirc)−1, one has to evaluate in practice

only3 P/2 + 1 of the P matrices {Bq}P−1q=0 . At this point, by
substituting (22) and (33) in (26), and accounting moreover
for (17), it can be shown that, after some algebraic manipu-
lations, the optimal Fourier coefficients can be evaluated as

fp,opt =
Qh/2∑

m=−Qh/2

H̃mγ(p−m)P , for p ∈ {0, 1, . . . ,P − 1},

(37)

with γ(p−m)P � B(m−p)Ped ∈ CLe+Lh+1. It is worth noting that

γ � [γT0 , γ
T
1 , . . . , γ

T
P−1]

T ∈ CP(Le+Lh+1) turns out to be the so-
lution of the linear system (HH

circHcirc)γ = jd.
In summary, the FRESH design of the optimal LTV-ZF

equalizer can be obtained as follows.

Step 1. Given the channel vectors {hq(�)}Lh�=0, for q∈{−Qh/2,
−Qh/2 + 1, . . . ,Qh/2}, accounting for (5), (6) and (9), con-
struct the matrices {H̃q}Qh/2

q=−Qh/2 and, then, build the matrix-

valued zero-padded sequence {Hp}P−1p=0 in (17).

Step 2. Evaluate the matrices {Δp}P−1p=0 in (35), by first build-

ing the Qh + 1 matrices {Aq}Qh
q=0 in (32) and, then, construct

the matrices {Bq}P/2q=0 in (36).

3 In the sequel, for the sake of simplicity, we assume that P is an even inte-
ger.

Step 3. Construct the Fourier coefficients {fp,opt}P−1p=0 in (37)
and, finally, evaluate the equalizer outputs as yopt(k) =
ψH
optz̃(k), for k ∈K .

Some important remarks are now in order. First, al-
though the DFS expansion (16) of the time-varying chan-
nel matrix H̃(k) is characterized only by Qh + 1 nonzero
matrix-valued coefficients as it is apparent from (17), in gen-
eral, the DFS expansion (18) of the minimal norm LTV-ZF
weight vector fopt(k) is instead characterized by a number of
nonzero coefficients {fp,opt}P−1p=0 that are equal to P, that is,
it depends on the frequency spacing of the complex expo-
nentials employed in the channel model (2). This result is
basically due to the fact that the vector fopt(k) depends on
the channel matrix H̃(k) by means of the nonlinear relation-
ship (13). Second, in comparison with its time-domain rep-
resentation (13), the practical advantage of the FRESH rep-
resentation is that the time-varying component of the opti-
mal LTV-ZF equalizer consists only of multiplications of the
received vector z(k) by complex exponentials (see Figure 1),
whereas the remaining part of the equalizer is predominantly
time-invariant. Moreover, it can be observed that, account-
ing for (35) and (36), the evaluation of the optimal Fourier
coefficients (37) involves the calculus of DFT/inverse DFT
(IDFT), which can be efficiently computed by using fast
Fourier transform (FFT) algorithms. Notwithstanding this,
the overall implementation complexity of the FRESH repre-
sentation of the optimal LTV-ZF equalizer may be quite large
for large values of P.

4.3. Low-complexity implementation of the
optimal LTV-ZF equalizer

A simple and direct indication of the implementation com-
plexity of the FRESH representation of the optimal LTV-ZF
equalizer is given by the number P of Fourier coefficients em-
ployed in the DFS expansion (18) of the time-varying weight
vector fopt(k), since it determines the number of LTI equaliz-
ers to be used in Figure 1. Thus, a significant computational
saving can be obtained if the equalizer weight vector is rep-
resented with a series expansion by using only a small num-
ber of Fourier coefficients. On the basis of this observation,
we consider now the problem of optimally approximating
fopt(k) by means of the following linear combination of only4

Qh + 1 < Qe + 1 < P complex exponentials:

fsubopt(k) =
Qe/2∑

p=−Qe/2

fp,subopte j(2π/P)pk = Fsuboptξ(k), (38)

where Fsubopt � [f0,subopt, f1,subopt, . . . , fQe/2,subopt, f−Qe/2,subopt,
. . . , f−1,subopt] ∈ CN(Le+1)×(Qe+1) collects all the coefficients of
the series and

ξ(k) �
[
1, e j(2π/P)k, . . . , e j(2π/P)(Qe/2)k,

e− j(2π/P)(Qe/2)k, . . . , e− j(2π/P)k]T ∈ CQe+1.
(39)

4 It is assumed in the sequel that Qe is an even integer number.
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A simple and effective criterion to determine Fsubopt consists
of minimizing over one period the difference between fopt(k)
and its approximation fsubopt(k) in a least squares sense, that
is, let F be an arbitrary matrix belonging to CN(Le+1)×(Qe+1),
the matrix Fsubopt in (38) is chosen as the solution of the fol-
lowing unconstrained optimization problem:

Fsubopt = argmin
F

{ P−1∑

k=0

∥
∥fopt(k)− Fξ(k)

∥
∥2
}

. (40)

It is shown in Appendix B that the solution of the minimiza-
tion problem (40) is given by

fp,subopt �
⎧
⎨

⎩

fp,opt, for p ∈ {
0, 1, . . . ,Qe/2

}
,

fP+p,opt, for p ∈ {− 1,−2, . . . ,−Qe/2
}
.

(41)

Relation (41) extends to the multidimensional case, a well-
known result encountered in the theory of Fourier series for
scalar periodic functions. Specifically, if fopt(k) has a Fourier
representation, the best approximation fsubopt(k) using only
a reduced number of complex exponentials is obtained by
truncating the Fourier series of fopt(k) to the desired num-
ber of terms. The FRESH implementation of the suboptimal
LTV-ZF equalizer fsubopt(k) is similar to that of its optimal
counterpart fopt(k), with the important difference that, ac-
cording to (37), one has to evaluate only Qe + 1 Fourier co-
efficients. This implies that, with reference to Figure 1, the
FRESH implementation of fsubopt(k) is composed only by
Qe + 1 LTI equalizers, whose outputs are summed obtaining
thus the overall output

ysubopt(k) = fHsubopt(k)z(k)=
⎡

⎣
Qe/2∑

p=−Qe/2

fp,subopte j(2π/P)pk
⎤

⎦

H

z(k)

= ψH
subopt[ξ(k)⊗ z(k)], for k ∈K ,

(42)

where ψsubopt � vec(Fsubopt) ∈ CN(Le+1)(Qe+1). Given ψsubopt,
the implementation complexity, associated with the estima-
tion of each transmitted symbol, involves N(Qe + 1)(Le + 1)
multiply-add (MA) complex operations. The ABER perfor-
mance of the low-complexity LTV-ZF equalizer cannot be
evaluated exactly in closed form and will be investigated in
Section 6 by Monte Carlo computer simulations.

5. COMPARISONWITH THE LTV-ZF EQUALIZER
PROPOSED IN [9] ANDDISCUSSION

The LTV-ZF equalizer proposed in [9] can be interpreted as
a suboptimal version (in the presence of noise) of the FRESH
representation of the optimal LTV-ZF equalizer devised in
Section 4. The starting point of the approach of [9] is the

following series expansion of the equalizer weight vector:

fblm(k) =
Qe/2∑

p=−Qe/2

f p,blme j(2π/P)pk, for k ∈K , (43)

where only Qh + 1 < Qe + 1 < P complex exponentials
are employed, which is similar to that considered in (38). In
this case, however, the coefficients {f p,blm}Qe/2

p=−Qe/2 in (43) are
chosen so as to satisfy, in the absence of noise, the LTV-ZF
condition given by (10). To recast the synthesis of the LTV-
ZF equalizer proposed in [9] in our general framework, we
equivalently express the series expansion (43) as follows:

fblm(k) =
P−1∑

p=0
fp,blme j(2π/P)pk, for k ∈ Z, (44)

where

fp,blm �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f p,blm, for p ∈ {
0, 1, . . . ,Qe/2

}
,

0N(Le+1), for p ∈ {
Qe/2 + 1,Qe/2 + 2, . . . ,P

−Qe/2− 1
}
,

f p−P,blm, for p ∈ {
P −Qe/2,P −Qe/2

+1, . . . ,P − 1
}
.

(45)

Relation (44) is formally similar to the DFS expansion used
in (18) to derive the FRESH representation of fopt(k), with
the fundamental difference that, in this case, the Fourier co-
efficients {fp,blm}P−Qe/2−1

p=Qe/2+1 are imposed to be identically zero a

priori. Based on this observation, let ψ � [fT0 , f
T
1 , . . . , f

T
P−1]T

be an arbitrary vector belonging toCNP(Le+1); the vector coef-
ficients ψblm � [fT0,blm, f

T
1,blm, . . . , f

T
P−1,blm]

T ∈ CNP(Le+1) used
in [9] can be regarded as the solution of the following con-
strained optimization problem:

ψblm = argmin
ψ
‖ψ‖2,

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HH
circψ = jd,

fp = 0N(Le+1), for p ∈ {
Qe/2 + 1, . . . ,P

−Qe/2− 1
}
.

(46)

Note that, due to the constraints fp=0N(Le+1), for p∈{Qe/2+
1, . . . ,P−Qe/2−1}, the solutionψblm differs fromψopt given by

(27). Accounting for the partition Hcirc=[(H (1)
circ)

T , (H (2)
circ)

T ,

(H (3)
circ)

T]T of the block circulant channel matrix Hcirc given
by (22), with

H (1)
circ ∈ CN(Qe/2+1)(Le+1)×P(Le+Lh+1),

H (2)
circ ∈ CN(P−Qe−1)(Le+1)×P(Le+Lh+1),

H (3)
circ ∈ CN(Qe/2)(Le+1)×P(Le+Lh+1),

(47)

the solution of the optimization problem (46) is given by

ψblm =
(
HH

blm

)†jd =Hblm
(
HH

blmHblm
)−1jd, (48)
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where the vector ψblm ∈ CN(Qe+1)(Le+1) is obtained from ψblm
by picking up only its nonzero subvectors and Hblm =
[(H (1)

circ)
T , (H (3)

circ)
T]T ∈ CN(Qe+1)(Le+1)×P(Le+Lh+1). Finally, ac-

counting for (22), it can be shown that the middle part of
Hblm exhibits (Le + Lh + 1)(P − Qe − Qh − 1) zero columns
and, thus, the solution (48) can be further simplified as fol-
lows:

ψblm =Hblm

(
H

H
blmHblm

)−1
jd, (49)

where the matrix Hblm ∈ CN(Qe+1)(Le+1)×(Qe+Qh+1)(Le+Lh+1) is
obtained from Hblm by eliminating its zero columns and
jd � [eTd , 0

T
Le+Lh+1, . . . , 0

T
Le+Lh+1]

T ∈ R(Qe+Qh+1)(Le+Lh+1).
Some remarks are now in order about the relationships

between the LTV-ZF equalizer fblm(k) and the optimal LTV-
ZF equalizer fopt(k), as well as its low-complexity FRESH ver-
sion fsubopt(k).

Remark 1. Because of the additional constraints fp =
0N(Le+1), for p ∈ {Qe/2+1, . . . ,P−Qe/2−1} imposed in (46),
it follows that ‖ψblm‖ ≥ ‖ψopt‖ and, consequentially, the
LTV-ZF equalizer fblm(k) proposed in [9] cannot achieve the
minimum ABER in any operative scenario, that is, in both
slowly and rapidly time-varying channels. Strictly speaking,
although fblm(k) exactly satisfies the LTV-ZF condition (10),
it is suboptimal in the presence of noise and its ABER perfor-
mance can be significantly limited by an excessive noise en-
hancement. On the contrary, the proposed low-complexity
LTV-ZF equalizer fsubopt(k) does not suffer from this limi-
tation since, although it is suboptimal as fblm(k), it comes
from a least-squares approximation of fopt(k). This approach
allows one to reduce the implementation complexity of the
optimal equalizer fopt(k), by assuring a smaller noise ampli-
fication.

Remark 2. The LTV-ZF equalizer fblm(k) proposed in [9] can
be synthesized only if the channel matrixHblm is full-column
rank, that is, rank(Hblm) = (Qe + Qh + 1)(Le + Lh + 1). Suf-
ficient conditions assuring thatHblm is full-column rank are
given in [9], which turn out to be much more restrictive than
those provided in Theorem 1 for the synthesis of the optimal
LTV-ZF equalizer fopt(k). In particular, observe that the con-
dition rank(Hblm) = (Qe + Qh + 1)(Le + Lh + 1) necessarily
requires that N(Qe + 1)(Le + 1) ≥ (Qe +Qh + 1)(Le + Lh + 1),
which leads to using large values of Le andQe for small values
of the number N of antennas, even when the channel is far
underspread, that is, LhQh 
 P (see [9, Figure 4]). In other
words, with respect to fblm(k), the proposed LTV-ZF equaliz-
ers fopt(k) and fsubopt(k) can satisfactorily work by employing
smaller values of Le and Qe.

Remark 3. Similarly to the low-complexity equalizer fsubopt×
(k), the LTV-ZF equalizer fblm(k) of [9] exhibits a FRESH
low-complexity structure, employing only Qe + 1 LTI equal-
izers, whose overall output is given by yblm(k)=ψH

blm[ξ(k)⊗
z(k)], for k ∈ K . Thus, the equalizers fblm(k) and fsubopt(k)
exhibit the same implementation complexity. On the other
hand, the two equalizers are characterized by different design
complexities. The design of ψblm in (49) entails the direct

inversion of the matrix H
H
blmHblm, which requires O[(Qe+

Qh + 1)3(Le + Lh + 1)3] flops.5 As it is apparent from (36)
and (37), the complexity associated with the design of the
Fourier coefficients {fp,subopt}Qe/2

p=−Qe/2 given by (41) is mainly
influenced by the evaluation of the vectors γ(p−m)P , for p ∈
{−Qe/2, . . . , 0, . . . ,Qe/2} and m ∈ {−Qh/2, . . . , 0, . . . ,Qh/2};
in its turn, for a given value of p and m, the design of
γ(p−m)P is dominated by the inverse FFT (IFFT) of the ma-

trices {(A0 +Δp + ΔH
p )
−1}P−1p=0; specifically, the inversion of

{A0+Δp +ΔH
p }P−1p=0 entails P ·O[(Le +Lh +1)3] flops, whereas

the IFFT requires (Le + Lh + 1)2 · O(P log2 P) complex op-
erations. Roughly speaking, since in practice one has that
log2 P ≤ Le + Lh + 1, it results that the design complexity of
the equalizer fsubopt(k) is less than that of the equalizer pro-
posed in [9] for P < (Qe +Qh + 1)3/[(Qe +1)(Qh+1)]. How-
ever, it is worth observing from (32) that the circulant matrix
HH

circHcirc given by (31) exhibits a large sparse structure; by
remembering that the vector γ is the solution of the linear
system (HH

circHcirc)γ = jd, this sparsity structure can be ju-
diciously exploited for computing γ by resorting to iterative
methods [21]. So doing, a significant reduction of the com-
plexity associated with the design of the subvectors γ(p−m)P
of γ can be obtained, for any value of P.

Remark 4. Although fsubopt(k) represents the best (in the
least-squares sense) approximation of fopt(k), it satisfies only
approximatively the LTV-ZF condition (10) and, thus, un-
like the LTV-ZF equalizer proposed in [9], it does not assure
perfect symbol recovering in the absence of noise. This is the
acceptable price to pay for obtaining a noise-resistant subop-
timal LTV-ZF equalizer.

6. SIMULATION RESULTS

In this section, the ABER performance of the proposed sub-
optimal FRESH-LTV-ZF equalizer (referred to as ZF-subopt)
is investigated by means of Monte Carlo computer simula-
tions, and compared with the ABER performance of the opti-
mal FRESH-LTV-ZF equalizer (referred to as ZF-opt), as well
as with that of the LTV-ZF equalizer proposed in [9] (referred
to as ZF-blm).

In all the experiments, the following simulation setting
is adopted. The transmitted symbols s(k) and the noise se-
quences {vn(k)}Nn=1 are generated according to assumptions
(A1) and (A2), and the composite channels {hn(k, �)}Nn=1 are
3rd-order (i.e., Lh = 3) random LTV systems. Specifically, the
nth channel impulse response hn(k, �) is generated as (see,
e.g., [1, 14])

hn(k, �) = 1√
M

M−1∑

m=0
exp

{
j
[
2π fmaxkTs cos

(
αn,m,�

)]
+ φn,m,�

}
,

(50)

where M = 100, the random variables αn,m,� and φn,m,� are

5 We refer to [21] for the definition of a floating point operation (flop).
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mutually independent over n, m, and �, and uniformly dis-
tributed over [0, 2π]. Observe that, for a given n and �, rela-
tion (50) generates a random process whose power spectrum
approximates the Jakes’ spectrum arbitrarily well for increas-
ing the value of M (see [1] and references therein). Unless
otherwise specified, the doubly selective channel (50) is gen-
erated by using the following parameters: carrier frequency
f0 = 900MHz, symbol period Ts =160 μs, and mobile speed
vmax = 120 km/h. Thus, the maximum Doppler spread turns
out to be fmax = 100Hz. The block size is equal to K = 50
and P = 2K , which leads to Qh = 2� fmaxPTs� = 4. It should
be stressed that the channel model (2) is used only for synthe-
sizing the considered equalizers at the receiver, whereas the
received data are generated by resorting to the channel model
(50). For each antenna, the BEM coefficients {hq,n(�)}Qh/2

q=−Qh/2
are estimated from hn(k, �), for all � ∈ {0, 1, . . . ,Lh}, by em-
ploying a least-squares algorithm (see [9] for details) and,
then, they are used to design the equalizers under compari-
son. The signal-to-noise ratio (SNR) is defined, according to
(1)–(3), as follows (see [14]):

SNR �
〈
E
[∥
∥∑Lh

�=0 h(k, �)s(k − �)
∥
∥2
]〉

K
〈
E
[∥
∥v(k)

∥
∥2
]〉

K

, (51)

where h(k, �) � [h1(k, �),h2(k, �), . . . ,hN (k, �)]T ∈ CN . For
all the considered equalizers, the equalization delay d is cho-
sen as the integer value nearest to (Lh + Le)/2. All the results
are obtained by carrying out 104 independent trials, with
each run using a different set of data sequences, noise sam-
ples, and channel parameters [i.e., αn,m,� and φn,m,� in (50)].

Experiment 1 (ABER versusQe). In this experiment, we eval-
uated the performances of the low-complexity equalizers ZF-
subopt and ZF-blm as a function of the number Qe of com-
plex exponential used in the series expansion of their weight
vectors fsubopt(k) in (38) and fblm(k) in (43), ranging from
10 to 42. For comparison, we reported also the performance
of the ZF-opt equalizer, whose synthesis does not depend on
Qe since it employs all the P = 100 Fourier coefficients in
the DFS expansion of fopt(k). The number of receiver an-
tennas is set to N = Nmin = 2, whereas the order of all
the considered equalizers is equal to Le = 6 and, finally,
SNR = 20 dB. Results of Figure 2 evidence that, for Qe ≥ 22,
the proposed ZF-subopt equalizer exhibits performances that
are very close to the minimum ABER of the ZF-opt equalizer
and, moreover, significantly outperforms the ZF-blm equal-
izer [9], especially when small values of Qe are employed. In
particular, observe that the proposed ZF-subopt equalizer as-
sures an ABER equal to 10−3 for a value of Qe as small as 14,
whereas the approach [9] requires about 28 coefficients (i.e.,
the double) to achieve the same ABER accuracy.

Experiment 2 (ABER versus Le). In this experiment, we eval-
uated the performances of the methods under comparison
as a function of equalizer order Le ranging6 from 4 to 10. We

6 It is worth noting that, for the simulation setting at hand, both the ZF-
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Figure 2: ABER versus Qe (Ts =160 μs, fmax = 100Hz, N = 2,
Le = 6, and SNR = 20 dB).

considered the same simulation setting of the previous ex-
periment (i.e., N = 2 and SNR = 20 dB), and we set Qe = 18
for both the ZF-subopt and ZF-blm equalizers. It can be ob-
served from Figure 3 that the proposed ZF-subopt equalizer
exhibits a slight performance degradation with respect to the
optimal ZF-opt equalizer, while it significantly outperforms
the ZF-blm equalizer for all the considered values of Le. In-
terestingly, it should be observed that, in order to attain the
same ABER accuracy, the ZF-blm receiver [9] requires an
equalizer order Le that is greater than that of the proposed
ZF-subopt method of about two units.

Experiment 3 (ABER versus SNR (N = 2)). In the third ex-
periment, we evaluated the performances of the considered
equalizers as a function of SNR ranging from 0 to 25 dB.
First, we considered the same simulation setting of the pre-
vious experiments (i.e., N = 2, Le = 6, Qe = 18), whose
results are reported in Figure 4. From this figure, we can
observe that, for SNR ≤ 20 dB, the proposed ZF-subopt
equalizer again outperforms significantly the ZF-blm equal-
izer and, moreover, performs very close to the minimal norm
ZF-opt equalizer. The performance gain of the ZF-subopt
equalizer with respect to the ZF-blm equalizer becomes less
pronounced when the SNR approaches 25 dB. As previously
announced in Remark 4, this behavior stems from the fact
that, unlike the ZF-blm equalizer, the ZF-subopt equalizer
does not assure perfect symbol recovery in the absence of
noise; however, our simulation results (not reported here)

opt and ZF-subopt equalizers can work with Le ≥ 2 (see condition (C1));
in contrast, the ZF-blm equalizer proposed in [9] does not exist [i.e., the
matrixHblm in (49) cannot be full-column rank] for Le ∈ {2, 3}.
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Figure 3: ABER versus Le (Ts =160 μs, fmax = 100Hz, N = 2, Qe =
18, and SNR = 20 dB).
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Figure 4: ABER versus SNR (Ts =160 μs, fmax = 100Hz, N = 2,
Le = 6, and Qe = 18).

show that the ZF-blm equalizer outperforms the ZF-subopt
one only for large values of the SNR, which are beyond the
range of practical interest.

Experiment 4 (ABER versus SNR (N = 3)). To further cor-
roborate the performances of the equalizers under compar-
ison, we considered in Figure 5 a different simulation set-
ting. Specifically, we employed at the receiver N = 3 an-
tennas, and we set Qe = 18 (as for the results of Figure 5)
and Le = 2. Results of Figure 5 show that, by increasing

2520151050
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Figure 5: ABER versus SNR (Ts =160 μs, fmax = 100Hz, N = 3,
Le = 2, and Qe = 18).

the number of receiver antennas, all the considered equal-
izers improve their performances and, remarkably, the pro-
posed ZF-subopt equalizer performs very close to the ZF-
opt equalizer, assuring ABER values smaller than 10−4 for
SNR > 15 dB.

Experiment 5 (ABER versus SNR (N = 2, different envi-
ronment)). In the last experiment, we considered a more
rapidly time-varying environment, wherein the doubly se-
lective channel (50) is generated by using the following
parameters: carrier frequency f0 = 3.6GHz, symbol period
Ts =50 μs, and mobile speed vmax = 240 km/h. Thus, the
maximum Doppler spread turns out to be fmax = 800Hz.
The block size is set equal to K = 50 and P = 2K , which
leads to Qh = 2� fmaxPTs� = 8. As for the rest, we consid-
ered the same simulation setting of Experiment 2 (i.e.,N = 2
and SNR = 20 dB) and we set7 Qe = 22 for both the ZF-
subopt and ZF-blm equalizers. Results of Figure 6 confirm
all the aforementioned considerations, by showing in partic-
ular that, in comparison with the previous environment, the
ZF-blm equalizer pays a greater performance penalty with re-
spect to both the ZF-opt and ZF-subopt equalizers.

7. CONCLUSIONS

We have considered the problem of synthesizing LTV-ZF
equalizers for both time- and frequency-selective channels.
Relying on a BEM of the rapidly time-varying channel

7 Note that, for the simulation setting at hand, unlike the ZF-subopt equal-
izer, the ZF-blm equalizer cannot work with Qe = 18.
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Figure 6: ABER versus SNR (Ts =50 μs, fmax = 800Hz, N = 2,
Le = 6, and Qe = 22).

impulse response, we have derived the canonical frequency-
domain representation of the minimal norm LTV-ZF equal-
izer, which assures the best ABER performances in the pres-
ence of AWGN, and we have discussed themathematical con-
ditions assuring its existence. The frequency-domain repre-
sentation of the optimal LTV-ZF equalizer has the advantage
that, unlike its time-domain counterpart, exhibits many sim-
ilarities to time-invariant filtering, wherein the time-varying
component of the equalizer consists of computing FRESH
versions of the received data vector. On the basis of this
FRESH representation, we have proposed a low-complexity
LTV-ZF equalizer, whose synthesis is based on a truncated
DFS expansion of the equalizer weight vector, and, more-
over, we have provided an alternative interpretation of the
LTV-ZF equalizer recently proposed in [9]. A comparative
study between the three LTV-ZF approaches has shown that,
for all the SNR values of practical interest, the proposed low-
complexity LTV-ZF equalizer is able to significantly outper-
form the equalizer [9], especially when a limited number Qe

of Fourier coefficients are used in the truncated DSF expan-
sion and/or small values of the equalizer order Le are em-
ployed.

APPENDICES

A. PROOF OF THEOREM 1

Let us preliminarily characterize the null space N [H̃(k)] of
the matrix H̃(k) defined in (10). For a given k ∈ Z, an ar-
bitrary nonnull vector ξ ∈ CLe+Lh+1 belongs to the subspace
N [H̃(k)] if and only if

H̃(k)ξ =
Qh/2∑

q=−Qh/2

[
H̃qξ

]
e j(2π/P)qk = 0N(Le+1). (A.1)

Since the complex exponentials in (A.1) are linearly inde-
pendent functions, the previous equation holds if and only
if H̃qξ = 0N(Le+1), for all q ∈ {−Qh/2,−Qh/2 + 1, . . . ,Qh/2}.
In other words, a vector ξ �= 0Le+Lh+1 belongs to the subspace
N [H̃(k)] if and only if

ξ ∈
Qh/2⋂

q=−Qh/2

N
(
H̃q
)
. (A.2)

Thus, if condition (C1) holds, the matrix H̃(k) turns out to
be full-column rank, for all k ∈ Z, if and only if the null
spaces of the matrices {H̃q}Qh/2

q=−Qh/2 intersect only trivially,
that is,

Qh/2⋂

q=−Qh/2

N
(
H̃q
) = {

0Le+Lh+1
}
. (A.3)

Since, by virtue of (5), H̃q=JqHq and the block diagonal ma-

trices {Jq}Qh/2
q=−Qh/2 are nonsingular, it follows that N

(
H̃q
) =

N
(
Hq
)
, for all q ∈ {−Qh/2,−Qh/2 + 1, . . . ,Qh/2}. At this

point, we rely on a well-known identifiability result (see,
e.g., [22]) encountered in blind equalization of SIMO FIR
systems. Specifically, for a given q ∈ {−Qh/2,−Qh/2 + 1,
. . . ,Qh/2}, let Hq,n(z) � ∑Lh

�=0 hq,n(�)z−� denote the N
channel transfer functions associated with the sequences
{hq,n(�)}Lh�=0, for n ∈ {1, 2, . . . ,N}, the null space N

(
Hq
)

of the block Toeplitz matrix Hq is empty if the poly-
nomials Hq,1(z),Hq,2(z), . . . ,Hq,N (z) have no common ze-
ros. On the other hand, if the channel transfer functions
Hq,1(z),Hq,2(z), . . . ,Hq,N (z) have 0 < Mq ≤ Lh common
zeros zq,1, zq,2, . . . , zq,Mq , then N (Hq) is spanned by the Mq

generalized Vandermonde vectors [22] corresponding to
zq,1, zq,2, . . . , zq,Mq . On the basis of this result, we can infer
that, if zq1,n1 �= zq2,n2 , for all q1 �= q2 ∈ {−Qh/2,−Qh/2 +
1, . . . ,Qh/2} and for all n1 �= n2 ∈ {1, 2, . . . ,N}, then condi-
tion (A.3) is surely satisfied and, thus, rank[H̃(k)] = Le+Lh+
1, for all k ∈ Z.

B. CALCULUS OF THEMATRIX Fsubopt

The object function L(F) � ∑P−1
k=0 ‖fopt(k) − Fξ(k)‖2 of the

problem (40) can be written as

L(F) =
P−1∑

k=0

[∥
∥fopt(k)

∥
∥2−fHopt(k)Fξ(k)−ξH(k)FH fopt(k)

+ ξH(k)FHFξ(k)
]
.

(B.1)

By neglecting the terms that do not depend on F and in-
voking the properties of the trace operator [19], one obtains
that minimizing the object function (B.1) is equivalent to
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minimizing the following one:

L′(F) = trace
(
FΩFH

)− trace(FΣ)− trace
(
ΣHFH

)
,
(B.2)

where

Ω �
P−1∑

k=0
ξ(k)ξH(k) ∈ C(Qe+1)×(Qe+1),

Σ �
P−1∑

k=0
ξ(k)fHopt(k) ∈ C(Qe+1)×N(Le+1).

(B.3)

Thematrix Fsubopt minimizing the object function (B.2)must
satisfy [23] the matrix equation FsuboptΩ = ΣH , which can be
decomposed in Qe + 1 vector equalities as follows:

Fsubopt
P−1∑

k=0
ξ(k)e− jωpk =

P−1∑

k=0
fopt(k)e− jωpk, (B.4)

for p∈{−Qe/2,−Qe/2 + 1, . . . ,Qe/2}, where ωp= (2π/P)p if
p∈{0, 1, . . . ,Qe/2}, else ωp= (2π/P)(P + p) if p ∈ {−1,−2,
. . . ,−Qe/2}. Since all the entries of vector

∑P−1
k=0 ξ(k)e− jωpk

are zero, except for its [(p)Qe+1+1]th component that is equal
to P, one has

fp,subopt = 1
P

P−1∑

k=0
fopt(k)e− jωpk, (B.5)

for p ∈ {−Qe/2,−Qe/2 + 1, . . . ,Qe/2}, which, by definition,
is equal to fp,opt if p ∈ {0, 1, . . . ,Qe/2}, else is equal to fp+P,opt
if p ∈ {−1,−2, . . . ,−Qe/2}.
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