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We propose a frame-based multiple-description video coder. The analysis filter bank is the extension of an orthogonal filter bank
which computes the spatial polyphase components of the original video frames. The output of the filter bank is a set of video se-
quences which can be compressed with a standard coder. The filter bank design is carried out by taking into account two important
requirements for video coding, namely, the fact that the dual synthesis filter bank is FIR, and that loss recovery does not enhance
the quantization error. We give explicit results about the required properties of the redundant channel filter and the reconstruction
error bounds in case of packet errors. We show that the proposed scheme has good error robustness to losses and good perfor-
mance, both in terms of objective and visual quality, when compared to single description and other multiple description video
coders based on spatial subsampling. PSNR gains of 5 dB or more are typical for packet loss probability as low as 5%.
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1. INTRODUCTION

Robust transmission of multimedia streams over error-prone
packet networks has become an important issue in many sce-
narios, including wireless communications and distributed
networking. In such applications, the usual approach of error
recognition and packet retransmission may not be appropri-
ate, because of the excessive delay caused by this technique.
Moreover, a return channel may not exist or be inconvenient
to use in applications with low-power simplified receivers.
The use of error-correcting codes at the packet level is not
useful when packets are lost because of congestion or delay,
or when one of the different paths used for the packets, as
in layered coding, totally fails. Recently, forward error cor-
rection (FEC) coding across packets has been suggested for
robust transmission in the presence of packet losses [1]. In
its simpler implementation, this technique consists in group-
ing N consecutive packets produced by the coder and in
adding M − N “parity-check” packets, calculated by means
of a block coder (e.g., a Reed-Solomon coder) applied across
the N packets on a symbol-by-symbol basis. It has been no-
ticed that this technique has a quick performance drop as
soon as the packet loss rate exceeds the error recovery ca-
pability of the code. This is due to the fact that when error
correction is not possible, the received information is totally
useless [2].

Multiple description (MD) coding is a recently proposed
solution, where a set of correlated, equally important de-
scriptions of the source are generated at the coder and sent
over independent channels [2]. Ideally, each of the descrip-
tions should allow for a reasonable reconstruction of the
source, permitting an increased quality as the number of re-
ceived descriptions increases. Therefore, unlike the case of
error-correcting codes, each piece of received information
can be useful to increase the reconstruction quality. The re-
quirement that each description is “good by itself” can be
achieved by adding correlation, at the expense of a decrease
in the overall rate-distortion performance.

Many approaches have been proposed to design MD
coders that use different strategies for coding different data
sources. MD coding comprises a very wide range of tech-
niques such as MD scalar quantization [3], pairwise corre-
lating transforms [4], spatial and temporal downsampling
[5], correlating filter banks or frames [6], and matching pur-
suit algorithms [7]. Such approaches differ in terms of over-
all rate-distortion performance and complexity. For a more
complete overview of MD techniques see, for example, the
introductory paper [2] and references within.

A technique for MD of video in the spatial domain is
presented in [8]. Each video frame is downsampled in or-
der to create several descriptions of the source ([5] presents
a similar technique for still images). Each video subsequence
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is then independently coded with the H.263 coder. A mech-
anism for changing the amount of redundancy among the
descriptions is reported in [5]. An adaptive procedure for
spatial and temporal downsampling is in [9]. The technique
proposed in [8] is attractive because it allows for the use of a
standard video codec on individual descriptions. Moreover,
it offers compatibility with non-MD receivers and good er-
ror resilience, because missing information can be interpo-
lated from the received one. Even in the case when only one
description is received, the reconstruction quality can be ac-
ceptable. Any loss in the received streams, however, has to be
appropriately recovered by approximate concealment tech-
niques.

In this paper, we propose an MD video coding scheme
where two descriptions are obtained by spatial polyphase
subsampling in the column direction, and a third descrip-
tion is obtained by lowpass filtering the columns of the orig-
inal video frames, followed by subsampling. Each of the
descriptions is coded with an H.264 coder [10], the inter-
national standard currently vying to replace MPEG-2 for
widespread technologies such as digital television, Internet
streaming video, and DVD-Video [11]. We therefore extend
the approach of [5, 8] by adding a visually consistent “parity-
check” image. As a matter of fact, this MD generating proce-
dure can be interpreted within the framework of overcom-
plete bases expansion (frames) [6]. Frame expansions [6]
permit exact reconstruction of lost information even in the
presence of data losses, at the expense of added redundancy.
General theorems of frame theory claim that the original sig-
nal can be obtained by linearly combining a set of suitable
signals (such a set is known as the dual frame), using as co-
efficients the outputs of the analysis filter bank. In case of
coefficient losses, however, the dual functions depend on the
loss pattern and have to be computed at the receiver [12, 13].

The proposed approach combines the advantages of the
MD schemes of [5, 8] with the error recovery capability pro-
vided by frame expansions. Error recovery can in fact be
done exactly, similarly to what happens with FEC coding,
when losses are not too numerous, that is, when the analy-
sis basis after losses is still a complete system. It differs from
FEC in that redundancy is added at the signal level, and that
the dual functions after losses may cause some amplification
of the quantization error, even if the overall system was de-
signed to achieve perfect reconstruction. Moreover, even if
losses are so numerous that the system becomes incomplete,
one can resort to using the source implicit redundancy, as
in [5, 8], and reconstruct the signal with good fidelity. The
price to pay is the cost of the additional parity-check video
sequence. The experimental results show that the proposed
scheme is indeed competitive for relatively high bit rates and
loss probability.

Toward the design of the proposed scheme, we derive
some general theoretical results. First, we show how to con-
struct redundant FIR filter banks by adding a redundant
channel to a generic orthogonal filter bank, while preserv-
ing FIR reconstruction. Since the spatial polyphase subsam-
pling we consider in the proposed MD video coding scheme
is just a very special case of an orthogonal filter bank, we

can use this result for the design of the redundant chan-
nel filter. On the other hand, since orthogonal filter banks
are ubiquitously used in subband and transform coding, the
results we present in this paper can be used for the exten-
sion of other available schemes. We then consider the general
problem of quantization error enhancement due to the use
of nonorthogonal bases expansions. This problem cannot be
avoided in overcomplete frame expansions in the presence
of coefficient losses. We give explicit results on error bounds
and derive criteria for filter bank design to mitigate the effect.

We compare the performance of the proposed solution
with that of two MD coding schemes based on spatial sub-
sampling. In particular, one of the schemes produces four de-
scriptions based on the four spatial polyphase components of
the original frame, while the second scheme is similar to the
one we propose here and considers even and odd rows sepa-
ration. Bilinear interpolation from correctly received frames
is again used for error concealment. Note that, unlike the
case of frame-based analysis, “exact” error recovery is never
possible in the latter two systems in the presence of packet
losses. In all schemes, individual descriptions are coded using
independent H.264/AVC video coders. After error recovery
or concealment, frames are copied onto the decoders’ frame
buffers at the receiver, in order to mitigate the effect of error
propagation due to differential coding.

The organization of the paper is as follows. Section 2 re-
calls some basic tools and the notation used in this paper.
In Section 3 we describe in some detail the proposed MD
video codec. In Section 4 we present some experimental re-
sults evaluating the rate-distortion performance of the pro-
posed scheme, comparing it with the other two MD schemes
and with standard single-description (SD) coding. Section 5
draws the conclusions.

2. FRAMES AND FILTER BANKS

In this section, we briefly recall some results of frame theory
which will be used in this paper [14].

A family of signals Φ = {φk ∈ �2(Z)}k∈Z constitutes a
frame if for any signal x ∈ �2(Z) there exist two constants
0 < A and B <∞ such that

A‖x‖2 ≤
∑

k∈Z

∣∣〈x,φk
〉∣∣2 ≤ B‖x‖2, (1)

where 〈 f , g〉 = ∑n f (n)g∗(n) is the scalar product between
f and g. Linear function F : �2(Z)→ �2(Z) defined as

yk = (Fx)k �
〈
x,φk

〉
(2)

maps x into the corresponding sequence of scalar products
and it is known as the frame (or analysis) operator associated
with Φ. The left-hand inequality in (1) guarantees that it is
possible to reconstruct the original signal x from the scalar
products y = {yk}k∈Z and that it is possible to compute a set
of dual signals φ̃k such that

x = F†y =
∑

k∈Z
ykφ̃k. (3)
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Figure 1: Block diagram of the proposed frame-based MD coder.

The operator F† is called the dual or pseudoinverse operator
of F. Moreover, the left-hand inequality in (1) grants for a
robust reconstruction, in the sense that if ŷ = y + ε is a noisy
version of y and x̂ = F† ŷ = ∑k∈Z ŷkφ̃k is the reconstructed
signal, then

‖x − x̂‖2 ≤ ‖ε‖2
A

, (4)

that is, coefficient error is not amplified more than 1/A. In
addition, reconstruction via F† is optimal, in the sense that
x̂ = F† ŷ minimizes ‖Fx̂ − ŷ‖ [15].

Suppose that during the transmission some coefficients
yk are lost and let I be the set of the indexes of the lost coef-
ficients and let yIc be the sequence of received coefficients. If
subset ΦI � {φk, k 
∈ I} is still a frame, one can recover x by
“pretending” that it was analyzed with subframe ΦI . If FI is
the frame operator corresponding to ΦI , one can obtain x as
x = FI

†yIc . Operator FI† can be efficiently implemented by
means of the algorithm suggested in [12, 13] which expresses
FI
† as FI

† = F†R, where R is a restoring operator which re-
covers the missing coefficients from the known ones.

In the framework of oversampled filter banks, one com-
putes a vector of output coefficients in each channel j =
1, . . . ,N , via convolution, that is,

yj(n) =
∑

m∈Z
x(m)hj(Mn−m), j = 0, . . . ,N − 1 > M − 1.

(5)

The right-hand side of (5) can be interpreted as the
scalar product between the input and the analysis vector
φNn+ j(m) � hj(Mn − m). By appropriate filter design, the
φNn+ j constitute a frame. Oversampling, that is, choosing
N > M, implies that there is redundancy in the coefficients
yj(n) which can be exploited to reconstruct x even if some
coefficients are lost. It is possible to show that the dual frame
of (5) can be implemented by means of an oversampled syn-
thesis filter bank which will be called the dual filter bank of
(5) [16]. If both filter bank (5) and its dual are made of
FIR filters, we will say that (5) is a doubly FIR (DFIR) filter
bank. The use of DFIR filter banks is ubiquitous in image
and video processing, due to ease of implementation and the
problem of signal extension at the borders in the spatial di-
rection when using IIR filters.

Finally, let us introduce some terminology. A filter bank
like the one in (5), with N channels and sampling factor M,

will be called an N/M filter bank. If the first M impulse re-
sponses are

hj(n) = δ(n + j), j = 0, . . . ,M − 1, (6)

the first M channels operate a polyphase decomposition of
the input signal and we will say that (5) is a systematic filter
bank, the first M channels are the systematic channels and
the remaining N −M ones are the redundant channels. This
nomenclature stems from the fact that, if (6) is true, one can
read the samples of signal x by directly looking at the firstM
channels.

3. SYSTEMOVERVIEW

The MD scheme proposed in this paper uses standard
H.264/AVC coders on the output of an oversampled filter
bank operating in the spatial direction and originating three
video subsequences yj .

A detailed description of the system is shown in Figure 1.
The descriptions are generated using a 3/2 one-dimensional
filter bank applied to columns of every sequence frame. The
filter outputs are subsampled by a factor 2. Thus, for an
Nr × Nc input frame, the scheme originates 3 descriptions
with dimension Nr/2×Nc pixels.

The descriptions are coded using three independent
H.264/AVC standard coders, as shown in Figure 1. Note that
the compressed streams have a standard format and this al-
lows non MD-enabled decoder to decode the MD stream by
simply keeping one description and discarding the others.
This back-compatibility issue can be quite important.

The system structure implies that one must use filters
such that sequences yj are compressible by the standard
coder. For example, since an H.264/AVC coder is used, fil-
ters hj must not be highpass since the generated sequences
would be difficult to code.

For the sake of simplicity, we choose a systematic filter
bank, that is, h0(n) = δ(n), h1(n) = δ(n + 1). This actually
corresponds to send the even rows to the first channel and
the odd rows to the second one. The third filter h2(n) is a
lowpass filter, designed according to the criterion described
in Section 3.1.

The H.264/AVC coder divides the input frame into slices
made from macroblocks (MB) organized into rows. Each
slice is then sent over the network in a single packet. The
reason for subsampling along the columns is that the loss of
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Figure 2: Block diagram of the proposed decoder.

one slice results in a limited number of contiguous lost coeffi-
cients in each column, hopefully permitting error recovery. It
is easy to see that the slice organization of H.264/AVC implies
that the loss of a single packet gives rise to the loss of a rect-
angular region in one video frame of a subsequence, whose
dimensions is equal to the dimensions of a slice. Since we are
applying the filter bank columnwise, a loss of a rectangle of
coefficients will look like a loss of Sh consecutive coefficients,
where Sh is the slice height. In other words, the synthesis filter
bank will experience losses in bursts whose length is a multi-
ple of Sh.

On the receiver side (Figure 2), the video streams are
independently processed by H.264/AVC synchronized de-
coders. In [12, 13], a practical algorithm for dual frame com-
putation with low delay and reduced complexity is presented.
The scheme of [12, 13] puts in front of the synthesis block a
restoration stage which recovers, whenever possible, the miss-
ing coefficients from the received ones, “hiding” the losses
from the synthesis filter bank. The decoders are therefore
connected to a restoring block R, which recovers channel er-
rors by implementing the algorithm of [12, 13] when ΦI is
still a subframe. In this case, the cascade of the restoring pro-
cedure with the original dual filter bank is indeed equiva-
lent to the dual of the lossy frame operator ΦI . We remark
that this solution needs only local information and does not
introduce any relevant delay in the decoding process. More-
over, the computational complexity is reasonable, since it ba-
sically requires the inversion of a matrix with dimension cor-
responding to the number of lost coefficients in a column
(see [12, 13] for a detailed discussion). When slices are lost
in the same position in two out of three descriptions, ΦI

becomes incomplete and missing regions have to be recov-
ered using an approximate concealment technique. In par-
ticular, we interpolate one missing systematic channel from
the correctly received stream using bilinear interpolation,
then feed these two subimages to the usual restoring block.1

This typically gives acceptable results, due to the high spatial
correlation among descriptions in the proposed scheme. In
Section 4 we will see a temporal interpolation technique that
slightly improves reconstructed video quality in case of in-
complete ΦI . Another important aspect in using the H.264

1 When two channels out of three are received, ΦI is indeed a frame.

codec is to avoid error propagation due to direct-mode pre-
diction [10]. If a reference frame (e.g., a P frame) is lost, B
slices coded in direct mode cannot be decoded, even if the
data relative to the B frame are received correctly. The so-
lution we adopt is to mark B blocks as lost when they are
coded in direct mode with respect to corrupted reference in-
formation, and to treat them as those lost because of channel
failures.

The output of the restoring block, with concealment in
case of unrecoverable errors followed by application of the
algorithm of [12, 13], is a set of three recovered subframes
with dimensionNr/2×Nc. These subframes are then fed into
the synthesis filter bank, whose output is an approximation
of the original full-size sequence. Recovered subframes for
each description are copied into the corresponding decoder
frame buffer, in order to limit error propagation from refer-
ence frames due to interframe coding.

3.1. System design

In order to make the scheme of Figure 1 effective, it is nec-
essary to design the third filter h2. As anticipated, h2 must
be a lowpass filter since its output must be a compressible
sequence. Moreover, h2 must be such that the filter bank in
Figure 1 is DFIR and such that the lower bound resulting af-
ter the loss of one packet is as large as possible.

In this section, we solve this problem by presenting a
general analysis and providing results for the solution of the
following problems which generalize the problem of design-
ing h2.

(1) Given an orthogonal filter bank withM channels, we
want to add a redundant channel so that the resulting filter
bank is doubly FIR.

(2) We want to design a systematic (M+1)/M DFIR filter
bank so that the lower bound of subframe Φ resulting after
losses is as large as possible. When losses occur, we implicitly
analyze the signal with a frame with a smaller lower bound,
and this may cause quantization error enhancement accord-
ing to (4).

In the following we will give a necessary and sufficient
condition on the redundant channel filter to result in a dou-
bly FIR filter bank. The second problem is more complex and
we will derive lower and upper bounds on the frame bound
AI , which can be used to limit the overall reconstruction
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error according to (4). The bounds are written as a function
of the polyphase components of the (M + 1)th redundant
channel filter, so they can be used for the filter choice or de-
sign. We take into account the case of L consecutive coeffi-
cients lost in a channel. This hypothesis derives from the fact
that we are considering a framework where coefficients from
each channel are grouped into packets, and a packet loss cor-
responds to a set of consecutive coefficients missing at the
receiver.

3.1.1. Doubly FIR filter banks

In detail, we will analyze the following problem.

Problem 1. Let hj , j = 0, . . . ,M−1, be the impulse responses
of an orthogonal M/M FIR filter bank. Find a filter g such
that the resulting (M + 1)/M filter bank is a doubly FIR filter
bank.

The solution to Problem 1 is contained in the following
theorem.

Theorem1. Let hj , j = 0, . . . ,M−1, and g be as in Problem 1.
The filter bank made of hj , j = 0, . . . ,M − 1, and g is doubly
FIR if and only if

∑

n

g(n)g(n−Mk) = ‖g‖2δ(k), ∀k ∈ Z, (7)

that is, if and only if g is orthogonal to its own translations of
multiples ofM.

Proof. Let gk(n) = g(k + nM) be the kth polyphase compo-
nent of g and letGk(z) be its z-transform. The polyphase ma-
trix relative to the new filter bank is

K(z) =
[

H(z)
G0(z) G1(z) · · ·GM−1(z)

]
=
[
H(z)
Gt(z)

]
, (8)

where H(z) is the polyphase matrix of the orthogonal filter

bank h0, . . . ,hM−1, and Gt(z) =
[
G0(z) G1(z) · · ·GM−1(z)

]

is the transpose of the vector of the z-transforms of the
polyphase components of g. According to Cvetković and Vet-
terli [16] the extended filter bank is doubly FIR if and only if

r(z) � det
(
Kt
(
z−1
)
K(z)

) = αz−k, ∃α ∈ C, k ∈ Z. (9)

By observing that

r
(
z−1
) = det

(
Kt(z)K

(
z−1
)) = det

([
Kt
(
z−1
)
K(z)

]t) = r(z),

(10)

it follows that (9) is true if and only if r(z) is a constant. With
some algebra and by exploiting well-known results about de-
terminants [17], one can write

r(z) = det
(
Ht
(
z−1
)
H(z) +G

(
z−1
)
Gt(z)

)

= det
(
I +G

(
z−1
)
Gt(z)

)

= 1 +Gt(z)G
(
z−1
) = 1 +

M−1∑

k=0
Gk
(
z−1
)
Gk(z).

(11)

It is clear that (11) is a constant if and only if r(z) − 1 =∑M−1
k=0 Gk(z−1)Gk(z) is. Observing that r(z) − 1 is the z-

transform of the sampled version of the correlation of g, it
follows that r(z) is a constant, and the filter bank is doubly
FIR, if and only if (7) is true, that is, g is orthogonal to its
own translations.

A consequence of Theorem 1 is that, if M = 2, the only
possible filter with linear phase resulting in a doubly FIR fil-
ter bank is the 2-tap Haar filter [18]. If we consider a system-
atic filter bank, as we will do in the proposed video coding
scheme, this implies to work blockwise. More precisely, the
filter bank is equivalent to mapping each pair of consecutive
samples into the triple made of the two samples and their
average.

If linear phase is necessary, as in image and video cod-
ing applications, and one does not want to work blockwise,
the dual filter bank will necessarily have IIR impulse re-
sponses. In this case, if the decay of the impulse responses
of the resulting IIR filters is fast enough, the dual filters can
be approximated with possibly short FIR filters, for example,
by truncation of the filter kernels. The corresponding DFIR
filter bank introduces a small error in the reconstruction pro-
cess which can be negligible in coding applications. The sit-
uation is similar to what happens for nearly perfect recon-
struction orthogonal filter banks, where linear-phase filters
can be used at the expense of a small error in the reconstruc-
tion [14].

3.1.2. Reconstruction error in response to packet losses

The second problem we consider is the design of the redun-
dant channel filter in a systematic filter bank to allow for a
“good” reconstruction even in presence of packet losses. This
means that the lower bound of ΦI must be as large as pos-
sible. As mentioned, we take into account the case of L con-
secutive coefficient losses in each channel. We will therefore
analyze the lower bound of ΦI when a set of L consecutive
coefficients is lost in a single channel.

Property 1. Let hj , j = 0, . . . ,M, be the impulse responses of
an (M + 1)/M systematic filter bank and let

yj(n) =
∑

m

x(m)hj(Mn−m). (12)

Let 0 ≤ c ≤ M and suppose that a burst of L coefficients of
the cth channel, that is, coefficients yc(n), n = 0, . . . ,L − 1,
are lost. Let ΦI and AI be the corresponding subframe and
its lower bound, respectively.

Then, if c =M, we have AI = 1; otherwise

minω
∣∣Hc,M

(
e jω
)∣∣2

1 + T + 2
√
T

≤ AI

≤ 2
(
Nc − 1

)‖hc,M‖21
L

+min
ω

∣∣Hc,M
(
e jω
)∣∣2 L−Nc + 1

L
.

(13)
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In (13), Nc is the length of hc,M(n) = hM(c + nM), the cth
polyphase component of hM , while T is the 1-norm of the
autocorrelation of filter hM sampled with a factorM, namely,

T �
∑

n∈Z

∣∣r(n)
∣∣ = ‖r‖1, r(n) �

∑

m

hM(m)hM(m−Mn).

(14)

The proof for the upper bound is reported in the ap-
pendix, Proof A.1, while the proof for the lower bound is in
the appendix, Proof A.2.

Note that when L � Nc, the right-hand side of (13) is
approximately equal to

min
ω

∣∣Hc,M
(
e jω
)∣∣2. (15)

This suggests the following criterion to achieve a small recon-
struction error in response to packet losses.

Criterion 1. Suppose bursts of coefficient losses are expected
and let hM be the (M +1)th filter of an (M +1)/M systematic
filter bank. Choose hM such that

min
c∈{0,...,M−1}

min
ω

∣∣Hc,M
(
e jω
)∣∣2 (16)

is as large as possible.

3.2. MD 3 video codec: choice of the filter

From the results of Section 3.1, the filter for the redun-
dant channel in the systematic filter bank under consider-
ation should be chosen according to Criterion 1. We took
into account the four- and eight-tap lowpass filters from
the well known family of Daubechies filters [14] reported
in Table 1. These two filters are orthogonal to their even
translations, and therefore the resulting filter bank is exactly
DFIR. We also considered a linear-phase redundant chan-
nel filter. In the following, we will refer to this filter as the
symmetric 4-tap filter (Table 1). The use of a linear-phase fil-
ter can be useful for video coding purposes, also because it
allows for symmetric rather than periodic signal extension
in the analysis stage. Moreover, the symmetric filter was de-
signed according to Criterion 1. As we will see, its perfor-
mance is actually better than that of the 4-tap Daubechies
filter and is comparable to that of the 8-tap Daubechies fil-
ter. Since the symmetric filter is not orthogonal to its trans-
lations, the hypotheses of Theorem 1 are not met exactly,
and the resulting filter bank has IIR synthesis filters. These
are very well approximated by the FIR filters of Table 2. The
impulse responses of the dual filter bank are truncated to
make the system DFIR so that the overall reconstruction er-
ror is negligible. In particular, it is easy to see that, when the
input is modeled as a random process uniformly distributed
in [0, 255], the cascade of the FIR analysis and synthesis fil-
ter banks, with no quantization, allows for a peak signal-to-
noise ratio (PSNR) of about 60 dB. The PSNR is defined as

PSNR � 10 log10
2552

MSE
, (17)

where MSE is the mean squared reconstruction error with
the input. The same reconstruction quality is obtained, with
no quantization, with the video sequences we consider in
Section 4.

Let us now consider the performance of the filters when
losses and quantization are taken into account. Figure 3 com-
pares the amplitude of the frequency responses of the two
polyphase components of the 4-tap symmetric and Daub-
echies filters. As we can see, the 4-tap Daubechies filter has
a smaller minimum in the first polyphase component. From
(16), we conclude that the symmetric filter should perform
better than the 4-tap Daubechies filter. This will be con-
firmed by the results in the experimental section.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
video coding scheme (MD 3) presented in Section 3. Orig-
inal sequences are in CIF format. This scheme is compared
with other two MD systems based on spatial subsampling of
original frames. The first one (MD 4) originates four descrip-
tions from the spatial polyphase components of the original
frame. Each description, whose dimension is 1/4 of that of
the original frame, is compressed independently, packetized,
and sent over an error-prone network. The second scheme
(MD 2) has a similar structure, but only two descriptions are
generated by separating the even and odd rows of the orig-
inal frame. We compare the MD schemes with a standard
single-description (SD)H.264/AVC coder which includes ba-
sic error concealment as described in [19]. The coders use the
H.264/AVC test model software version JM6.0a. To increase
robustness to channel errors and make a fair comparison,
the SD coder uses the random intra-macroblock refresh cod-
ing option, that is, 100 macroblocks for every CIF frame are
coded in intramode. No random intra-macroblock refresh
coding option is activated in the MD schemes. Other coding
options are the same for the SD and MD coders. In partic-
ular the GOP structure is I BBBB P BBBB P BBBB P BBBB
I, and slices have a fixed 1000-byte dimension. Each slice is
sent as a packet, and each packet is lost according to a certain
probability model.

For the MD 2 scheme and the MD 4 scheme, in case
of errors in one or more descriptions, appropriate error
concealment via bilinear interpolation from correctly re-
ceived descriptions is performed at the receiver. Similarly to
our scheme, corrected subframes are copied into the corre-
sponding receiver frame buffers to limit error propagation. B
blocks that use direct mode prediction with respect to lost P
slices are also marked as lost. In case all the descriptions are
lost, basic error concealment is applied as in [19] in all the
MD coders, including the frame-based one.

From a general viewpoint, the MD 2 and MD 4 schemes
achieve robustness to packet losses by exploiting the inherent
source redundancy. However, to recover the missing infor-
mation at the receiver, a necessarily approximated procedure
has to be used in any case. The proposed MD 3 scheme adds
redundancy by processing the source with an oversampled
filter bank. The price paid is the additional rate which has to
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Table 1: Analysis filter banks for the symmetric 4-tap redundant channel filter, and the 4-tap and 8-tap Daubechies channel filters.

Symmetric 4-tap Daubechies 4-tap Daubechies 8-tap

n h0(n) h1(n) h2(n) h0(n) h1(n) h2(n) h0(n) h1(n) h2(n)

−2 0 0 −1.04 · 10−1 0 0 +3.42 · 10−1 0 0 +1.63 · 10−1
−1 0 1 +5.77 · 10−1 0 1 +5.92 · 10−1 0 1 +5.05 · 10−1
0 1 0 +5.77 · 10−1 1 0 +1.58 · 10−1 1 0 +4.46 · 10−1
1 0 0 −1.04 · 10−1 0 0 −9.15 · 10−2 0 0 −1.98 · 10−2
2 0 0 0 0 0 0 0 0 −1.32 · 10−1
3 0 0 0 0 0 0 0 0 +2.18 · 10−2
4 0 0 0 0 0 0 0 0 +2.33 · 10−2
5 0 0 0 0 0 0 0 0 −7.49 · 10−3

Table 2: Synthesis filter banks for the symmetric 4-tap redundant channel filter, and the 4-tap and 8-tap Daubechies channel filters.

Symmetric 4-tap Daubechies 4-tap Daubechies 8-tap

n h̃0(n) h̃1(n) h̃2(n) n h̃0(n) h̃1(n) h̃2(n) n h̃0(n) h̃1(n) h̃2(n)

−6 +1.09 · 10−4 0 +1.24 · 10−4 −3 +2.08 · 10−2 0 0 −7 +8.14 · 10−4 0 0

−5 −1.68 · 10−4 +1.09 · 10−4 −1.91 · 10−4 −2 −3.61 · 10−2 0 0 −6 −2.53 · 10−3 0 0

−4 +1.52 · 10−3 −9.89 · 10−4 +1.74 · 10−3 −1 −1.25 · 10−1 +3.61 · 10−2 −6.10 · 10−2 −5 −1.40 · 10−4 +2.53 · 10−3 −5.00 · 10−3
−3 −2.35 · 10−3 +1.52 · 10−3 −2.68 · 10−3 0 +9.06 · 10−1 −6.25 · 10−2 +1.06 · 10−1 −4 +7.45 · 10−3 −7.84 · 10−3 +1.55 · 10−2
−2 +2.14 · 10−2 −1.39 · 10−2 +2.43 · 10−2 1 −6.25 · 10−2 +7.61 · 10−1 +3.94 · 10−1 −3 −5.00 · 10−3 −7.45 · 10−3 +1.45 · 10−2
−1 +5.70 · 10−2 +2.14 · 10−2 −3.75 · 10−2 2 −3.61 · 10−2 −1.25 · 10−1 +2.28 · 10−1 −2 −7.06 · 10−3 +4.49 · 10−2 −8.82 · 10−2
0 +7.99 · 10−1 −1.94 · 10−1 +3.41 · 10−1 3 0 +3.61 · 10−2 0 −1 −4.70 · 10−2 +7.06 · 10−3 −1.32 · 10−2
1 −1.94 · 10−1 +7.99 · 10−1 +3.41 · 10−1 4 0 +2.08 · 10−2 0 0 +8.38 · 10−1 −1.52 · 10−1 +2.97 · 10−1
2 +2.14 · 10−2 +5.70 · 10−2 −3.75 · 10−2 5 0 0 0 1 −1.52 · 10−1 +8.29 · 10−1 +3.37 · 10−1
3 −1.391 · 10−2 +2.14 · 10−2 +2.43 · 10−2 6 0 0 0 2 −7.06 · 10−3 −4.70 · 10−2 +1.09 · 10−1
4 +1.52 · 10−3 −2.35 · 10−3 −2.68 · 10−3 7 0 0 0 3 +4.49 · 10−2 +7.06 · 10−3 0

5 −9.89 · 10−4 +1.52 · 10−3 +1.74 · 10−3 8 0 0 0 4 +7.45 · 10−3 −5.00 · 10−3 0

6 +1.09 · 10−4 −1.68 · 10−4 −1.92 · 10−4 9 0 0 0 5 −7.84 · 10−3 −7.45 · 10−3 0

7 0 +1.09 · 10−4 +1.24 · 10−4 10 0 0 0 6 −2.53 · 10−3 −1.40 · 10−4 0

8 0 0 0 11 0 0 0 7 0 +2.53 · 10−3 0

9 0 0 0 12 0 0 0 8 0 +8.14 · 10−4 0

be spent to code the parity-check video sequence. However,
exact recovery within frame theory is possible when losses are
not too numerous. One has to resort to approximate interpo-
lation solutions only when the received information corre-
sponds to an incomplete system. We will see in the following
that, in the presence of packet losses, MD 3 has the best over-
all performance. Moreover, the visual quality obtained with
the proposed scheme is superior, because of the exact recov-
ery capability for most error patterns.

4.1. Comparison of the filters

We start by considering the redundant channel filter choice
in the proposed MD 3 scheme. The simulations we present
here are relative to 100 frames of the CIF sequence Foreman.

Results are averages of 50 independent transmission trials,
where packets are lost independently with probability P� .

Figure 4 compares the PSNR of the reconstructed video
with the two filters and with P� = 0.1. The symmetric filter
outperforms the Daubechies 4-tap filter by about 0.5 dB at
high bit rates. The performance of the 8-tap Daubechies filter
is indeed similar to that of the symmetric 4-tap filter.

It is well known that PSNR can give only an approximate
indication of the video sequence quality. As a matter of fact,
the visual quality corresponding to the use of the symmet-
ric linear-phase filter is preferable to that obtained with the
Daubechies 4-tap filter at all bit rates. Figure 5 shows details
of the reconstructed frame of the sequence Foreman coded at
about 2Mbps. In both cases, the loss pattern corresponds to
the complete loss of data from channel 1, that is, the video
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Figure 3: Amplitude of the frequency response of the polyphase
components of the Daubechies 4-tap filter and of the symmetric
4-tap filter. (a) First polyphase component. (b) Second polyphase
component.

frame even rows are missing at the receiver. As it can be seen
from Figure 5(a), using the 4-tap Daubechies filter leads to
a granularity effect due to relevant quantization error en-
hancement. This annoying effect is particularly visible near
edges and around the eyes, where the coding error is greater.
The effect disappears in Figure 5(b) corresponding to the use
of the symmetric 4-tap filter.

4.2. Comparison of theMD coders

We compare here the performance of the proposed MD 3
scheme, adopting the symmetric 4-tap filter, with that of the
SD, MD 2, and MD 4 schemes. The original video sequences
are in CIF format, and the results are relative to 100 frames,
averaged over 50 independent transmission trials. Packets are
lost independently with probability P� . Figures 6, 7, and 8
show the performance of the coders for the video sequences
News, Foreman, and Teeny, respectively. The News sequence
is characterized by low motion and a dark uniform back-
ground, whereas the Teeny sequence is characterized by large
motion. Coding is performed for the same H.264/AVC QP
values (QP = 19, 20, . . . , 41), therefore different compres-
sion rates are obtained as a result of sequence motion con-
tent.

Despite the fact that the SD coder can exploit spatial re-
dundancy more efficiently, it does not have the best perfor-
mance even for P� = 0, due to the intra-refresh coding op-
tion. Nonetheless, the performance of the SD coder drops
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Figure 4: Rate-distortion comparison between the Daubechies 4-
tap filter and the symmetric 4-tap filter adopted in this work. P� =
0.1.

very rapidly for increasing P� . We expect that the MD coder
with four descriptions presents good robustness to errors
from a subjective quality point of view, at the expense of
some coding inefficiency. The proposed frame-based coder
adds 1.5 redundancy to the video stream, and has therefore
a low coding efficiency but possibly good robustness to er-
rors from both a subjective and objective quality point of
view. Note that, with no coding, perfect reconstruction is still
possible in this case even in the presence of errors. Finally, the
MD coder with two descriptions has better coding efficiency
but possibly worse performance in terms of subjective qual-
ity, since packet losses have to be corrected with the interpo-
lation of entire rows.

It can be seen from Figures 6 and 7 that for loss proba-
bility P� = 0.05, the proposed frame-based MD scheme per-
forms better than the SD scheme and the MD scheme with
four descriptions. Moreover, at relatively high bit rates, the
proposed scheme has the best performance of all schemes.
For P� = 0.1, the advantage of the proposed solution is even
more evident. For the Teeny sequence (Figure 6), the frame-
based MD 3 system and the MD 4 system show comparable
performance which are significantly better than that ofMD 2.

The intrinsic error recovery capability of the proposed
MD 3 scheme plays an important role for visual quality in all
coding conditions. Figure 9(b) shows a detail of the recon-
structed video stream Foreman coded at about 1Mbps when
one description is lost. In Figure 9(a), we show the recon-
structed frame for the MD scheme with two descriptions. It
can be seen from the figure that the MD scheme with two de-
scriptions can originate annoying artifacts, especially along
diagonal edges.

These results are confirmed with a more realistic two-
state Gilbert channel model for packet errors in each channel
(instead of i.i.d. errors) [20]. In the experiments we supposed
that different descriptions are sent on different channels and
that each channel can be in a “good” or in a “bad” state. If a
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(a) (b)

Figure 5: Details of reconstructed frames for the MD 3 frame system, using (a) the Daubechies 4-tap filter and (b) the symmetric 4-tap filter
adopted in this work.

channel is in the “good” state, then no packet is lost, while if it
is in the “bad” state, then every packet is lost. The transition
probabilities have been determined by fixing the packet error
probability P� and the mean error burst length. In the ex-
periments we choose P� equal to the loss probability used in
the i.i.d. case to make comparisons easier. Figures 10, 11, and
12 show the rate-distortion comparison of the MD schemes
for different values of P� , with a mean error burst length of
4 packets (since a packet contains a row of macroblocks, a
burst of length 4 causes the loss of approximately 22% of the
image).

With all sequences, the proposed MD 3 frame-based
scheme has the best performance at relatively high bit rates
and packet error probability, making it an interesting tech-
nique for many application scenarios. Moreover, we remark
that, due to the recovery possible within the framework of
frame theory, the visual quality of the proposed solution does
not present the typical artifacts originated by interpolation.

4.3. Concealment using temporal information

We consider here an alternative approximate error conceal-
ment technique based on temporal information. It is used in
the MD 3 system only when recovery with the dual frame is
not possible, that is, when a slice is lost in the same position
in two out of three descriptions.

Consider for the moment the case when two out of three
descriptions are lost in the MD 3 system. If the correctly
received description is not intracoded, its blocks are pre-
dicted from the content of the corresponding frame buffer.
If this prediction is accurate (i.e., the prediction error is
negligible), we can use motion information to predict blocks
of lost descriptions using the motion vectors of the received
subsequence. In other words, when the prediction error is
negligible in the received subsequence, we trust the received
motion vectors to predict the missing sequences from the
corresponding frame buffers.

In case two out of three slices in the same position are
lost, the proposed solution evaluates the MSE of the pre-
diction error on the correctly received description, block by
block. If this error is below a predefined threshold, the out-
lined temporal prediction procedure is used to recover one of
the missing systematic channels, otherwise spatial interpola-
tion is used. Then the received and reconstructed subimages
are fed to the restoring block as before.

The MSE threshold computation is based on the quanti-
zation error introduced by the H.264 coder. Themean square
error MSEQP corresponding to the H.264 quantization pa-
rameter QP can be written as [10]

MSEQP � 0.15 · 2QP /3. (18)

The MSE threshold is assumed equal to α ·MSEQP, with α =
3.2 Note that the H.264 adaptive prediction process is very
accurate, and blocks as small as 4× 4 pixels are predicted.

The described temporal error concealment procedure
can of course be used also for the MD 2 and MD 4 schemes.
Figure 13 shows the PSNR for the sequence Foreman and
i.i.d. packet errors with P� = 0.1. The MD 2 scheme receives
the greatest benefit from temporal interpolation, due to the
fact that spatial interpolation alone performs poorly along
the strong edges in the background of Foreman. Remember
that the MD 3 scheme actually uses this interpolation proce-
dure only when ΦI is incomplete, that is, only when a slice is
lost in the same position in two out of three descriptions.

5. CONCLUSIONS

In this paper, we present a multiple-description video cod-
ing scheme based on the extension, using frame-based anal-
ysis, of a filter bank that computes the spatial polyphase
components of the input video frames. Each resulting video
subsequence is then coded with a standard H.264 coder.
A simple modification of the decoder allows to increase
robustness to packet losses by exploiting the added redun-
dancy by means of reconstruction via the dual frame. In
the event of excessive errors, when the resulting frame op-
erator becomes incomplete and no direct reconstruction
is possible, bilinear spatial interpolation is used to recover
necessary information. We also considered the case of an
interpolation procedure which operates in the temporal do-
main. A detailed analysis toward system design and evalua-
tion of reconstruction error bounds was carried out.

The proposed scheme shows a remarkably good perfor-
mance when errors come into play and it shows several ad-
vantages. It permits good robustness to channel errors. Up

2 The value of α has been obtained by means of experiments. The overall
performance is not very sensitive to the value of α.
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Figure 6: Rate-distortion comparison of SD and MD schemes for
the News CIF sequence and different values of P� (i.i.d. channel).
(a) P� = 0.01. (b) P� = 0.05. (c) P� = 0.1.
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Figure 7: Rate-distortion comparison of SD and MD schemes for
the ForemanCIF sequence and different values of P� (i.i.d. channel).
(a) P� = 0.01. (b) P� = 0.05. (c) P� = 0.1.
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Figure 8: Rate-distortion comparison of SD and MD schemes for
the Teeny CIF sequence and different values of P� (i.i.d. channel).
(a) P� = 0.01. (b) P� = 0.05. (c) P� = 0.1.

to relatively high packet loss probabilities (P� � 0.1 in our
experiments), the intrinsic recovery capability of the frame
based system can be exploited for most error patterns. As a

(a)

(b)

Figure 9: Details of reconstructed frames for (a) the MD 2 system
and (b) the frame-based MD 3 system when one description is lost.

matter of fact, as long as the probability of losing data in the
same position in two out of three descriptions is low, the re-
construction depends only on the quality of the individual
descriptions. No artifacts are present in the reconstructed se-
quences because losses can be completely recovered bymeans
of the redundancy provided by frame analysis. For larger val-
ues of P� , when only one description is received for a given
image region, one has to resort to approximate interpola-
tion techniques. Also, when no description is received, con-
cealment can be done by using successive or past frames ac-
cording to the basic SD error recovery procedures of H.264.
In the latter two cases, the visual quality and the PSNR can
drop significantly. This is particularly evident when the sub-
sequences are coded with good quality and spatial interpola-
tion does not provide an acceptable approximation, for ex-
ample, when the image sequence has diagonal edges.

The price to pay is the cost of coding the additional pa-
rity-check subsequence, together with the efficiency loss
caused by coding two subsampled subsequences. On the
other hand, frame analysis and synthesis, including the re-
storing block, can be implemented with reasonable complex-
ity. The experimental results show, however, that the scheme
can be competitive even for relatively small loss probability.
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Figure 10: Rate-distortion comparison of MD schemes for the
News CIF sequence and different values of P� (Gilbert channel).
(a) P� = 0.01. (b) P� = 0.05. (c) P� = 0.1.
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Figure 11: Rate-distortion comparison of MD schemes for the
Foreman CIF sequence and different values of P� (Gilbert channel).
(a) P� = 0.01. (b) P� = 0.05. (c) P� = 0.1.
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Figure 12: Rate-distortion comparison of MD schemes for the
Teeny CIF sequence and different values of P� (Gilbert channel).
(a) P� = 0.01. (b) P� = 0.05. (c) P� = 0.1.
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Figure 13: Improvements in rate-distortion performances of MD
schemes for the Foreman sequence using temporal concealment
(all schemes), followed by optimal frame inversion (MD 3 scheme
only). (a) MD 2. (b) MD 4. (c) MD 3.
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APPENDIX

PROOFS

For notation simplicity, we set g(n) � hM(n), the redundant
channel filter of a systematic (M + 1)/M filter bank.

Proof A.1. We prove here the upper bound in (13). Consider
first the case c = M, that is, only redundant coefficients are
lost. In this case all the samples of x are received through
the systematic channels and, obviously, ‖FIx‖ ≥ ‖x‖ which
implies AI ≥ 1. We can obtain AI = 1 by choosing x orthog-
onal to g and its translations of multiples of M. This proves
the claim for c =M.

In order to prove the claim for c = 0, . . . ,M − 1, we will
search for a specific x such that ‖FIx‖2/‖x‖2 is not larger than
the right-hand side of (13). This will prove the claim. Since
we are searching for x such that ‖FIx‖ is small, we choose x
such that x(n) 
= 0 only when n = c, c +M, . . . , c + (L− 1)M.
With no loss, the output of channel c is identically zero,
except for L consecutive coefficients. Indeed, we suppose
that these coefficients are actually lost. With this choice, any
nonnull received coefficient arrives through the redundant
channel only. It is easy to see that

yM+1(n) = xc � gc(n), (A.1)

where xc(n) = x(c + nM) and gc(n) = g(nM − c) are the cth
polyphase component of x and g, respectively. Let ω0 be such
that minω|Gc(e jω)| = |Gc(e jω0 )| and choose

xc(n) =
{exp

(
jω0n

)
if 0 ≤ n < L,

0 otherwise.
(A.2)

Let Nc be the length of gc. Equation (A.1) implies that
yM+1(n) 
= 0 only for n = 0, . . . ,Nc + L − 2 and it is easy
to recognize that if Nc − 1 ≤ n ≤ L− 1, then

yc(n) = Gc
(
e jω0

)
exp

(
jω0n

)
. (A.3)

By exploiting (A.3) one can write

‖Fx‖2 =
Nc+L−2∑

n=0

∣∣xc � gc(n)
∣∣2

=
Nc−2∑

n=0

∣∣xc � gc(n)
∣∣2 +

L−1∑

n=Nc−1

∣∣Gc
(
e jω0

)
exp

(
jω0n

)∣∣2

+
Nc+L−2∑

n=L

∣∣xc � gc(n)
∣∣2

=
Nc−2∑

n=0

∣∣xc � gc(n)
∣∣2

+
Nc+L−2∑

n=L

∣∣xc � gc(n)
∣∣2 +

(
L−Nc + 1

)∣∣Gc
(
e jω0

)∣∣2.

(A.4)

By exploiting the well-known fact that |xc � gc(n)| ≤
‖gc‖1‖xc‖∞ = ‖gc‖1, one finds the following upper bound

to (A.4):

‖Fx‖2 ≤ 2
(
Nc − 1

)‖gc‖21 +
(
L−Nc + 1

)∣∣Gc
(
e jω0

)∣∣2.
(A.5)

By dividing (A.5) by ‖x‖2 = L (see (A.2)) one obtains (13).

Proof A.2. To prove the lower bound in (13), we need the fol-
lowing two lemmas, relating the frame bounds to the singular
values of the analysis filter bank polyphase matrix.

Lemma A.1. Let H be the polyphase matrix of an N/M anal-
ysis filter bank and let σH(ω) be the smallest singular value of
H(e jω). Let AH be the lower bound of the corresponding frame
operator F. The following equality holds:

AH = inf
‖x‖=1

‖Fx‖2 = min
ω∈[0,2π]

σ2H(ω). (A.6)

Proof of Lemma A.1. Let H(e jω) = U(ω)S(ω)Vt(ω) be the
singular value decomposition of H(e jω). The problem of
searching for the lower bound of F corresponds to searching
for an input signal x with ‖x‖ = 1 such that

‖Fx‖2 =
N−1∑

j=0

∥∥yj
∥∥2 (A.7)

is as small as possible, where yj is the output of the jth chan-
nel. By exploiting Parseval’s identity one can rewrite (A.7) as

‖Fx‖2 =
N−1∑

j=0

∫ 2π

0

∣∣Yj(ω)
∣∣2dω =

∫ 2π

0

N−1∑

j=0

∣∣Yj(ω)
∣∣2dω

=
∫ 2π

0

∥∥Y(ω)
∥∥2dω =

∫ 2π

0

∥∥H(e jω)X(ω)
∥∥2dω,

(A.8)

where Y(ω) is the vector [Y0(ω), . . . ,YN−1(ω)]t and X(ω)
is the vector [X0(ω), . . . ,XM−1(ω)]t of input polyphase
component frequency transforms. It is well known that

∥∥H
(
e jω
)
X(ω)

∥∥2 ≥ ∥∥X(ω)∥∥2σH(ω)2. (A.9)

By exploiting (A.9) in (A.8) one obtains

‖Fx‖2 ≥
∫ 2π

0

∥∥X(ω)
∥∥2σH(ω)2dω. (A.10)

Formula (A.10) can be verified with the equality sign by
choosing X(ω) proportional to the Mth column of V(ω),
that is,

X(ω) = f (ω)VM(ω) (A.11)

for some function f : [0, 2π] → C. It is easy to see that
‖x‖ = 1 is equivalent to

∫ 2π
0 | f (ω)|2dω = 1. With choice

(A.11), (A.10) becomes

‖Fx‖2 =
∫ 2π

0

∣∣ f (ω)
∣∣2σH(ω)2dω. (A.12)
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Let ω0 = argminω∈[0,2π] σH(ω). By exploiting (A.12) one can
write

‖Fx‖2 =
∫ 2π

0

∣∣ f (ω)
∣∣2σH(ω)2dω

≥
∫ 2π

0

∣∣ f (ω)
∣∣2σH

(
ω0
)2
dω

= σH
(
ω0
)2
∫ 2π

0

∣∣ f (ω)
∣∣2dω = σH

(
ω0
)2
.

(A.13)

Formula (A.13) shows that AH in (A.6) cannot be smaller
than minω∈[0,2π] σ2H(ω). It remains to show that for any ε > 0
we can find fε ∈ L2([0, 2π]), ‖ fε‖ = 1, such that

∫ 2π

0
f 2ε (ω)σ

2
H(ω)dω ≤ σ2H(ω) + ε. (A.14)

By exploiting the continuity of σ2H(ω), find δ such that

∣∣ω − ω0
∣∣ < δ =⇒ ∣∣σ2H(ω)− σ2H

(
ω0
)∣∣

= σ2H(ω)− σ2H
(
ω0
) ≤ ε. (A.15)

Let fε be such that fε(ω) = 0 if |ω− ω0| ≥ δ and fε(ω) =
1/
√
2δ if |ω− ω0| < δ. It follows that

∫ 2π

0
f 2ε (ω)σ

2
H(ω)dω =

∫ ω0+δ

ω0−δ
1
2δ

σ2H(ω)dω

≤
∫ ω0+δ

ω0−δ
1
2δ

(
σ2H
(
ω0
)
+ ε
)
dω

= σ2H
(
ω0
)
+ ε.

(A.16)

The following lemma allows to set a lower bound on the
smallest singular value of a systematic filter bank polyphase
matrixH.

Lemma A.2. LetH be anyM ×M matrix

H =
[
U 0

at b

]
, (A.17)

where UtU = I and a ∈ CM−1, b ∈ C; and let σH be the
smallest singular value of H. The following inequality holds:

σ2H ≥
|b|2

|b|2 + ‖a‖2 + 1 + 2‖a‖ . (A.18)

Proof of Lemma A.2. First observe that one can always sup-
pose U = I since one can multiply (A.17) by diag(Ut, 1) and
this does not change the singular values ofH. In order to find
a lower bound to the smallest singular value of H, we will
first search for an upper bound to the largest singular value
of matrix of form (A.17). By applying such an upper bound
to

H−1 =
⎡
⎢⎣

I 0

−at

b

1
b

⎤
⎥⎦ (A.19)

and remembering that σH is the inverse of the largest singu-
lar value of H−1 we will be able to obtain the desired lower
bound.

As it is well known, the largest singular value of a ma-
trix H is the matrix 2-norm ‖H‖ = sup‖x‖=1 ‖Hx‖. Let
x = [ut, v]t ∈ CN be such that ‖x‖ = 1. The squared norm
ofHx is

‖Hx‖2 = ‖[ut,uta + bv
]t‖2 = ‖u‖2 + |uta + bv|2

= ‖u‖2 + ‖u‖2‖a‖2 cos2 φ + |b|2|v|2 + 2�(bvuta),
(A.20)

where φ is the angle between a and u. By observing that
‖u‖ ≤ 1, |v| ≤ 1, and

�(bvuta) ≤ ∣∣bvuta∣∣ ≤ |b||v|‖u‖‖a‖ ≤ |b| ‖a‖ (A.21)

one can find an upper bound to (A.20):

‖Hx‖2 ≤ 1 + ‖a‖2 + |b|2 + 2|b| ‖a‖. (A.22)

By applying (A.22) to (A.19) one obtains that the square of
the largest singular value ofH−1 is not larger than

μ = 1 +
‖a‖2
|b|2 +

1
|b|2 +

2‖a‖
|b|2 = |b|2 + ‖a‖2 + 1 + 2‖a‖

|b|2 .

(A.23)

Therefore, the square of the smallest singular value of H is
not smaller than

1
μ
= |b|2
|b|2 + ‖a‖2 + 1 + 2‖a‖ . (A.24)

In order to prove the left-hand inequality in (13), we
will show that the lower bound corresponding to losing
all the coefficients of channel c cannot be larger than
minω∈[0,2π]|Gc(e jω)|2/(1 + T + 2

√
T). If all the coefficients

of channel c are lost, subframe Φ corresponds to a frame
obtained by means of an M/M filter bank whose polyphase
matrix H is obtained from the original filter bank polyphase
matrix K by deleting the cth row. According to Lemma A.1,
the lower bound of the frame operator corresponding to Φ
is equal to minimum of σ2H(ω) where σH(ω) is the smallest
singular value of H(e jω). By suitably permuting the column
ofH (such an operation does not change the singular values)
one can always bring H in the form

H(ω) =
[

I 0

a(ω)t Gc
(
e jω
)
]
. (A.25)

By applying Lemma A.2 to (A.25) one obtains that for each
ω,

σ2H(ω) ≥
∣∣Gc

(
e jω
)∣∣2

∣∣Gc
(
e jω
)∣∣2 +

∥∥a(ω)t
∥∥2 + 1 + 2

∥∥a(ω)t
∥∥ . (A.26)

Finally, in order to prove the claim, we need to find an upper
bound for the denominator in (A.26). We have

∣∣Gc
(
e jω
)∣∣2 +

∥∥a(ω)t
∥∥2 =

M−1∑

k=0

∣∣Gk
(
e jω
)∣∣2 = R(ω),

(A.27)
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where R(ω) denotes the Fourier transform of the autocorre-
lation r(n) defined in Property 1. By observing that

∣∣R(ω)
∣∣ =

∣∣∣∣∣
∑

n∈Z
r(n) exp( jωn)

∣∣∣∣∣ ≤
∑

n∈Z

∣∣r(n)
∣∣ = T ,

(A.28)

one obtains that ‖a(ω)t‖ ≤ √T and

∣∣Gc
(
e jω
)∣∣2 +

∥∥a(ω)t
∥∥2 + 1 + 2

∥∥a(ω)t
∥∥ ≤ T + 1 + 2

√
T.

(A.29)

By exploiting (A.29) in (A.26) one obtains

σ2H(ω) ≥
∣∣Gc

(
e jω
)∣∣2

∣∣Gc
(
e jω
)∣∣2 +

∥∥a(ω)t
∥∥2 + 1 + 2

∥∥a(ω)t
∥∥

≥
∣∣Gc

(
e jω
)∣∣2

T + 1 + 2
√
T
.

(A.30)
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