
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 48012, Pages 1–10
DOI 10.1155/ASP/2006/48012

Design of Experiments for Performance
Evaluation and Parameter Tuning
of a Road Image Processing Chain

Yves Lucas,1 Antonio Domingues,2 Driss Driouchi,3 and Sylvie Treuillet4

1 Laboratoire Vision et Robotique, IUT Mesures Physiques, Université d’Orléans, 63 avenue de Lattre, 18020 Bourges cedex, France
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4Laboratoire Vision et Robotique, Polytech Orléans 12, rue de Blois BP 6744 45067 Orleans, France

Received 1 March 2005; Revised 20 November 2005; Accepted 28 November 2005

Tuning a complete image processing chain (IPC) is not a straightforward task. The first problem to overcome is the evaluation
of the whole process. Until now researchers have focused on the evaluation of single algorithms based on a small number of test
images and ad hoc tuning independent of input data. In this paper, we explain how the design of experiments applied on a large
image database enables statistical modeling for IPC significant parameter identification. The second problem is then considered:
how can we find the relevant tuning and continuously adapt image processing to input data? After the tuning of the IPC on
a typical subset of the image database using numerical optimization, we develop an adaptive IPC based on a neural network
working on input image descriptors. By testing this approach on an IPC dedicated-to-road obstacle detection, we demonstrate
that this experimental methodology and software architecture can ensure continuous efficiency. The reason is simple: the IPC is
globally optimized, from a large number of real images and with adaptive processing of input data.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. ADAPTIVE PROCESSING IN VISION SYSTEMS

Designing an image processing application involves a se-
quence of low- and medium-level operators (filtering, edge
detection and linking, corner detection, region growing, etc.)
in order to extract relevant data for decision purposes (pat-
tern recognition, classification, inspection, etc.). At each step
of the processing, tuning parameters have a significant influ-
ence on the algorithm behavior and the ultimate quality of
results. Thanks to the emergence of extremely powerful and
low cost processors, artificial vision systems now exist for de-
manding applications such as video surveillance or car driv-
ing where the scene contents are uncontrolled, versatile, and
rapidly changing. The automatic tuning of the IPC has to be
solved, as the quality of low-level vision processes needs to be
continuously preserved to guarantee high-level task robust-
ness.

The first problem to be tackled in order to design adap-
tive vision systems is the evaluation of image processing
tasks. Within the last few years, researchers have proposed
rather empirical solutions [1–7]. When confirmed a ground
truth is available, it is possible to compare directly this ref-
erence to the results obtained by using a specific metric.

Sometimes no ground truth exists or data are uncertain and
either application experts are needed for qualitative visual as-
sessment or empirical numerical criteria are searched for. All
these methods consider only one operator at a time [8–11].
However the separate tuning of each operator rarely leads to
an optimal setting of the complete IPC. Moreover, image op-
erators are generally tested on a too small number of test im-
ages, sometimes even on artificial noised images, to evalu-
ate algorithm efficiency. This cannot replace a large real im-
age base, for IPC testing. So, how can we evaluate on a great
number of images a sequence of image processing operators
involving numerous parameters?

A second problem remains unsolved: how to find the rel-
evant tuning and hence how to adapt image processing to
maintain a constant quality of results? As real time process-
ing is executed by electronic circuits, this hardware must in-
corporate programmable facilities so that operator parame-
ters can be modified in real time. Artificial retinas as well as
intelligent video cameras already enable the tuning of some
acquisition parameters. Concerning the processing parame-
ters, the amount of computing necessary to distinguish the
effect on the results of modifying several parameters seems at
the first glance dissuasive, as separate images require different
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parameters. It should be noted that the choice of operators
here still appeals to the experimenter but an other research
work also examines the possibility of its automation [12, 13].

In this paper, we show how to overcome these problems
using an experimental approach combining statistical mod-
eling, numerical optimization, and learning. We illustrate
this approach in the case of an IPC dedicated to line extrac-
tion for road obstacle detection.

2. METHODOLOGYOVERVIEW

To evaluate a full image processing chain, including a series of
low- and medium-level operators with tunable parameters,
instead of focusing on single algorithms, we need to adopt
a global optimization approach. The first step is the evalu-
ation of the IPC performance, depending on the significant
tuning parameters to be identified and on their interactions.
The second step is the parameter tuning itself which should
enable adaptive image processing. It implies relating input
image content to the optimal tuning parameter for each par-
ticular image. These two steps are described in the following
paragraphs.

2.1. Performance evaluation

Building a specific and exhaustive database for the target ap-
plication is the preliminary and delicate step to achieve rel-
evant tuning of the IPC. Indeed, this database covering all
situations is required during modeling, optimization, and
control learning tasks. From a statistical point of view, se-
lected images should reflect the frequency of any image con-
tent during the IPC operation and express all its versatility.

A typical subset of this database is then processed by the
IPC. Output evaluation is here necessary in off-linemode, for
IPC understanding and adjustment. This type of evaluation
has been extensively researched even if the studies involve a
single algorithm at each time. It remains a critical step, as
each IPC is specific and requires its own evaluation criteria.
The evaluation can be supported by a ground truth or can be
unsupervised when empirical criteria are used instead.

Testing all the tuning parameters on the whole image
database would lead to a combinatorial explosion; andmore-
over a physical model of that IPC could still not be deduced.

As it is necessary to model the influence of the IPC pa-
rameters, we decided to build instead a statistical model.

Modeling the parameter influence is carried out through
the design of experiments [14]. This is a common tool in en-
gineering practice but has been only recently introduced for
machine vision applications [15, 16]. It consists in model-
ing the effects of simultaneous changes of IPC parameters
with a minimum number of trials. In the simplest case, only
two modes are allowed for each parameter: a low one and a
high one, whichmeans that the parameter bounds need to be
carefully set. During the experiments, the IPC is considered
as a black box whose factors (Xi tuning parameters) influence
the effects (Yi values of the criteria for output image evalua-
tion) (Figure 1).
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Figure 1: System modeling.

Note that tuning only one parameter at a time can not
lead to an optimal setting as some parameters may be inter-
dependent. Hence, the goal is to identify which of the pa-
rameters are really significant and their strong interactions
with respect to the effects. Generally a polynomial model is
adopted, whose coefficients ai j are estimated by least square
methods:

y = a0 + a1x1 + · · · + akxk + a12x1x2 + · · · + ak−1kxk−1xk.
(1)

The interpretation of the experiments by variance analysis
confirms whether the model obtained is really meaningful
or not. The amount of computing remains very high as the
same trials must be repeated on a large number of test im-
ages to obtain statistical evidence. Hence, no optimal tun-
ing is obtained for a given image, only an average tuning for
the IPC itself. The parameters influencing significantly the
quality of results are identified, and the strong interactions
among them are also detected, so that only the latter are con-
sidered for further IPC programing tasks.

2.2. Parameter tuning

For each particular test image of the database, the optimal
tuning of the IPC parameters still needs to be sought. This
is typically an optimization process which still involves the
output evaluation. The average tuning obtained previously
provides valid initial conditions to the search process and the
high and low modes of the significant parameters bound the
exploration domain.

To obtain the optimal parameter tuning for the IPC, we
look for methods not based on the local gradient computing
as it is not available here. The simplex method enables to ex-
plore the experimental domain and to reach maxima using a
simple cost function to guide the search direction [17]. Ex-
perimentally, a figure of n+1 points of an n-dimension space
is moved and warped through geometric transformations in
the parameter space, until a stop condition on the cost func-
tion is verified.

This produces a set of test images with optimal tuning
parameters. But for real time purposes, the simplex method
cannot be used for IPC tuning as it is time consuming. A so-
lution consists in extracting descriptors from input images
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Figure 2: Architecture of an adaptive IPC.

that could be correlated to the optimal tuning parameters
of these images. Such descriptors will be calculated also on
new incoming images, and we should expect that images with
similar descriptors will be processed correctly by the IPC dur-
ing inline mode, using similar tuning parameters. So, to con-
stitute a learning base, we compute the descriptors of the test
images with known optimal tuning parameters.

The selection of relevant descriptors is not an obvious
task and implies experimentation. The idea is that such de-
scriptors should extract data which is significant for the tun-
ing parameters of the considered IPC. Input evaluation has
been investigated much less than output evaluation. Achiev-
ing an adaptive and automatic IPC tuning implies extracting
relevant descriptors from input images, that is to say, they are
closely related with IPC optimal tuning for each image. Im-
age descriptors also enable the initial dimension of the tuning
problem (image size in n2 pixels) to be lowered, as each image
pixel contributes to the tuning. Experimentally, a parameter
vector lowers this dimension to the gray-level number (≈ n),
using a histogram computed over the image.

The last step is the control module programing. This
module will compute in real time adapted tuning parame-
ters for new incoming images, using the descriptors of these
images.

A neural network is a convenient tool for estimating the
complex relation between the input image descriptors and
the corresponding values of the tuning parameters. As men-
tioned previously, the set of test images with optimal tun-
ing parameters constitutes the learning base of this network.
Then, if the selected descriptors are relevant for the tuning
purpose, the neural network should converge. The other part
of the image database is reserved for the test of the neural
network. The performance of the tuning will be steadily mea-
sured by comparing not the tuning parameters, but the IPC
output directly. In particular, we will compare the neural net-
work performance to simplex reference and also to the best
trials of the design of experiments.

Finally, after the preceding steps devoted to statistical
modeling, numerical optimization, and learning, the IPC is
toggled into an operational mode, and the image processing
tuning parameters are continuously adapted to the charac-
teristics of new input images. To summarize our approach
for IPC tuning, the architecture of an adaptive IPC can be
the following (Figure 2).

In the following, we illustrate our approach for IPC tun-
ing on a road image processing chain. This application will
also help us to introduce practical details of the methodol-
ogy. Naturally, input and output image evaluations will be
specific to the application, but the methodology is generic.

3. APPLICATION TO A ROAD IMAGE
PROCESSING CHAIN

3.1. IPC overview

This application is part of the French PREDIT program and
has been integrated in the SPINE project (intelligent passive
security) intended to configure an intelligent airbag system in
precrash situations. An on-board multisensor system (EEV
high speed camera + SICK scanning laser range finder) inte-
grated in a PEUGEOT 406 experimental car classifies poten-
tial front obstacles and estimates their collision course in less
than 100ms [18–20]. To respect this drastic real-time con-
straint, a low and medium image processing has been imple-
mented in the hardware with the support of the MBDA com-
pany. It consists of two ASIC circuits [21] embedded with
a DSP into an electronic board interfaced with the vehicle
CAN bus. As the first tests performed by the industrial car
part supplier FAURECIA demonstrated that a static tuning is
ineffective against road image variability, an automatic and
adaptive tuning based on the approach presented here has
been successfully adopted [22]. Eight reconfigurable param-
eters can be modified at any time: Canny-Deriche filter co-
efficient (X1), image amplification coefficient (X2), edge low
and high threshold values (X3,X4), the number of elemen-
tary automata for contour closing (X5), polygonal approxi-
mation threshold (X6), little segment elimination threshold
(X7), and the approximation threshold for horizontal and
vertical lines (X8) (Figure 3).

3.2. Output evaluation

The IPC should extract from the image horizontal and ver-
tical lines (Figure 4), which, after perceptual grouping, de-
scribe the potential obstacles in front of the experimental
vehicle. Then, output evaluation is based on the number,
spreading, and length of these segments inside a region of
interest (ROI) called W and specified by the scanning laser
range finder. We have proposed a quality evaluation criterion
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Figure 3: Tunable parameters of the road image processing chain.
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Figure 4: H/V line extraction.

called covering rate, which can be computed for different pa-
rameter tunings (Figure 5).

The covering rate r is defined as follows: for each hor-
izontal or vertical S segment, we introduce a rectangular-
shaped MS mask centered on this segment and whose width
is proportional to the length of that segment. The shape ratio
of the mask is a constant, experimentally tuned on road im-
ages, to obtain significant variations of r for different tunings
without saturation effects (ROI entirely covered by masks).

For each image pixel (i, j) inW(nx- and ny-dimensions),
we define a function f (i, j) by

f (i, j) = 1 if ∃S ∈W | (i, j) ∈MS,

f (i, j) = 0 otherwise.
(2)

The covering rate (0 ≤ r ≤ 1) is then simply given by

r = 1
nxny

nx∑

i=1

ny∑

j=1
f (i, j). (3)

The higher covering rate is desirable as it indicates that
the ROI contains many large and well-distributed segments,
which are robust entities for car detection.

This criterion is dependent on the image content: if only
a few segments exist, r cannot reach high scores even after
optimal tuning, so r is considered as acceptable when most
of the obstacle edges have been well extracted. An intuitive
graphical interpretation exists for the covering rate: it is sim-
ply the part of the ROI which is covered by the superimposi-
tion of the masks associated to the set of segments detected
by the IPC; it will be expressed in this paper as a percentage.

3.3. Statistical modeling

Three experiment designs have been implemented inside the
modeling module: a2k−p factorial fractional design with 16
trials [23] to select the really significant parameters, a Rech-
schaffner design [24] with 37 trials, and finally a quadratic
design with 27 trials, by adding an intermediate zero mode
to detect nonlinearity. By using two modes for the tuning
of each parameter (Table 1), 28 different IPC outputs can be
compared from any given input image.

A preliminary task consists in specifying for each factor
an interval which bounds the experimental domain. Dur-
ing each experimental trial, every factor is set to its low or
high mode, depending on −1 or +1 value in the normalized
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Figure 5: IPC output evaluation.

Table 1: Modes for all the design of experiments.

Factor Parameter Modes

X1 Canny-Deriche filter 0.5 1

X2 Image amplification 33 63

X3 Edge low threshold 5 15

X4 Edge high threshold 15 30

X5 Contour closing 26 30

X6 Polygonal approximation 5 6

X7 Little chains threshold 5 10

X8 Slope threshold 1 3

experiment matrix. Therefore, each experiment design of ex-
periments is well defined by its experiment matrix whose line
number refers to the number of trials and column number
refers to the number of tested parameters. We present below
the experiment matrix and the covering rate for the set of
trials of the first design of experiments (Table 2).

These designs have been tested on 180 input images se-
lected from a video sequence of over 30 000 city and mo-
torway frames. A statistical model has been deduced and
validated by measuring R-Square and Mallow C(p) indi-
cator (Table 3). High R-Square and low C(p) indicate that
the number of significant parameters is three (X1,X6,X8). A
fourth parameter is not relevant as it does not appreciably
improve the R-Square and C(p) values; hence experimental
data will not fit better to the model with an additional pa-
rameter. The first design of experiments only models the sig-
nificant parameters without interactions:

Y = 51.1965 + 8.65X1 − 4.08X6 + 4.31X8. (4)

Table 2: Experiment matrix-fractional factorial 28−3 design: aver-
aged outputs.

Trial X1 X2 X3 X4 X5 X6 X7 X8 r (%)

1 −1 −1 −1 −1 −1 −1 −1 −1 35.535

2 −1 −1 −1 1 1 1 −1 1 40.310

3 −1 −1 1 −1 1 1 1 −1 27.859

4 −1 −1 1 1 −1 −1 1 1 42.436

5 −1 1 −1 −1 1 −1 1 1 47.328

6 −1 1 −1 1 −1 1 1 −1 30.284

7 −1 1 1 −1 −1 1 −1 1 44.034

8 −1 1 1 1 1 −1 −1 −1 37.743

9 1 −1 −1 −1 −1 1 1 1 46.517

10 1 −1 −1 1 1 −1 1 −1 40.469

11 1 −1 1 −1 1 −1 −1 1 50.680

12 1 −1 1 1 −1 1 −1 −1 33.464

13 1 1 −1 −1 1 1 −1 −1 35.169

14 1 1 −1 1 −1 −1 −1 1 49.255

15 1 1 1 −1 −1 −1 1 −1 39.715

16 1 1 1 1 1 1 1 1 44.842

High module values of the coefficients denote significant pa-
rameters as the Y is strongly affected when such parameter
toggles from low to high mode. The parameters with low
module values are eliminated in the polynomial expression.
It is interesting to note that this model is robust to image
degradations, as it is not modified when we shift the grey
levels of the test images two bit right (darker) or one bit left



6 EURASIP Journal on Applied Signal Processing

Table 3: Significance of the model.

Coef R-Square C(p) Factors

1 0.673 49.01 X8

2 0.827 22.29 X1, X8

3 0.938 3.48 X1, X6, X8

4 0.950 3.36 X1, X2, X6, X8

5 0.956 4.25 X1, X2, X4, X6, X8

6 0.960 5.47 X1, X3, X4, X6, X7, X8

7 0.961 7.18 X1, X2, X3, X4, X6, X7, X8

8 0.962 9.00 All

(brighter). The coefficients are slightly modified but the signs
of the coefficients and the significant parameters remain the
same.

We obtain for the left shift:

Y = 35.65 + 6.31X1 − 3.14X6 + 4.8X8 (5)

and for the right shift:

Y = 50.14 + 8.86X1 − 5.01X6 + 5.50X8. (6)

In Table 4, we added the internal IPC quality indicators on
the 28−3 design results: Y1 stands for the number of edge
points at OREC ASIC output, Y2 is the average length of
linked edge points at OPNI ASIC output, and Y3 and Y4

(resp., Y5 and Y6) are the number and average length of hor-
izontal (vertical) lines detected at DSP output, respectively.
It is clear that a separate tuning of the IPC components does
not give optimal results for the whole IPC. Hence, the evalu-
ation criteria for the IPC performance should only be com-
puted at the output.

The second design of experiments (Table 5) displays an-
other polynomial model that extracts the same three signifi-
cant parameters. As the number of trials is larger, it is possi-
ble this time to take the strongest parameter interactions into
account (Table 6). There is an interaction between two pa-
rameters if the tuning of one of the parameters works differ-
ently depending on the tuning of the second one. High mod-
ule values for the coefficients of XiXj products denote strong
interaction. Other products are eliminated in the polynomial
expression:

Y = 40.2 + 2.06X1 + 0.74X2 − 2.47X6

+ 5.30X8 − 0.92X1X2 + 0.95X6X8.
(7)

Finally, in the third design of experiments (Table 7), only the
three significant factors are tuned but a third mode is added
to take nonlinear effects into account.

The covering rates obtained for the different trials pro-
vide an average tuning for the IPC parameters. This static
tuning cannot be optimal for each given input image but
it enables initializing the Nelder & Mead optimization al-
gorithm based on the simplex method. This algorithm then
computes all the parameter optimal values corresponding to
each tested input image.

Table 4: Comparison of internal and output evaluation criteria.

Trial Y1 Y2 Y3 Y4 Y5 Y6 r (%)

1 786 8.49 6.41 27.1 6.02 11.6 35.53

2 749 5.86 6.15 29.2 6.24 13.6 40.31

3 777 6.44 5.23 26.2 3.67 12.2 27.86

4 738 10.1 6.32 30.1 6.01 13.7 42.44

5 887 9.17 8.00 28.9 6.92 14.0 47.33

6 869 6.09 6.08 25.8 3.96 12.0 30.28

7 883 5.13 7.71 27.9 7.52 13.3 44.03

8 868 7.80 7.26 26.5 6.63 11.7 37.74

9 1059 5.61 9.08 27.8 8.07 13.3 46.52

10 1034 8.67 8.77 26.2 7.47 11.4 40.47

11 1048 6.98 9.31 28.6 9.04 13.3 50.68

12 1022 4.79 7.63 25.1 5.62 11.3 33.46

13 1127 3.96 8.88 23.8 6.36 11.2 35.17

14 1104 5.77 10.5 26.2 9.62 13.0 49.25

15 1109 6.84 9.80 24.4 7.43 11.5 39.71

16 1091 4.64 10.0 25.6 8.02 13.2 44.84

3.4. Input evaluation

Before starting the learning of the control module, input de-
scriptors should be computed to characterize input images.
The homogeneity histogram [25] of the input image has been
selected to take in account regions with uniform shade (e.g.,
vehicle paintings) as well as homogeneous texture (e.g., road
surface) (Figure 6).

The homogeneity measure combines two local criteria:
the local contrast σi j in a d × d (d = 5) window centered on
the current pixel (i, j), and a gradient measure ei j in another
t × t (t = 3) window:

σi j =
√√√√√ 1
d2

p=i+(d−1)/2∑

p=i−(d−1)/2

q= j+(d−1)/2∑

q= j−(d−1)/2

(
gpq − μi j

)2
, (8)

where μi j is the average of the gray levels computed inside the
same window by

μi j = 1
d2

p=i+(d−1)/2∑

p=i−(d−1)/2

q= j+(d−1)/2∑

q= j−(d−1)/2
gpq. (9)

The measure of intensity variations ei j around a pixel (i, j) is
computed by Sobel operator:

ei j =
√
G2
x +G2

y , (10)

where Gx and Gy are the components of the gradient at pixel
(i, j) in x and y directions, respectively.

These measures are normalized using Vij = σi j /max σi j
and Ei j = ei j /max ei j . The homogeneity measure is finally
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Table 5: Experiment matrix-Rechschaffner design: averaged out-
puts.

Trial X1 X2 X3 X4 X5 X6 X7 X8 r (%)

1 −1 −1 −1 −1 −1 −1 −1 −1 35.47

2 −1 1 1 1 1 1 1 1 43.50

3 1 −1 1 1 1 1 1 1 45.13

4 1 1 −1 1 1 1 1 1 45.68

5 1 1 1 −1 1 1 1 1 45.01

6 1 1 1 1 −1 1 1 1 44.99

7 1 1 1 1 1 −1 1 1 47.73

8 1 1 1 1 1 1 −1 1 46.53

9 1 1 1 1 1 1 1 −1 33.46

10 1 1 −1 −1 −1 −1 −1 −1 40.99

11 1 −1 1 −1 −1 −1 −1 −1 41.12

12 1 −1 −1 1 −1 −1 −1 −1 40.98

13 1 −1 −1 −1 1 −1 −1 −1 41.69

14 1 −1 −1 −1 −1 1 −1 −1 34.56

15 1 −1 −1 −1 −1 −1 1 −1 40.87

16 1 −1 −1 −1 −1 −1 −1 1 51.06

17 −1 1 1 −1 −1 −1 −1 −1 38.03

18 −1 1 −1 1 −1 −1 −1 −1 37.75

19 −1 1 −1 −1 1 −1 −1 −1 38.19

20 −1 1 −1 −1 −1 1 −1 −1 30.98

21 −1 1 −1 −1 −1 −1 1 −1 37.82

22 −1 1 −1 −1 −1 −1 −1 1 47.78

23 −1 −1 1 1 −1 −1 −1 −1 33.89

24 −1 −1 1 −1 1 −1 −1 −1 35.12

25 −1 −1 1 −1 −1 1 −1 −1 27.49

26 −1 −1 1 −1 −1 −1 1 −1 34.85

27 −1 −1 1 −1 −1 −1 −1 1 43.81

28 −1 −1 −1 1 1 −1 −1 −1 34.42

29 −1 −1 −1 1 −1 1 −1 −1 27.36

30 −1 −1 −1 1 −1 −1 1 −1 34.27

31 −1 −1 −1 1 −1 −1 −1 1 43.29

32 −1 −1 −1 −1 1 1 −1 −1 28.19

33 −1 −1 −1 −1 1 −1 1 −1 35.38

34 −1 −1 −1 −1 1 −1 −1 1 44.66

35 −1 −1 −1 −1 −1 1 1 −1 27.89

36 −1 −1 −1 −1 −1 1 −1 1 41.10

37 −1 −1 −1 −1 −1 −1 1 1 44.26

Table 6: Factor influence and interactions: Rechschaffner design.

X1 2.06 — — — — — — —

X2 −0.92 0.74 — — — — — —

X3 −0.05 0.08 −0.23 — — — — —

X4 0.07 0.16 0.03 −0.21 — — — —

X5 −0.04 −0.01 0.06 0.03 0.08 — — —

X6 0.04 0.05 0.01 0.13 0.06 −2.47 — —

X7 −0.21 −0.07 0.03 0.03 0.03 0.02 −0.34 —

X8 −0.04 0.05 −0.11 −0.09 −0.03 0.95 −0.03 5.30

X1 X2 X3 X4 X5 X6 X7 X8

Table 7: Experiment matrix-Quadratic design: averaged outputs.

Trial X1 X6 X8 r (%)

1 −1 −1 −1 41.22

2 0 −1 −1 44.74

3 +1 −1 −1 45.26

4 −1 0 −1 34.22

5 0 0 −1 38.00

6 +1 0 −1 39.26

7 −1 +1 −1 34.16

8 0 +1 −1 37.90

9 +1 +1 −1 39.10

10 −1 −1 0 47.97

11 0 −1 0 50.96

12 +1 −1 0 51.67

13 −1 0 0 43.23

14 0 0 0 45.56

15 +1 0 0 47.45

16 −1 +1 0 43.10

17 0 +1 0 45.58

18 +1 +1 0 47.33

19 −1 −1 +1 50.40

20 0 −1 +1 53.90

21 +1 −1 +1 55.02

22 −1 0 +1 46.85

23 0 0 +1 51.00

24 +1 0 +1 52.93

25 −1 +1 +1 46.87

26 0 +1 +1 51.13

27 +1 +1 +1 52.83
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(a) Input image.

(b) Local contrast image (Vij).

(c) Gradient image (Ei j).

(d) Homogeneity image (Hij).

Figure 6: Homogeneity measure.

expressed by

Hij = 1− Ei j ·Vij . (11)

Each pixel (i, j) with a Hij measure verifying Hij > 0.95 is
taken into account in the histogram computed on the 256
gray levels of the input image.

3.5. IPC control

We have used a simple multilayer perceptron as a control
module. It is composed of 256 input neurons (homogene-
ity histogram levels over the 256 gray levels), 48 hidden neu-
rons (maximum speed convergence during the learning), and
output neurons corresponding to the tuning parameters of

Table 8: Neural network programing.

Neural network Parameter MAE (%)
Covering rate
Absolute error

Learning

NN3 1.4 % 8.06

NN8 0.8 % 3.55

Test

NN3 23.7 9.53

NN8 28.6 13.17

Table 9: Comparison of several tuning methods.

Averaged covering rate (%) Computing cost

Static 34.84 0

NN8 45.17 Histogram

NN3 49.64 Histogram

Factorial design 50.68 16 trials

Rechs. design 51.06 37 trials

Quadratic design 55.02 27 trials

SPL8 58.34 100 trials

SPL3 59.17 60 trials

the IPC. One version of the neural network computes only
the significant parameters (NN3) and the other version com-
putes all tuning parameters (NN8).

During the learning step carried out on 75% of the input
images, the decrease of the mean absolute error (MAE) is ob-
served between optimal parameters and those computed by
the network (convergence over 400 iterations) (Table 8). It is
essential to control on the remaining 25% test images that
the tuning parameters computed by the network not only
are close enough to the optimal values, but also produce re-
ally good results at the IPC output; that is to say, line groups
are well detected. We can note that the neural network only
based on significant tuning parameters (NN3) is themost ro-
bust during the test step although errors are larger during the
learning step.

In (Table 9), we compare the output image quality (cov-
ering rates) averaged on the set of test images, depending on
the tuning process adopted. Eight modes have been tested: a
static one (without adaptive tuning, that is to say, an aver-
age tuning resulting from the design of experiments), three
modes based on the best trial of the design of experiments
presented previously, two modes for the neural networks us-
ing only significant parameters (NN3) or all tuning param-
eters (NN8) and two modes for the optimal tuning of sig-
nificant parameters (SPL3), or all parameters (SPL8) using
simplex algorithm.

In static mode, the covering rate is small. When the best
trial obtained from a design of experiments is used for the
tuning, the results are better. However, this method cannot
be applied in real-time situations. The results obtained with
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the simplex method are naturally optimal but the price for
that is the prohibitive time required for the parameter space
exploration.

Finally, the neural networks provide high values, espe-
cially the 3 output network, with a negligible computing cost
(≈ computation of the input image descriptors). We have in-
tentionally mentioned in this table the results obtained for an
eight-parameter tuning: we can easily verify that the tuning
of the 5 parameters considered little significant by the design
of experiments is useless.

4. CONCLUSION

These promising results obtained in the context of an im-
age processing chain (IPC) dedicated to road obstacle de-
tection highlight the interest of the experimental approach
for the adaptive tuning of an IPC. The main reasons for
this efficiency are simple: unlike previous work, the IPC is
globally optimized, from a great number of real test images
and by adapting image processing to each input image. We
are currently testing this approach on other applications in
which the image typology, image processing operators, and
data evaluation criteria for inputs as well as outputs are also
specific. This should enable us to unify and generalize this
methodology for better IPC performance.
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Défense, no. 46, pp. 29–38, 2000.

[8] S. Philipp-Foliguet, Evaluation de la segmentation, ETIS, Cer-
gy-Pontoise, France, 2001.

[9] N. Sebe, Q. Tian, E. Loupias, M. S. Lew, and T. S. Huang,
“Evaluation of salient point techniques,” in Proceedings of In-
ternational Conference on Image and Video Retrieval (CIVR
’02), vol. 2383, pp. 367–377, London, UK, July 2002.

[10] P. L. Rosin and E. Ioannidis, “Evaluation of global image
thresholding for change detection,” Pattern Recognition Letters,
vol. 24, no. 14, pp. 2345–2356, 2003.

[11] Y. Yitzhaky and E. Peli, “A method for objective edge detec-
tion evaluation and detector parameter selection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 8, pp. 1027–1033, 2003.

[12] V. Ropert, “Proposition d’une architecture de contrôle pour
un système de vision,” Thèse de l’Université René Descartes
(Paris 6), Paris, France, Décembre 2001.

[13] I. Levner and V. Bulitko, “Machine learning for adaptive im-
age interpretation,” in Proceedings of the 16th Innovative Appli-
cations of Artificial Intelligence Conference (IAAI ’04), pp. 870–
876, San Jose, Calif, USA, July 2004.

[14] P. Schimmerling, J.-C. Sisson, and A. Zaı̈di, Pratique des Plans
d’Expériences, Lavoisier Tec & Doc, Paris, France, 1998.

[15] S. Treuillet, “Analyse de l’influence des paramètres d’une
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