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In ANC systems, in case of loudspeakers saturation, the adaptive algorithmmay diverge due to nonlinearity. The most common al-
gorithm used in ANC systems is the FXLMS which is especially used for feed-forward ANC systems. According to its mathematical
representation, its cost function is conventionally chosen independent of control signal magnitude, and hence the control signal
may increase unlimitedly. In this paper, a modified cost function is proposed that takes into account the control signal power.
Choosing an appropriate weight can prevent the system from becoming nonlinear. A region for this weight is obtained and the
mean weight behavior of the algorithm using this cost function is achieved. In addition to the previous paper results, the linear
range for the effort coefficient variation is obtained. Simulation and experimental results follow for confirmation.
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1. INTRODUCTION

Adaptive algorithms are widely used for feed-forward con-
trol systems, in which the mean-square error is minimized
using the method of steepest descent, with no constraint on
the magnitude of the control signals. In recent years, adap-
tive signal processing has been developed and applied to the
expanding field of active noise control (ANC) [1]. ANC is
achieved by introducing a canceling antinoise wave through
an appropriate secondary source as shown in Figure 1. These
secondary sources are interconnected through an electric sys-
tem using a specific signal processing algorithm for the par-
ticular cancellation scheme [2].

In ANC systems the reference signal x(n) synthesizes with
the same frequency component as primary noise [3]. The
adaptive filter W(n) produces an antinoise signal which is
amplified and transmitted into the acoustical system using
a canceling loudspeaker to control the system. An error mi-
crophone located close to the loudspeaker receives both the
primary and canceling signals to generate the error signal
e(n). Most adaptive system analyses assume that nonlinear
effects can be neglected, and hence model both the unknown
system and the adaptive path as linear with memory. Lin-
earity simplifies the mathematical problem and often per-
mits a detailed system analysis in many important practi-
cal circumstances. However, more sophisticatedmodels must
be used when nonlinear effects are significant to the system

behavior (such as amplifier saturation). In real systems, loud-
speakers are not perfectly linear, and are saturated when
driven by large-amplitude signals [4]. In many practical ap-
plications of ANC systems, the total power that can be sup-
plied by the control signal is limited. However, in FXLMS al-
gorithm, no constraint on the control signal is considered,
and the control signal may therefore increase and make the
system nonlinear [5]. There are several methods that claim to
limit the control signal magnitude [6–8]. In [6], the penalty
function of control output is considered to reduce the con-
trol signal magnitude. It has been shown that a stable linear
system can be achieved by choosing an appropriate penalty
function chosen on a trial-and-error basis [6, 7]. In [7, 8],
rescaling and clipping algorithms are proposed. The rescal-
ing algorithm is similar to the leakage algorithm [6] in the
sense of scaling the values of the filter weights when the out-
put is too large [7, 8]. The clipping algorithm is not derived
from any kind of optimization theory. In fact, it is just a de-
scription of what normally happens in a real control system
by saturating control output. In this paper, the modified cost
function with weighting on control signal magnitude as in
[6] is used so as to reduce nonlinearity effects. In [6], this
modified cost function was introduced to adjust the control
signal so that the control signal magnitude is limited, but the
effort coefficient was chosen as a trial-and-error basis and
no analytic behavior was proposed. In this paper the analytic
representation of FXLMS algorithm using the modified cost
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Figure 1: FXLMS block diagram.

function is presented. This cost function does not guarantee
system linearity, but it achieves suitable ranges as a necessary
condition for linearity. Simulation and experimental results
considering several cost functions confirm the idea.

2. ANC SYSTEMS USING FXLMS ALGORITHM

In general there are two digital filter structures that can be
used for adaptive filtering. The FIR filter is one of them that
incorporates only zeros, and hence the filter is always stable
and can provide a linear phase response. Its response is com-
puted as

y(n) =
N−1∑
i=0

wi(n)x(n− i), (1)

where wi(n) is the filter coefficient updated by the adaptive
algorithm. Suppose the input vector at time n is defined as

X(n) =
[
x(n) x(n− 1) · · · x(n−N + 1)

]T
(2)

and the weight vector is

W(n) =
[
w0(n) w1(n) · · · wN−1(n)

]T
. (3)

So (1) can be expressed by a vector operation as

y(n) =WT(n)X(n) = XT(n)W(n). (4)

The error signal e(n) can be calculated as

e(n) = d(n)− y′(n), (5)

where d(n) is the signal received at the error microphone
when the ANC system is off, and y′(n) is the secondary path
(S(z)) output signal, given by

y′(n) =
M−1∑
i=0

si y(n− i), (6)

W(z) Sat(x) S(z) + e(n)
y(n) y′(n)

d(n)

x(n)

x′(n)
Ŝ(z) LMS

Figure 2: Nonlinear FXLMS system.

S = [s0 s1 · · · sM−1] is the secondary path impulse re-

sponse, whereas Ŝ = [ŝ0 ŝ1 · · · ŝM̂−1] is the secondary path
impulse response estimate; see Figure 2. The filter coefficients
are updated according to the LMS algorithm as

W(n + 1) =W(n)− μ

2
∇
W
ζ , (7)

where μ is the step-size parameter which controls the con-
vergence speed of the algorithm, and ζ is the cost function
defined as

ζ = e2(n), (8)

∇
W
ζ = −2e(n)

(M−1∑
i=0

siX(n− 1)

)
. (9)

Equation (9) shows that the system cost function highly de-
pends on the secondary transfer function response. In real-
ity, however, only estimates of the secondary path impulse
response can be available. Using the estimated coefficients in
(9), the adaptive filter taps adaptation will become

W(n + 1) =W(n) + μe(n)

(M−1∑
i

ŝiX(n− i)

)
. (10)

In this algorithm, the control signal y(n) may be unbounded,
and a probable saturation can affect system performance [4];
see Figure 2. The problem may be solved [6] as described in
the next section.

3. CONTROL ALGORITHM CONSIDERING
NONLINEARITY

To avoid the nonlinearity caused by the saturation of the con-
trol signal, a modified cost function may be introduced as

ζ = (e(n)2 + βy(n)2
)
. (11)

Parameter β is considered to feedback the amplitude of adap-
tive filter output to the cost function in order to prevent it
from increasing unlimitedly. Substituting (1), (4), and (6) in
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(5) yields

e(n) = d(n)−
M−1∑
i=0

siX
T(n− i)W(n− i) (12)

and also

∇
W
ζ = −2e(n)[s(n)∗ X(n)

]
+ 2βy(n)X(n)

= −2e(n)
[M−1∑

i=0
siX(n− i)

]
+ 2βy(n)X(n).

(13)

For β = 0, the algorithm reduces to the normal FXLMS.

3.1. Optimumweight vector

The optimum weight vector was obtained for the conven-
tional FXLMS in [9]. Here a similar procedure will be applied
to obtain this vector for the modified cost function. With the
cost function as in (11), the modified mean-square error is
given by

E
[
e2(n) + βy2(n)

]
= E

[
d2(n)

]− 2

(M−1∑
i=0

siP
T
i

)
W

+WT

(M−1∑
i=0

M−1∑
j=0

sis jRj−i

)
W + β

(
WTRXXW

)
,

(14)

where Pi = E[d(n)X(n− i)] are the cross-correlation vectors
between the primary and reference signals, and

Rj−i = E
[
X(n− i)XT(n− j)

]
, RXX = E

[
X(n)XT(n)

]
(15)

are the autocorrelation matrices of the input vector.
Minimizing (14) with respect to W yields the optimum

weight vector

Wopt =
(
R̃ss + βRXX

)−1
P̃s, (16)

where R̃ss =
∑M−1

i=0
∑M−1

j=0 sis jRj−i is the autocorrelation ma-

trix for the filtered reference input, and P̃s =
∑M−1

i=0 siPi is the
crosscorrelation vector between d(n) and the filtered refer-
ence signal.

3.2. Meanweight behavior

Substituting (13) in (7) yields

W(n + 1)=W(n)+μ

{[
e(n)

M̂−1∑
i=0

ŝiX(n− i)

]
−βy(n)X(n)

}
.

(17)

Let V(n) =W(n)−Wopt; then

V(n + 1) = V(n) + μ

{[(
d(n)−

M−1∑
i=0

siX
T(n− i)

(
V(n− i)

+Wopt
)) M̂−1∑

i=0
ŝiX(n− i)

]

− βXT(n)
[
Wopt +V(n)

]
X(n)

}
.

(18)

This can be simplified as

V(n + 1) = V(n)− μβXT(n)
[
Wopt +V(n)

]
X(n)

+ μ
M̂−1∑
i=0

ŝid(n)X(n− i)

− μ
M−1∑
i=0

M̂−1∑
j=0

siŝ jX
T(n− i)V(n− i)X(n− j)

− μ

[M−1∑
i=0

M̂−1∑
j=0

siŝ jX
T(n− i)X(n− j)

]
Wopt.

(19)

Taking the expected value of (19) yields

E
[
V(n + 1)

] = E
[
V(n)

]− μβE
[
XT(n)

[
Wopt +V(n)

]
X(n)

]
+ μ

M̂−1∑
i=0

ŝiE
[
d(n)X(n− i)

]

− μ
M−1∑
i=0

M̂−1∑
j=0

siŝ jE
[
XT(n−i)V(n−i)X(n− j)

]

−μ
[M−1∑

i=0

M̂−1∑
j=0

siŝ jE
{
XT(n−i)X(n− j)

}]
Wopt

(20)

which, according to [9], may be rewritten as

E
[
V(n + 1)

] = E
[
V(n)

]− μβRXXE
[
V(n)

]
+ μ

{M−1∑
i=0

siPi −
M−1∑
i=0

M̂−1∑
j=0

siŝ jRi− jE
[
V(n− i)

]}

− μ

{(M−1∑
i=0

M̂−1∑
j=0

siŝ j

)
Wopt

}
.

(21)

In the steady-state condition, define

V∞ = lim
n→∞E

[
V(n)

]
. (22)

Now, similarly as in [9], it is easy to see from (21) that
V∞ → 0 if S = Ŝ. Henceforth, the weight vector W achieves
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its optimum weight in the steady state. If S �= Ŝ, then

E
[
V(∞)

]
=(βRXX+ R̃sŝ

)−1(
P̃s−

M−1∑
i=0

M̂−1∑
j=0

siŝ jWopt + βRXXWopt

)
,

(23)

where R̃sŝ =
∑M−1

i=0
∑M̂−1

j=0 siŝ jRj−i.

3.3. Suitable range of β to limit control signal y(n)

From the above, the steady-state behavior of the control sig-
nal y(n) can be written as

y(∞) = XT(∞)Wopt. (24)

Substituting (16) in (24) yields

y(∞) = XT(∞)

(M−1∑
i=0

M−1∑
j=0

sis jRj−i + βRXX

)−1 M−1∑
i=0

siPi

(25)

or simply

y(∞) = XT(∞)
(
R̃ss + βRXX

)−1
P̃s. (26)

To analyze the steady-state behavior, we assume that the filter
converges to optimum weights. Now define

y∗(n) = X
′T(n)Wopt =WT

optX
′(n), (27)

where X ′(n) is the system input after convergence.
To avoid nonlinearity in steady state, the L∞ norm [10]

can be used: ∥∥y∗∥∥∞ = sup
∀t

∣∣y∗(t)∣∣. (28)

Now if ‖y∗‖∞ is in a permissible range, the system will be
linear in steady state. Therefore∥∥y∗∥∥∞ ≤ γ, (29)

where γ is the maximum control signal amplitude.
Consider two normed linear vector spaces (V ,‖ · ‖L∞)

and (W ,‖ · ‖L∞) and a linear transformation L : V −W . The
induced norm of the transformation is defined as [10]

‖L‖L∞→L∞ � sup
‖v‖L∞ �=0

∥∥L(v)∥∥L∞
‖v‖L∞

. (30)

When ‖ · ‖∞ is used in Rn and Rm, the following induced
norm is obtained:

‖A‖∞→∞ = max
i

n∑
j=1

∣∣ai j∣∣, i = 1, . . . ,m. (31)

Hence, if X ′(n) ∈ RN , y′(n) ∈ R1, and A = WT
opt ∈ R1×N ,

then

∥∥WT
opt

∥∥∞→∞ = max
i

∣∣wopt,i
∣∣ = max

i

∣∣∣∣[(R̃ss + βRXX
)−1

P̃s
]T
i

∣∣∣∣,
(32)

where [·]i denotes the vector ith element.
Assuming ‖X ′(n)‖∞ ≤ α, (28) is satisfied when

max
i

∣∣∣∣[(R̃ss + βRXX
)−1

P̃s
]T
i

∣∣∣∣ ≤ γ

α
, (33)

α is the maximum available range for the input signal mag-
nitude that could be applied to the system. The optimum β
will be obtained as

βopt = min
β

(
max

i

∣∣∣∣[(R̃ss + βRXX
)−1

P̃s
]T
i

∣∣∣∣ ≤ γ

α

)
. (34)

Choosing min β in (34) is based on the fact that a lower β
results in a lower cost function. It has been shown however,
that one will face a tradeoff between steady-state error and
system nonlinearity.

From (11), the minimum value of the cost function
ζmin = E[e2(n)+βy2(n)]|W=Wopt may be easily obtained from
(14) and (16):

ζmin = E
[
e2(n) + βy2(n)

]∣∣∣
W=Wopt

= E
[
d2(n)]− PT

ss(Rss + βRXX)−1Pss.
(35)

This clearly verifies the fact that the cost function increases
with β. If S �= Ŝ, then

W∞

=(βRXX+Rsŝ
)−1(

P̃s−
M−1∑
i=0

M̂−1∑
j=0

siŝ jWopt+βRXXWopt

)
+Wopt.

(36)

In the simplest form, we assume that M = M̂, si = ŝi + δi,
where δi is the uncertainty in secondary path model param-
eters. Accordingly, the optimal β will be obtained from

βopt = min
β

max
i

∀δi ∈ i = 0, . . . ,M − 1,

∣∣∣∣∣
([

2I −
M−1∑
i=0

M−1∑
j=0

(ŝi + δi)ŝ j + βRXX

]
Wopt

)∣∣∣∣∣
T

i

≤ γ

α
,

(37)

and I is a unit matrix.

4. SIMULATION RESULTS

In the first simulation, to investigate the validity of the math-
ematical representation of adaptive filter weights behavior,
the FXLMS algorithm was simulated using the modified cost
function. The primary and secondary path transfer functions
were chosen as FIR models without uncertainty. See Table 1
for details.



F. Taringoo et al. 5

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

W
ei
gh

t
1

0 500 1000 1500 2000 2500 3000 3500

Iteration

β = 0.05

β = 0.2

Figure 3: Behavior of first adaptive filter tap (W1).

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

W
ei
gh

t
2

0 500 1000 1500 2000 2500 3000 3500

Iteration

β = 0.05
β = 0.2

Figure 4: Behavior of second adaptive filter tap (W2).

Table 1: Simulation assumption.

Primary path transfer function Z−1 + 2Z−2 − Z−3

Secondary path transfer function Unit delay

FIR order 4

Primary noise source
Gaussian white

Power = 0.0001

β 0.05, 0.2

In Figures 3 to 6, the convergence behavior of adaptive
filters coefficients is plotted for β = .05 and β = .2. The
final values read from these plots are consistent with those
computed from (16) with the secondary and primary trans-
fer functions as described in Table 1.
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The second simulation is based on the estimated sec-
ondary and primary acoustical paths obtained experimen-
tally in a laboratory duct, Figures 9, 10, 11. Figures 7 and 8
represent the control signal and the error signal in the single-
channel ANC systems for β = 0 and β = 0.03, respectively.
Figure 7 shows that with β = 0, control signal increases mak-
ing the system nonlinear, while choosing β = 0.03 restricts
the control signal amplitude and hence avoids nonlinearity.
Figure 8 shows error signals in both cases after convergence,
respectively. It is clear that the residual error in the FXLMS
algorithm is much larger than the residual error using the
modified cost function.

It is obvious that using constraint cost function prevents
system from having harmonics. Also, since in acoustical sys-
tems signals with higher frequencies are better heard, an
ANC system using the proposed algorithm is expected to
have better performance.
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Figure 7: Control signal in nonlinear system with FXLMS (a) and proposed system (b).
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5. EXPERIMENTAL RESULTS

The laboratory setup used to implement the ANC system,
pictured in Figure 9, consists of an open-ended polyvinyl
chloride (PVC) duct with the following major elements: ac-
tuating device named the primary speaker, a compensating

device named the secondary speaker, and an error micro-
phone used to detect the residual noise.

The first step was to estimate models for the primary and
secondary acoustical paths. To do so, white Gaussian signals
were generated as the input test signals, and were broadcast
from the primary and secondary loudspeakers, respectively.
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Figure 9: Laboratory setup of ANC in a duct.
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Table 2: Experimental characteristics.

Primary noise Pure sine wave

Frequency of primary noise 270Hz

Amplitude of primary noise .05 V

Adaptive filter order 32

Adaptation gain .00001

Loud-speaker saturation limit 20V

β .0173

Sampling frequency 1 KHz

The corresponding signals received by the error microphone
were then measured as the outputs. Finally FIR models were
estimated for both paths using the input/output signals.

The coefficients of an adaptive filter were updated us-
ing an LMS algorithm. Now in order to compare the per-
formance of the proposed algorithm with the conventional
FXLMS, a 270Hz sine wave was chosen as the input noise
and the ANC system was run in both cases. Solving (34) for
the experimental characteristics of the setup, the optimum
value of β was obtained. See Table 2

The FFT of the control signal for both the FXLMS and
the proposed algorithms are plotted in Figure 12. From this
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Figure 11: Secondary path transfer function.
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Figure 12: FFT of control signals.

figure, it is clear that the control signal in the proposed al-
gorithm is almost pure in wide frequency range, but the
control signal in FXLMS algorithm has high-order harmon-
ics, which represents the nonlinearity of control signal. It
can be seen that considering penalty function for the con-
trol signal prevents the control signal from increasing un-
limitedly. In Figure 13, the FFT of error signal with ANC off
has been plotted, and Figure 14 shows the FFT of error sig-
nal for both FXLMS and the proposed algorithms. To show
the high-frequency components of error signal, the spec-
trum of the error signal is obtained up to 1KHz. Compar-
ing Figures 13 and 14, it is clear that an attenuation of about
30 dB is achieved at 270Hz in both FXLMS and the proposed
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algorithm. However, as observed from Figure 14, the error
signal related to the FXLMS algorithm contains high-fre-
quency components, while this is not the case for the pro-
posed algorithm. Since in acoustical systems, signals with
higher frequencies are better heard, an ANC system using the
proposed algorithm is expected to have better performance.

6. CONCLUSION

In this paper, the behavior of the FXLMS algorithm was in-
vestigated assuming a modified cost function. The modified
cost function was chosen so as to avoid nonlinearity in ANC
systems by applying a control signal constraint condition
which was derived to guarantee the system linearity in steady

state. It was also shown how without this assumption (nor-
mal FXLMS), higher harmonics in the control signal (and
hence in the error signal) are activated resulting in the de-
terioration of the ANC system performance. An important
factor in this algorithm is that just the steady state of linear
systems behavior was considered for design, and this will not
guarantee linearity of system during its transient behavior.
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