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1. INTRODUCTION

Communication over time-varying fading channels has been
studied intensively during the last decade [1-3]. The intro-
duction of turbo coding and channel interleaving gave rise
to astounding performance results. In particular, channel in-
terleaving [2—4] combined with coding can combat the ad-
verse conditions, originating from the time varying nature
of the channel, by spreading channel errors, caused by deep
fades, over the full length of the frame. When further ap-
plying multiple transmit and receive antennas (resulting in
a so-called MIMO transmission), high data rates and high
diversity gains can be achieved simultaneously. However, in
order to fully exploit these advantages, accurate knowledge
of the channel state is required. Although a lot of research ef-
fort has been focused on this subject [5-11], estimation and
tracking of fading channels remains a major challenge.

The Kalman filter/smoother [12] is a powerful tool to
obtain the minimum mean-squared error (MMSE) estimate
of a parameter varying according to a discrete-time linear
model. This technique is particularly convenient for pilot-
assisted estimation of a time-varying channel [7-9]. How-
ever, estimating a time-varying channel in the presence of
unknown data symbols is not possible by straightforward
Kalman filtering/smoothing. This has led to the introduc-
tion of several modified approaches for the estimation of a
time-varying channel (see [7, 10, 11] and references therein).
The problem related to the unknown symbols was circum-

vented by introducing an iterative decision-directed struc-
ture.

Several years ago, it has been recognized that Kalman
filtering can be interpreted as a message-passing algorithm
(the sum-product (SP) algorithm) on a factor graph [13].
Ever since, the SP algorithm has been applied to a various
number of estimation problems [14-17], capitalizing on the
concepts from [18, 19]: the algorithm iterates between de-
coding and estimation, whereby the estimator accepts infor-
mation from the decoder about the unknown data symbols.
In [14] the estimation of a linear dynamical noise process
is considered. In [15], the authors consider the tracking of
a time-varying complex gain for single-input single-output
(SISO) channels. A similar problem is considered in [16, 17],
namely, phase noise estimation. As elaborated upon, the SP
algorithm runs into practical difficulties in the presence of
unknown data symbols. The problems are alleviated by rep-
resenting and computing messages in an efficient fashion.

In this paper, we apply these ideas to the factor graph
of a flat-fading correlated multiple-input multiple-output
(MIMO) system with bit-interleaved coded modulation
(BICM). The temporal behavior of our channel is modeled
as a first-order autoregressive model [11, 20], whereas the
spatial correlation abides by the findings from [21, 22]. As
we will show, the complexity of the SP algorithm, in its ex-
act form, is exponential in the block length. To overcome
this problem, we introduce a suitable approximation. The
resulting code-aided estimator exploits information about
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FIGURE 1: Example factor graph.

the received signal as well as soft information from the de-
coder in a systematic manner.

This paper is organized as follows. A short introduction
on factor graphs is given in Section 2. The system model is
described in Section 3. This is followed by a factor graph rep-
resentation of the receiver and derivation of the SP algorithm
on this graph. In Section 5 the practical estimation algorithm
is derived. Before conclusions are drawn, the performance of
the proposed algorithm is illustrated in Section 6.

2. FACTOR GRAPHS AND THE SUM-PRODUCT
ALGORITHM

In this section, we briefly outline the basic ideas behind factor
graphs and the sum-product algorithm. We refer to [13, 23]
for a more profound analysis.

Factor graph

A factor graph is an elegant method to express the factoriza-
tion of a function depending on many variables. As an exam-
ple, consider the factor graph depicted in Figure 1. The graph
represents the factorization of the following function:

flxnx0,x3,x0) = fi(x,x2) fo(x2) f5(x2,x3,x4). (1)

We observe two types of nodes: function nodes (indicated
by squares) and variable nodes (indicated by circles). When
a function depends on some variable, there is a connection
between the corresponding function node and variable node.

It is interesting to note that any type of function is suit-
able for a factor graph representation, however, throughout
this paper, we will only consider the factorization of proba-
bility density functions.

Sum-product algorithm

In addition to visualizing the factorization of a (compli-
cated) function, factor graphs also allow us to compute
the marginals of that function in a systematic manner. The
marginal of a function f(xi,...,xy) with respect to the vari-
able x; is defined as

g,-(xi) = Z f(x1,...,x1\]), (2)
}

~{xi

where ~ {x;} represents the set containing all variables, ex-
cept x;. If (some of the) variables are continuous, the summa-
tions with respect to these variables in (2) should be replaced
by integrals.

The SP algorithm is a message-passing algorithm, that
provides an efficient way to compute the marginals (2). Mes-
sages are computed in the different nodes based on the in-
coming messages on these nodes. Depending on the type of
node, function node or variable node, the outgoing messages
are computed according to

variable node: piy, . 1, (x;) = 1_[ pf—x (Xi)s (3)
n#m
function node: pf, -y, (xi) = Z Son (Xm) n i~ £, (Xj).
~{xi} j#i
(4)

The message-passing algorithm is initiated at nodes of de-
gree 1, that is, nodes which are connected to one neighbor-
ing node only. Messages travel on the graph until all ingoing
and outgoing messages of all nodes have been computed. If
the graph contains no cycles, the algorithm is assured to con-
verge, and the marginal with respect to a certain variable is
obtained as the product of a pair of in- and outgoing mes-
sages on the corresponding variable node:

gi(xi) = Uxi— fu (xi) X Y fry—x; (xi)- (5)

If the graph does contain cycles, the algorithm becomes iter-
ative and the computed marginals are no longer assured to
be exact. The larger the cycles are, the more accurately the
computed marginals will approximate the true marginals.

3. SYSTEM MODEL

We consider a flat-fading MIMO channel with Nt transmit
and Np receive antennas. The transmitter, based on BICM (as
illustrated in Figure 2), encodes and interleaves a sequence
of L information bits b = [by,...,br]. The resulting coded
bits are mapped to a sequence of K coded symbol vectors a,
k =1,...,K, each of dimension Ny x 1. The nth entry of a,
denotes the coded symbol, transmitted by the nth antenna at
instant k. The mapping is described by a bijective mapping
function M : {0, 1}MNT — QN7 where Q denotes a 2M-ary
signal set, that is,

ak:M(ak[l])~~~)ak[MNT])> (6)
with {ax[m], m = 1,...,MNr} denoting the MNr coded
bits that are contained in the symbol vector ai. Irrespective of
the type of mapping function, whether it concerns a single-
or multidimensional [24] mapping, we can generally state
that each symbol vector a; depends on M N7 bits.

Note that inserting a bit interleaver between the encoder
and the modulator spreads the burst errors, introduced by
the time-selective fading channel. This way, the channel ap-
pears to be uncorrelated from the decoder’s point of view and
the time diversity provided by the fading channel is fully ex-
ploited.
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Assuming a flat-fading channel, the received signal after
matched filtering can be captured in the following discrete-
time model:

Yx = Hyag + wy, (7)

where yj is a Ng X 1 vector of received signal samples at time
instant k, Hy denotes the N X Nt channel matrix, a; de-
notes the Ny X 1 transmitted symbol vector, with an average
energy per symbol equal to E;, and wy is a Ng X 1 vector
of independent white complex Gaussian noise samples with
independent real and imaginary parts each with a variance
equal to Np/2. We introduce the matrix of received samples
Y = [y1,..., ¥kl

In practice, the channel coefficients corresponding to the
links between the different transmit and receive antennas will
not be (totally) uncorrelated. The impact of this spatial cor-
relation can be modeled by decomposing the channel matrix
at each time instant as follows [21, 22]:

H; = Zy*NzY2, (8)

where 21 and 2y denote the transmit and receive array cor-
relation matrices and where N denotes a Ny X Nt matrix
containing i.i.d. zero-mean, unit-variance complex Gaussian
elements. Various models have been proposed to character-
ize the temporal behavior of fading channels. Capitalizing on
the information-theoretic results from [25], we adopt a first-
order autoregressive model or Gauss-Markov model in this
paper. Accordingly, our fading channel can be modeled as

H; = aHi | +V1 — a2Z)? Ny 22, 9)

where Ny represents a Ng X Ny matrix containing i.i.d. zero-
mean, unit-variance complex Gaussian elements. We fur-
ther assume that the channel retains the steady state statistics
given by (8) at instant k = 1. Thus, Hy will be a stationary
process with the following properties, for all time instants k:

E [(Hin,m)) *Hl(cn’,m/)] _ Z%”’",)Z(Tm’m,),

. ) ) (10)

E[(H ) B ] = azi s,
where X" denotes the (1, m)th entry of the matrix X. The
coefficient a (with |a| < 1) is related to the Doppler spread f;
according to the first-order approximation of Jakes’ channel
model [26]:

a=Jo2nfiT), (11)

where T is the symbol period and Jy(-) denotes the zeroth-
order Bessel function of the first kind. The closer « to 1,
the smaller the Doppler spread and the slower the fading.
Channel model (9) is general and permits both temporal and
spatial correlations. Note that a similar channel model was
adopted in [20] for single-input multiple-output (SIMO)
channels. Several other channel models can be considered as
special cases of our model. The quasi-static correlated fading
model from [21, 22] is obtained by setting & = 1. The fast-
fading model from [11] with uncorrelated antennas can be
cast into this general model by setting £r = I'and 2g = L

To facilitate the analysis in the remainder of the paper,
we introduce a vector notation of the channel matrix h =
vec(HT), where the different rows of H are transposed and
stacked in the N7 Tx X 1 column vector h. Based on this new
notation, we can rewrite the channel state (9) in the following
manner:

hi = ahi_1 + V1 — 2520y, (12)

where we introduced the array correlation matrix X = Xz ®
Y1 (with ® denoting the Kronecker product) and where the
N7 Tg X 1 vector n contains i.i.d. zero-mean, unit-variance
Gaussian elements.

4. DETECTION AND ESTIMATION USING
THE SP ALGORITHM

The main objective of the receiver in digital communication
systems is to detect the transmitted information bits. In or-
der to do so, the receiver requires an accurate estimate of
the channel matrix (at each time instant). In this section,
we adopt the concepts introduced in Section 2 to the de-
tection and estimation problem at hand. The resulting al-
gorithm yields channel estimates and reveals how these es-
timates should be applied in order to detect the information
bits. The theoretical derivations from this section are trans-
formed into a practical algorithm in Section 5.

4.1. Factor graph

Considering the information bits b, the data symbol matrix
A = {ai}k-1, .k, and the set of all channel gain matrices H =

,,,,,

distribution as

p(b,AH|Y) < p(b)p(A | b)p(H)p(Y | A,H),  (13)
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FIGURE 3: Factor graph representation of p(b,A,H | Y), up to a multiplicative constant. The grey area is shown in detail in Figure 4.

where we assumed that the transmitted symbols are indepen-
dent with respect to the channel. This is a reasonable assump-
tion, since it is hard to obtain accurate channel knowledge at
the transmitter side in fast-fading channels and it is therefore
difficult to exploit channel knowledge for selecting optimal
transmission strategies. Observing the Markov chain behav-
ior of the channel (9), we can factor the joint probability of
the channel matrices at different time instants 1,..., K as fol-
lows:

K
p(H) = p(Hy) [ | p(Hx | Hxy), (14)
k=2

where p(Hy | Hi—) is fully determined by (9)

p(Hi | Hi-)

1
oc exp ( R [hk - ahk,l]HZ‘l[hk - (th—l]):
(15)

where hy = Vec(H,f). The flat-fading channel model (7) fur-
ther implies that

K
p(Y AH) =[] plyx | a, Hy)
k=1

K
1 2
o [T exp (= - llve ~ Hearl ),
k=1 No

(16)

where || - || denotes the Frobenius norm. Interpreting
p(b,A,H | Y) as a function of the variables b, A, and H and
taking the factorizations (13), (14), and (16) into account, we
obtain the factor graph depicted in Figure 3; for more clarity,
a detail of Figure 3 is presented in Figure 4. We assume that
the information bits are independent. The node marked C
represents the constraint on the coded bits, enforced by the
code. Together with the interleaver and the mapper nodes,
this part of the graph represents the factorization of p(A | b).

4.2. Sum-product algorithm

The SP algorithm permits us to compute the marginals of
p(b,A,H | Y). The purpose of the receiver consists in detect-
ing the information bits; hence, the only relevant marginals
are the a posteriori probabilities of the information bits
p(by 1Y) for all I. In order to recover these, we compute the
corresponding messages on the factor graph.

Unfortunately, the graph from Figure 3 contains cycles. It
is well known [13] that in this scenario (i) the SP algorithm
produces approximations of the marginals, instead of the ex-
act marginals, and (ii) the SP algorithm becomes iterative.
Although suboptimal, the SP algorithm still produces good
results, as long as the cycles are not too short, and sufficiently
many iterations are performed [23].

We will distinguish two phases within the iterative algo-
rithm: a detection phase and an estimation phase. Informa-
tion about the coded symbols and the channel is exchanged
between these two stages.
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FIGURE 4: Details of the grey area from Figure 3, including messages.
4.2.1. Detection bits,
LH
The detector corresponds to the nodes p(b), p(A | b), and P (ax[m]) (18)

p(Y | A,H) in the factor graph from Figure 3. It has two main
objectives.

(1) To compute the extrinsic information of the coded
symbol vectors P¢(ay). This information is required for
the channel estimation, as explained in Section 4.2.2.

(2) To return the a posteriori probabilities of the informa-
tion bits, after convergence of the SP algorithm.

A typical iterative detector operates according to the turbo
principle by exchanging the so-called extrinsic information
between the demapper and the decoder. Although a thor-
ough investigation of these parts is not within the scope of
the present paper, we provide a short overview of their in-
teraction. The interested reader is referred to [4, 13, 24] for
more details.

At the start of the detection phase, we receive channel
information from the estimator by means of the messages'
P¢(Hy) defined in Figure 4. Together with the information
obtained from the observation yx, we compute the messages
P (ay) according to the SP rule (4), that is,

PH(a; =13) = J;{ P¢(Hi) p(yx | Hy, ax = a)dHy -
k 17

va e QM.

The message P"(a;) can be interpreted as the likelihood
(LH) of the observation yi given the transmitted sym-
bol vector ax and the a priori distribution of the channel
P¢(Hy). The operation referred to as demapping converts
these symbol likelihoods into coded-bit likelihoods by ac-
cepting from the decoder extrinsic information on the coded

! Section 4.2.2 considers how to compute P¢(Hy).

= Fu-p (P (ar); P(ar[m']), V' + m),

where P¢(ax[m’]) denotes the extrinsic information with re-
spect to the m’th bit of the kth symbol vector, provided by the
decoder. A description of Fy—p(-) can be found in [4, 24].
Similarly, the decoder accepts a deinterleaved version of the
bit likelihoods P (ax[m]) and a priori information of the
information bits P?(b;) to update the extrinsic information
P¢(ax[m]):

P¢(ax[m]) = Fp-u (P (ap [m']), YK',m's P*(by), V).
(19)

For various codes, evaluation of Fp_, () can be done in
a computationally efficient manner [27-29]. Iterations be-
tween the demapper and decoder are performed until con-
vergence. The detection phase ends by returning the extrin-
sic symbol vector probabilities P¢(ax) = [, P¢(ax[m]) to the
estimator.

When the entire SP algorithm has converged, the decoder
computes the extrinsic probabilities of the information bits
in an efficient manner:

Pe(b) = Fp(P"(ax[m]), Yk, m; P*(by), YI').  (20)

The resulting a posteriori probabilities of the information
bits are obtained as

p(br | Y) oc P¢(by) x P?(by). (21)

Based on (21), final decisions with respect to the information
bits are made. Algorithm 1 summarizes the operation of the
detector.

4.2.2. Estimation

The estimation phase corresponds to the SP operation on the
nodes p(H) and p(Y | A, H). At the beginning of the estima-
tion phase, we have the extrinsic symbol vector probabilities
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(2) compute P (ay) = fH
(4) fori = 1 to Iyax do
(6)  compute P¢(ax[m])

(7) end for
(8) return: P¢(ay)

(12) end if

(1) input: P¢(Hy), Vk (from estimator)
(Hy) p(yx | Hi, ax)dHy, Vk
(3) initialize P*(ay[m]) = 1/2, Vk,m

(5)  compute P (ax[m]) = Far—p(P™M(ar); P(ax[m
= Fpm(P(ap |

= L P(ax[m
(9) if SP-algorithm converged then

(10)  compute P¢(b)) = Fp(P*(ax[m]), Yk, m; P*(by), VI')
(11) return: decisions on p(b; | Y) o< P¢(b;) x P*(b;)

1), Vk (to estimator)

D, Ym' + m)
m']), Vk', m'; P*(by), V1)

ArgoriTHM 1: Description of the detector operation.

P¢(ay) at our disposal. The goal of the estimator is to up-
date the extrinsic channel probabilities P¢(Hy) and feed these
back to the detector. We distinguish two types of messages in
the evaluation of the sum-product algorithm: forward and
backward messages.

Forward message passing

In the forward message-passing phase, we compute the mes-
sages P{,_,(Hy), P{, (Hy), and P(Hy) which are defined
in Figure 4. The relation between these messages is found by
a straightforward application of the sum-product rules (3)
and (4). Based on (4), we deduce the following relations:

Pljcc\k—l(Hk) = L_I Pl{—l\k_l(Hk—l)P(Hk | Hi—1)dHy_1,
k-1

(22)
PM(H) = > P(ax =2)p(yx | Hioap =3).  (23)
aeQNr
From (3), we obtain
P (Hy) = P (Hy) x Pl (Hy). (24)

Combining (22), (23), and (24), we obtain a recursive rela-
tion between Py x (Hy) and Px_jjx—1 (Hy) of the form

P/ (Hy)

= P (Hy) L{ PI{—1|k—1(Hk—1)P(Hk | Hg1)dHy
k-1
= 7 (PL s (Hicn) ).
(25)

Note that when a variable is defined over a continuous do-
main (i.e.,, CNNe in the case of Hy), representation and
computation of the messages is a major complexity issue in
the SP algorithm. In Section 5, we will tackle this particular
problem.

Backward message passing

Based on the SP rules, we can also compute the backward
messages from Figure 4,

Py (Hy)

PE(Hic) = || P (H) p(HL | B )dG. (27

= PUI(H,) x Pl (), (26)

Again, we obtain a backward recursive relation between these
messages:

PE g (He) = | PP, () p(HL | i) dH
k

= ﬂb (Pllzlk-H (Hk))
(28)
Information to the detector
As readily seen from Figure 4, P¢(Hk) follows from (3),
Pe(Hy) = Py, (H) x Pl (Hy). (29)

Finally, the estimator returns this extrinsic information
about the channel matrix to the detector. The operation of
the entire estimation is summarized in Algorithm 2.

Regarding complexity

An important issue with respect to factor graphs is how the
messages are scheduled along the graph during the SP cal-
culation. A proper scheduling of the messages can reduce
the computational complexity of the receiver. As outlined in
Section 4.2.1, the detector itself is iterative. Iterations occur
between the demapper and decoder or within the decoder it-
self (e.g., turbo-like codes). To minimize the overhead caused
by the estimation, we propose to embed the estimation into
this iterative detection process. Our intent is to perform only
a single demapping or decoding iteration within each de-
tection stage and to maintain, rather than reset, state in-
formation at the beginning of the detection phase. More
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(1) input: P¢(ay), Vk (from detector)

(2) initialize P}j,(Ho) and P% i, (H)

(3) fork =1to K do

(4)  compute P,{‘k(Hk) = ?’kf(P,{,Hk,l(kal))

(5) end for

(6) fork =K to1do

(7)  compute P{_;, (Hy_1) = F (PP, (Hy))

(8) end for

(9) return: P¢(Hy) = P,i"kﬂ(Hk) X P;{\k,l(Hk) (to detector)

ArGcorIiTHM 2: Description of estimator operation.

specifically, the value Iyax in Algorithm 1 is set equal to
Ivax = 1 and the initialization P¢(ax[m]) = 1/2, for all k,m
is ignored. Furthermore, when the decoding process itself is
iterative, only one decoding iteration per detection iteration
is performed.

5. PRACTICAL ESTIMATION ALGORITHM

In this section we derive a practical iterative estimation algo-
rithm based on the results from the previous section. Before
we evaluate the SP algorithm, we recall that representation
and computation of the messages in the SP algorithm is not
always straightforward. In particular, messages that operate
on continuous variables are often difficult to represent or can
lead to intractable update rules (e.g., an intractable integra-
tion in (22) or (27)). However, a few message types render a
fairly easy representation. Gaussian probability density func-
tions (pdfs), for example, are entirely defined by their mean
and covariance matrices. This allows a very straightforward
representation. As we observe from (23), PMH(Hy), and also

P,{‘ «(Hi) and P,f| « (Hy) are no Gaussian pdfs, but rather a mix-
ture of Gaussian pdfs. Furthermore, the number of terms in
this mixture grows exponentially with increasing time index

k for P,{‘ «(Hy) and with decreasing k for P}I:|k(Hk)' Hence,
the exact representation and computation of these messages
becomes intractable. In order to solve this problem, we per-
form a well-chosen approximation. The idea is to approxi-
mate each of these messages, again, by a single-Gaussian pdf
(instead of a mixture of Gaussian pdfs).

In order to do so, we approximate the distribution
PUH(Hy) with the following distribution:

PM(Hy) = > P°(ax =2)p(yx | Hy,a = 2)

acQNr

~ p(yk | Hi, k) (30)
o exp = -l — B,

where ay is defined as the soft-symbol decision based on the
extrinsic probabilities

ay = Z ax P’(a; = a). (31)

AcQNT

The error induced by this approximation is minor when the
distribution P¢(a;) has a pronounced peak, that is, when
Pé(ay = 2) =~ 1 for a particular @ and P¢(a;y = a*) < 1
for a* # a. Hence, as long as the detector provides reliable
information, the approximation is accurate. We conjecture
that the approximation is quite accurate in any relevant con-
text, since, in general, code-aided estimation schemes only
perform well when they have access to sufficiently reliable in-
formation about the unknown symbols.

The approximation in formula (30) allows us to represent
P (Hy) by a Gaussian pdf. Since the product of Gaussian
pdfs (as in (24) and (26)) and marginalization of a Gaus-
sian pdf (as in (22), (23), and (27)), results in a Gaussian pdf
again, all forward and backward messages on the graph turn
out to be Gaussian pdfs. Hence, all messages within the SP
algorithm can easily be represented by their mean and co-
variance matrices.

In the next two paragraphs, we tackle the actual compu-
tation of these messages. We consider two scenarios: corre-
lated receive antennas and uncorrelated receive antennas.

5.1. Correlated receive antennas > + 1

As shown in Figure 3, the estimation phase corresponds to
the upper part of the factor graph. It is readily seen from (12)
and (30) that this part of the factor graph represents the fol-
lowing state-space model:

hi = ahg_; + V1 — a23"?ny,

~ (32)
Y = Achg +wy,
where we introduced the Ny X NrNr matrix
al 0 --- 0
~ 0 arf

A= W (33)

: 0

0o --- 0 ﬁ[

The evaluation of the SP algorithm on a factor graph rep-
resenting a state-space model similar to (32) has been con-
sidered in [13, 23]. The main conclusion was that the SP al-
gorithm boils down to a straightforward Kalman smoother.
As we elaborated upon, all messages on the factor graph are
Gaussian pdfs. The recursive relations between these are ob-
tained by evaluating (25) and (28) for Gaussian pdfs. This
results in a Kalman smoother, which defines the relation be-
tween the mean and covariance matrices of these Gaussian
pdfs. We refer to [12, 23] for the Kalman filter/smoother up-
date rules.

5.2. Uncorrelated receive antennas > = 1

When receive correlation is absent or ignored, the section
of the factor graph corresponding to p(H) turns out to
be decoupled. We can factorize the nodes corresponding to
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FIGURE 5: Details of the grey area from Figure 3, when receive antennas are uncorrelated (£ = I).

p(Hi | Hi—1) as follows:

p(Hi | He1)
Nr
= [To(n” 15))
n=1
Nr 1 H
s [Tew (= 1= [0 ab”)] 57" [m” - ab”,]),
n=1

(34)

where h;cn) denotes the nth column of H . Similarly, we can
decouple the approximation for PM(Hy) in (30):

Nr
P (H) =[] p(y” | a4 hy"). (35)

n=1

Note that the latter is valid for any Zz. We can easily take
these factorizations into account by replacing the grey area
in our original factor graph from Figure 3 with the grey area
from Figure 5. The state-space equations that correspond to
this part of the factor graph are now given by

h;cn) = (xh,(:i)l ++/1 — azle/ani")’

(n) _ ATy, (n) (n)
Vi =ach +wp,

(36)
forn = 1,..., Ng. Again, evaluation of the SP algorithm boils
down to Kalman smoothing. However, compared with the
general case g # I, the complexity has been reduced signif-
icantly. Instead of one large Kalman smoother, we encounter
a bank of Ny parallel Kalman smoothers. Furthermore, the
bulk of the required computations are common to all these
Kalman smoothers. As seen from (36), only the observations
y,(c") differ among the state equations for different antennas.
The other inputs remain the same and the Kalman smoothers
share common covariance matrices (whereas the mean vec-
tors differ). Breaking up the state equations according to (36)
yields a reduction in the computational complexity propor-
tional to N3.

5.3. Known data symbols: initialization

If all the transmitted symbols are known to the receiver, the
message P¢(ay = a) is 1 when a equals the actual value of
the kth transmitted symbol vector, and 0 otherwise. Thus,
the resulting factor graph contains only the parts p(H) and
p(Y | A,H) from Figure 3, along with the input messages
P¢(a = a). This graph is cycle-free, hence, the a posteri-
ori probability functions computed by the SP algorithm are
exact. Naturally, this algorithm amounts to a standard data-
aided Kalman smoother.

In practice, of course, we wish to transmit unknown
coded symbols over the fading channel. Still, we periodi-
cally insert some known symbols to provide initial channel
estimates and to prevent the algorithm from diverging. Di-
vergence can occur due to the inherent ambiguities between
the channel parameters and the unknown symbols (as men-
tioned in [5, 11]).

In the first iteration, no information is available about
the unknown symbols and estimation is performed based on
these pilot symbols only. More specifically, for instants k cor-
responding to unknown data symbol vectors, the messages
PU(Hy) are ignored. This is equivalent to equating the soft
symbols to zero in the state space (32) or (36). For each in-
stant k that corresponds to a pilot symbol, ay is replaced by
the actual value of the transmitted pilot symbol ay.

6. SIMULATION RESULTS

We present simulation results for a MIMO BICM scheme
[24, 30] with Np = 2 transmit antennas and Ny = 2 receive
antennas. At the transmitter side, we assembled a rate 1/2 re-
cursive convolutional code with octal polynomials (37,31)s,
arandom interleaver, and a BPSK symbol mapper. The chan-
nel is generated according to (9) and (11) for two different
fading rates f;T = 0.02 and f4T = 0.005. The results shown
in Figures 6 and 7 are for spatially uncorrelated channels
(21 = Zgr = I), whereas the impact of antenna correlation is
considered in Figure 8. Frames consists of 1440 coded infor-
mation bits, and a number of pilot symbols are periodically
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(right).

inserted to provide initial channel estimates and to avoid di-
vergence. Pilot symbol energy is set equal to the average data
symbol energy. The bit energy to noise ratio (Ep/Ny) is com-
puted without taking the energy required for pilot symbol
transmission into account.

Figure 6 illustrates the channel-tracking performance, by
comparing the mean value of the messages P¢(Hy) with
the true channel Hy. In the first iteration, only information
about the pilot symbols is used, so that the algorithm cor-
responds to a pure data-aided Kalman smoother. As we ob-
serve, the ability to track the channel substantially improves
after a few iterations. As expected, exploiting information
from the decoder about the unknown coded symbols in the
second and further iterations improves the channel estima-
tion.

The curves in Figure 7 correspond to the BER perfor-
mance exhibited on our MIMO time-varying fading chan-
nel (f4T = 0.005 on the left and f;T = 0.02 on the right,

both with no antenna correlation). We compare the perfor-
mance of the iterative detector where the channel estimates
are provided solely based on pilot symbols with the perfor-
mance of an iterative code-aided estimation scheme, where
the code-aided estimator is embedded in the iterative detec-
tor (as explained in Section 4.2.2). In Figure 7 (left), we in-
serted one pilot symbol (on each antenna) every 20 coded
symbols, which correspond to a 5% pilot overhead. The per-
formance of the iterative algorithm after convergence is close
to the known-channel performance. Comparing the BER af-
ter the first iteration to the BER after convergence, we ob-
serve a 2dB gain that results from iterating between the de-
tection and the estimation. The code-aided estimator also
yields more than 1 dB gain compared to the pilot-based esti-
mator, after convergence. Figure 7 (right) illustrates the BER
performance on a rapidly fading channel (f;T = 0.02). First,
observe the diversity gain of the time-varying fading chan-
nel compared to a static-fading channel (f;7 = O or a = 1
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Figure 8: BER performance for correlated transmit antennas, with
faT = 0.02 and 10% pilot symbols.

in (9)). This gain is obtained thanks to the interleaver, which
spreads the error bursts, caused by occasionally deep fades,
over the entire codeword. This property has been widely ex-
amined [2, 3] and emphasizes the benefit of using BICM for
fading channels. Considering the estimation, we increased
the number of pilots to 10% (insertion of 1 pilot symbol ev-
ery 10 coded symbols) to avoid divergence of the iterative
SP algorithm. The gain from exploiting the code is apparent
again.

Finally, we consider the BER performance on a fading
2 X 2 MIMO channel with transmit antenna correlation. We
assume that the correlation matrix is given by

S = [1 p] (37)

Simulation results are shown for p=0.8 and p =0.95. We fur-
ther consider two different scenarios: (i) the receiver knows
the transmit correlation p and takes it into account in the SP
computation; (ii) the receiver does not know the correlation
and assumes p = 0. Figure 8 shows the BER performance af-
ter 3 iterations for a fading rate of f;T = 0.02. For p = 0.8,
the difference between the two scenarios is minor. Only for
tightly coupled (p = 0.95) antennas, a significant perfor-
mance gain is observed when taking the correlation into ac-
count. Observe also the well-known result that less correlated
channels exhibit a better performance than more correlated
channels.

7. CONCLUSIONS

By means of factor graph theory we have derived an iterative
algorithm for joint code-aided estimation and detection on
a time-varying flat-fading MIMO channel with spatial cor-
relation. The tightly coupled estimation and detection algo-

rithms exchange messages in accordance with the SP algo-
rithm. The estimation algorithm boils down to a Kalman
smoother that uses soft-symbol information provided by the
decoder. Since MIMO detection often involves iterative de-
coding, we can limit the computational overhead caused by
the estimation by embedding the estimation stages into the
detection stages. When the receive antennas do not exhibit
correlation, we can split the Kalman smoother into a bank of
parallel Kalman smoothers, which significantly reduces the
complexity.

Simulation results have shown that a significant perfor-
mance improvement (in terms of BER) is obtained by ex-
ploiting information from the unknown transmitted sym-
bols compared to estimation based on pilot symbols only.
Also, ignoring the spatial correlation leads to a minor per-
formance degradation, as long as the correlation is not too
high.
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