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receiver from partitioned (2 × 2) submatrices. This leads to more parallel VLSI design with 3× further complexity reduction.
Comparative study with both the conjugate-gradient and DMI algorithms shows very promising performance/complexity trade-
off. VLSI design space in terms of area/time efficiency is explored extensively for layered parallelism and pipelining with a Catapult
C high-level-synthesis methodology.
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1. INTRODUCTION

Wireless communication is experiencing radical advance-
ment to support broadbandmultimedia services and ubiqui-
tous networking via mobile devices. MIMO (multiple-input
multiple-output) technology [1–3] using multiple antennas
at both the transmitter and receiver has emerged as one of the
most significant technical breakthroughs for throughput en-
hancement. On the other hand, UMTS [4] and CDMA2000
extensions optimized for data services lead to the standard-
ization of multicode CDMA systems such as the high-speed
downlink packet access (HSDPA) and its equivalent 1X evo-
lution data and voice/data optimized (EV-DV/DO) stan-
dards [5]. This leads to an asymmetric capacity requirement,
where the downlink even plays a more essential role than the
uplink because of the downloading features. The application
of the MIMO technology in CDMA downlink receives in-
creasing interest as a strong candidate for the 3G and beyond
wireless communication systems.

Known as D-BLAST [3] and a more realistic strategy
as V-BLAST [2] for real-time implementation, the orig-
inal MIMO spatial multiplexing was proposed for nar-
rowband and flat fading channels. In a multipath fading
channel, the orthogonality of the spreading codes is de-
stroyed. This introduces both the multiple-access interfer-
ence (MAI) and the intersymbol interference (ISI). The con-
ventional Rake receiver [6] could not provide acceptable per-

formance because of the very short spreading gain to sup-
port high-rate data services in multicode CDMA downlink.
LMMSE (linear-minimum-mean-squared-error)-based chip
equalizer is promising to restore the orthogonality of the
spreading code and suppress both the ISI and MAI [6] in
single-antenna systems. However, this involves the inverse
of a large covariance matrix with O((NF)3) complexity for
MIMO systems, where N is the number of receive antennas
and F is the channel length. Traditionally, the implementa-
tion of equalizer in hardware has been one of the most com-
plex tasks for receiver designs. The MIMO extension gives
evenmore challenges for real-time hardware implementation
[7], especially for the mobile receiver.

To avoid the DMI, adaptive algorithms such as least-
mean-square (LMS) algorithm have been studied. However,
they suffer from stability problems because the convergence
depends on the choice of a good step size [8]. On the other
hand, nonadaptive block-based algorithms such as the Levin-
son and Schur [9, 10] algorithms reduce the complexity to
the order of O((NF)2). An iterative conjugate gradient (CG)
tap solver was proposed in [11, 12] at similar complexity.
However, this squared complexity is still very high for ef-
ficient real-time implementation. The fact that the down-
link receiver must be embedded into a low-cost portable
device makes the design of low-complexity equalizer chal-
lenging but essential for widespread commercial deploy-
ment.
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In this paper, we first present an FFT-based fast algorithm
for the tap solving by approximating the block Toeplitz struc-
ture of the covariancematrix with a block-circulantmatrix to
avoid the direct matrix inverse. The inverse of the large co-
variance matrix is reduced to some parallel FFT/IFFT opera-
tions and the inverse of somemuch smaller submatrices. This
algorithm reduces the complexity order to O(NF log2(F)),
which makes the real-time implementation much easier. An
algorithmic-level comparative study for different equaliz-
ers demonstrates their promising performance/complexity
tradeoff.

As real-time implementation is concerned, system-on-
chip (SoC) architecture offers more parallelism, more com-
pact size, and lower power consumption than general pur-
pose DSP processors. However, the research for the SoC
architectures of MIMO-HSDPA mobile receiver remains
a relatively new and hot topic. Recently, Nokia success-
fully demonstrated a single-antenna HSDPA real-time sys-
tem in the CTIA’03 wireless trade show [13, 14]. Although
MIMO-VLSI implementations have been reported for Lu-
cent’s BLAST ASIC chip [15] and some MIMO detection
algorithms [16], the VLSI architecture design of MIMO-
CDMA equalizers remains a new research topic. To support
the MIMO-CDMA downlink in a multipath fading channel,
it is necessary to explore the efficient VLSI design architec-
ture [17] for the complex equalizer.

In the second part, we focus on the VLSI-oriented op-
timizations of the architecture complexity. Hermitian opti-
mization is proposed by utilizing the structures of the cor-
relation coefficients and the FFT algorithm. A reduced-state
FFT module is proposed to avoid redundant computation
of the symmetric coefficients and the zero coefficients. This
reduces both the number and complexity of the conven-
tional FFT module. On the other hand, the matrix inverse
of some smaller submatrices of size (N × N) is inevitable
for the MIMO receiver although the (NF × NF) inverse
is avoided. For a high-order MIMO receiver, the complex-
ity still increases dramatically with the number of antennas.
Therefore, the Hermitian feature is applied to reduce the sub-
matrix inverse complexity. Of particular interest is the non-
trivial (4× 4) MIMO configuration. We apply a divide-and-
conquermethod to partition the (4×4) submatrices into four
(2 × 2) submatrices. The (4 × 4) matrix inverse is then dra-
matically simplified by exploring the commonality in a parti-
tioned matrix inverse lemma. Generic VLSI architectures are
derived from the special design blocks to eliminate the re-
dundancies in the complex operations. The regulated model
facilitates the design of efficient parallel VLSI modules such
as “complex-Hermitian-multiplication,” “Hermitian inverse”
and “diagonal transform.” This leads to efficient architectures
with 3× further complexity reduction and more parallel and
pipelined schematic.

In addition to minimizing the circuit area used, the de-
sign needs to work within a time budget. There are many
area/time tradeoffs in the VLSI architectures. Extensive ar-
chitecture tradeoff study provides critical insights into im-
plementation issues that may arise during the product de-
velopment process. However, this type of SoC design space

exploration is extremely time consuming because the stan-
dard trial-and-optimize approaches today are usually tied to
hand-coded VHDL/Verilog-based methodology [18, 19]. In
this paper, we present a Catapult C-based [13] high-level-
synthesis (HLS) methodology which integrates several key
technologies to explore the VLSI architecture tradeoffs ex-
tensively. Extensive design space exploration is enabled by al-
locating different architecture/resource constraints in a Cat-
apult C architecture scheduler [13]. Synthesizable register-
transfer-level (RTL) design is generated from an algorithmic
C/C++ fixed-point design, integrated in other downstream
flows and validated in a Xilinx FPGA prototyping platform.

The rest of the paper is organized as follows. Section 2
gives the MIMO-CDMA downlink system model. The FFT-
based circulant chip equalizer is presented in Section 3.
Section 4 presents the system-level partitioning and the
VLSI-level complexity optimization. The comparative per-
formance and complexity analysis are presented in Section 5.
Finally, Section 6 presents the HLS-based design space explo-
ration and an experimental implementation on FPGA.

2. SYSTEMMODEL FORMIMO-CDMADOWNLINK

The system model of the MIMO multicode CDMA down-
link with M Tx antennas and N Rx antennas is described in
Figure 1. In a multicode CDMA downlink, multiple spread-
ing codes are assigned to a single user to achieve high data
rate. By using spatial multiplexing, the high data rate symbols
are demultiplexed into KM lower-rate substreams, where K
is the number of spreading codes for data transmission. The
substreams are divided intoM groups, where each substream
in the group is spreaded with a spreading code of spreading
gain G. Each group is then combined and scrambled with
long scrambling codes and transmitted through the mth Tx
antenna. The chip-level signal at themth transmit antenna is
given by dm(i+ j∗G) =∑K

k=1 skm( j)ckm(i)+ sPm( j)c
P
m(i), where

j is the symbol index, i is the chip index, and k is the index of
the composite spreading code. skm( j) is the jth symbol of the
kth code at themth substream. In the following, we focus on
the jth symbol and omit the symbol index for notation sim-

plicity. ckm(i) = ck(i)c
(s)
m (i) is the composite spreading code

sequence for the kth code at the mth substream, where ck(i)
is the user-specific Hadamard code and c(s)m (i) is the antenna-
specific scrambling long code. sPm( j) denotes the pilot sym-

bols at the mth antenna. cPm(i) = cP(i)c(s)m (i) is the composite
spreading code for pilot symbols at themth antenna. The re-
ceived chip-level signal at the nth Rx antenna is given by

rn(i) =
M∑

m=1

Lm,n∑

l=0
hm,n(l)dm

(
i− τl

)
+ zn(i), (1)

where hm,n(l) and Lm,n are the lth path channel coefficient
and the delay spread between the mth Tx antenna and the
nth Rx antenna, respectively. zn(i) is the additive Gaussian
noise at the nth receive antenna.

By packing the received chips from all the receive anten-
nas in a vector r(i) = [r1(i), . . . , rn(i), . . . , rN (i)]T and collect-
ing the LF = 2F + 1 consecutive chips with center at the ith
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Figure 1: The system model of the MIMOmulticode CDMA downlink.

chip from all the N Rx antennas, we form a signal vector as
rA = [r(i+F)T , . . . , r(i)T , . . . , r(i−F)T]T . Here, F is the obser-
vation window length corresponding to the channel length.
In the vector form, the received signal can be given by

rA(i) =
M∑

m=1
Hmdm(i), (2)

where Hm is a block Toeplitz matrix constructed from the
channel coefficients as shown in [20]. The multiple receive
antennas’ channel vector is defined as hm(l) = [hm,1(l),
. . . ,hm,n(l), . . . ,hm,N (l)]T . The transmitted chip vector for
the mth transmit antenna is given by dm(i) = [dm(i +
F), . . . ,dm(i), . . . ,dm(i− F − L)]T .

3. LMMSE TAP SOLVERWITH CIRCULANT
APPROXIMATION

3.1. LMMSE chip equalizer

LMMSE chip-level equalization has been one of the most
promising receivers in the single-user CDMA downlink.
Chip equalizer estimates the transmitted chip samples by a
set of linear FIR filter coefficients ŵH

m(i) to restore the code
orthogonality as

d̂m(i) = ŵH
m(i)rA(i). (3)

It is well known that the LMMSE chip equalizer coefficients
are given by minimizing the MSE between the transmitted
and recovered chip samples as

ŵ
opt
m (i) = argmin

ŵm(i)
E
[∥
∥dm(i)− ŵH

m(i)rA(i)
∥
∥2
]

= σ2d (i)R̂rr(i)−1ĥm(i),
(4)

where σ2d (i) is the transmitted chip power. R̂rr(i) and ĥm(i)
are the covariance estimation and channel estimation, re-
spectively. Here, the covariance matrix is estimated by the
time-average with ergodicity assumption as

R̂rr(i) = E
[
rA(i)rHA (i)

] = 1
NB

NB−1∑

i=0
rA(i)rHA (i), (5)

where NB is the length for the time average. The channel co-

efficients are estimated as ĥm(i) = E[rA(i)dHm(i)] using the
pilot symbols. In the HSDPA standard, about 10% of the to-
tal transmit power is dedicated to the common pilot chan-
nel (CPICH). This will provide accurate channel estimation.
By assuming that the channel is stationary over the observa-
tion window length, we can have a block-based operation by

omitting the chip index in R̂rr(i), ĥm(i), and ŵm(i).

3.2. FFT-based circulant approximation tap solver

Using the stationarity of the channel and the convolution
property, it is easy to show that the covariance matrix is a
banded block Toeplitz matrix as

Rrr =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E[0] · · · EH[L] · · · 0
...

. . .
. . . · · · ...

E[L]
. . .

. . . · · · EH[L]
...

. . . · · · ...
. . .

0 · · · E[L] · · · E[0]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6)

where E[l] is an (N × N) block matrix with the cross-
antenna covariance coefficients. The dimension of the ma-
trix is (NLF × NLF), where LF is determined by the channel
length L. In an outdoor environment, LF could be up to 32.
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The direct inverse of the matrix is very expensive for hard-
ware implementation.

To reduce the computation complexity, an FFT-based fast
algorithm is presented in this section. It is known that a cir-
culant matrix S can be diagonalized by the FFT operation
as S = DHΛD, where D is the FFT phase coefficient ma-
trix and Λ is a diagonal matrix whose diagonal elements are
the FFT result of the first column of the circulant matrix S.
This known lemma is applied to simplify the MIMO equal-
izer computation dramatically. It is shown that the covari-
ance matrix Rrr can be approximated by a block-circulant
matrix after we add two corner matrices as

Crr = Rrr +

⎛

⎜
⎜
⎝

0 0 CH
L

...
. . . 0

CL 0 0

⎞

⎟
⎟
⎠ , (7)

where

CL =

⎛

⎜
⎜
⎝

EH[L] 0 0
...

. . . 0

EH[1] · · · EH[L]

⎞

⎟
⎟
⎠ . (8)

Using the extension of the diagonalization lemma and the
features of Kronecker product, the block-circulant matrix can
be decomposed as

Crr =
(
DH ⊗ I

)
( LF−1∑

i=0
Wi ⊗ E[i]

)
(
D⊗ I

)
, (9)

where W = diag(1,W−1
LF · · ·W−(LF−1)

LF ) and WLF = e j(2π/LF )

is the phase factor coefficient for the DFT computation.
⊗

denotes the Kronecker product. By denoting

F =
( LF−1∑

i=0
Wi ⊗ E[i]

)

, (10)

it can be shown that the final MIMO equalizer taps are com-
puted as the following equation:

ŵ
opt
m ≈ (DH ⊗ I

) · F−1 · (D⊗ I)ĥm. (11)

F = diag(F[0],F[1], . . . ,F[LF]) is a block-diagonal matrix
with elements taken from the element-wise FFT of the first
column of the block-circular matrix Crr . For an (M × N)
MIMO system, this reduces the inverse of an (NLF × NLF)
matrix to the inverse of subblock matrices with size (N ×N).

3.3. System-on-chip (SoC) architecture partitioning

To achieve the real-time implementation, either DSP pro-
cessors or VLSI architectures could be applied. For exam-
ple, a multiple-processor architecture using TI’s DSP proces-
sors has been reported in [21] for the 3G base station im-
plementation. However, the requirement for low power con-
sumption and compact size makes it difficult to use multiple
DSPs in a mobile handset to achieve the real-time processing

power for the chip-level physical layer design, especially for
the MIMO systems. SoC architecture is a major revolution
for integrated circuits due to the unprecedented levels of
integration and many advantages on the power consump-
tion and compact size. However, the straightforward imple-
mentation of the proposed equalizer has many redundancies
in computation. Many optimizations are needed to make it
more suitable for real-time implementation. We emphasize
the interaction between architecture, system partitioning,
and pipelining in this section with these objectives: (1) pro-
pose VLSI-oriented optimizations to further reduce the com-
putation complexity; (2) implement the equalizer with the
minimum hardware resource to meet the real-time require-
ment; (3) obtain an efficient architecture with optimal par-
allelism and pipelining for the critical computation parts. To
explore the efficient architectures, we elaborate the tasks as
the following procedure.

(1) Compute the independent correlation elements [E[0],
. . . ,E[L]], and form the first block column of circu-
lant C(1)

rr by adding the corner elements as C(1)
rr =

[E[0], . . . ,E[L], 0, . . . , 0,EH[L], . . . ,EH[1]]T . Each ele-
ment is an (N ×N) subblock matrix.

(2) Take the element-wise FFT of C(1)
rr , where the element

vectors Fn1,n2 = FFT{E(c)n1,n2} and E(c)n1,n2 (i) = C(1)
rr [(n1 −

i− 1)∗N + n2 − 1] for i ∈ [0,LF], n1,n2 ∈ [1,N].
(3) For m ∈ [1,M] and n ∈ [1,N], compute the

dimension-wise FFT of the channel estimation as
Φm = (D⊗ I)ĥm = FFT([0, . . . , 0,hm,n(L), . . . ,hm,n(0),
0, . . . , 0]).

(4) Compute the inverse of the block-diagonal matrix F,
where F−1 = diag(F[0]−1, . . . ,F[LF − 1]−1) and F[i] is
an (N ×N) submatrix formed from the ith subcarrier
of Fn1,n2 .

(5) Compute the matrix multiplication of the submatrices
inverse with the FFT output of channel estimation co-
efficientsΨm = F−1Φm.

(6) Compute the dimension-wise IFFT of the multiplica-
tion results ŵ

opt
m ≈ (DH ⊗ I)Ψm.

With a timing- and data-dependency analysis, the top-
level block diagram for the MIMO equalizer is shown in
Figure 2. The system-level pipeline is designed for bet-
ter modularity. In the front end, a correlation estimation
block takes the multiple-input samples for each chip to
compute the covariance coefficients of the first column of
Rrr . It is made circulant by adding corner to form the
matrix [E[0], . . . ,E[L], 0, . . . , 0,E[L]H , . . . ,E[1]H]. The com-
plete coefficients are written to DPRAMs and the (N × N)
element-wise FFT module computes [F[0], . . . ,F[LF]] =
FFT{E[0], . . . ,E[L], 0, . . . , 0,E[L]H , . . . ,E[1]H}.

Another parallel data path is for the channel estimation
and the (M × N) dimension-wise FFTs on the channel coef-
ficient vectors as in (D⊗ I)ĥm. A submatrix inverse and mul-
tiplication block takes the FFT coefficients of both the chan-
nel estimation and correlation estimation coefficients from
DPRAMs and carries out the computation as in F−1Φm. Fi-
nally, an (M × N) dimension-wise IFFT module generates
the results for the equalizer taps ŵ

opt
m and sends them to the
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Figure 2: The block diagram of the VLSI architecture of the FFT-based MIMO equalizer.

(M × N) MIMO-FIR block for filtering. To reflect the cor-
rect timing, the correlation and channel estimation mod-
ules at the front end will work in a throughput mode on
the streaming input samples. The FFT-inverse-IFFTmodules
in the dotted line block construct the postprocessing of the
tap solver. They are suitable to work in a block mode us-
ing dual-port RAM blocks as interface between blocks. The
MIMO-FIR filtering will also work in throughput mode on
the buffered streaming input data.

4. VLSI-LEVEL COMPLEXITY OPTIMIZATION

4.1. Hermitian optimization

In this section, more emphasis is given to the VLSI-oriented
implementation aspects. For QPSK and QAM modulation
schemes, all the numerical computations in the algorithm are
associated with complex numbers. However, the complexity
in the hardware is reflected by the number of real multipli-
cations, additions, and divisions, and so forth. It is more ac-
curate to clarify the complexity for different types of com-
putations. For example, a general “complex (a) × complex
(b)” numerical computation has 4 real multiplications and 2
real additions, but a “complex (a) × conjugate (a)” reduces
to only 2 real multiplications and 1 real addition. By defin-
ing Fn1,n2 [0 : LF − 1] as the element-wise FFT vector of the
covariance block-vector for n1,n2 ∈ [1,N], we show that the
element-wise FFT of the circulant covariance vectors admits
a Hermitian structure. This leads to the following lemmas for
complexity reduction.

Lemma 1 (Hermitian). Fn1,n2 = conj(Fn2,n1 ), where the vector
is formed from the covariance element vector between antennas
n1 and n2. Fn2,n1 is redundant for n2 < n1.

Lemma 2 (Hermitian complexity). The computation of
Fn1,n1 can be reduced to only L/LF of the full DFT module.

Proof. For the Rx antennas n1,n2, it can be shown that the el-
ements in the circulant column have the following relations,
where NB is the covariance time-average window length:

E(c)n1,n2 (0) =
(
E(c)n2,n1 (0)

)∗ =
NB−1∑

i=0
rn1 (i)rn2 (i)

∗,

E(c)n1,n2 (l) =
(
E(c)n2,n1

(
LF − l

))∗ =
NB−1∑

i=0
rn1 (i)rn2 (i + l)∗,

E(c)n1,n2

(
LF − l

) = (E(c)n2,n1 (l)
)∗ =

NB−1∑

i=0
rn2 (i)rn1 (i + l)∗,

E(c)n1,n2 (l) =
(
E(c)n2,n1

(
LF − l

))∗ = 0 otherwise.

(12)

Using the features of the FFT, it can be proven that
the element-wise FFT results have the relation that Fn1,n2 =
(Fn2,n1 )

∗. The submatrix formed by the ith entry of Fn1,n2
is an (N × N) Hermitian symmetric matrix as F(i) =
(Fn1,n2 (i))N×N = F(i)H .

Thus, instead of having N × N complex FFT computa-
tions, we only need to compute the element-wise FFT for the
lower triangle matrix. The number of FFTs in the element-
wise FFT is reduced from N2 to (N2 + N)/2. Moreover, the
element-wise FFT coefficients of the diagonal elements are
all real numbers. This leads to the design of the reduced-state
MIMO-FFT blocks.

4.2. Reduced-state FFT

Because the FFT algorithm applies the features of the rota-
tion coefficients, the application of the Hermitian feature to
FFT is not straightforward. Here, we derive the VLSI-level
optimization for the reduced-state FFT with pruning op-
erations based on the standard radix-2 decimation-in-time
(DIT) FFT algorithm. Notice that in the standard butterfly
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Figure 3: Reduced-state FFT butterfly tree.

unit, each operation involves a full complex multiplication,
which has 4 real multiplications and 2 real additions. Since
the kth subcarrier of the Fmm vector is

fmm(k) = emm(0) + 2�
( L∑

i=1
emm(i)W−ki

LF

)

, (13)

by defining the input sequence to the FFTmodule as {x(i)} =
[0, emm(1), . . . , em,m(L), 0, . . . , 0], we only need to compute
the real part FFT of the x(i) to get fmm(k). From the but-
terfly decomposition, we have the recursion for the real-part
FFT computation as

�(X(k)) = �(X1(k)
)
+�(Wk

LFX2(k)
)
,

�
(

X
(

k +
LF
2

))

= �(X1(k)
)−�(Wk

LFX2(k)
) (14)

for k = 0, 1, . . . ,LF/2 − 1. This reduces the complex multi-
plication and addition to only real multiplication and addi-
tion for one stage. The butterfly unit becomes a reduced-state
partial-butterfly-unit (PBFU) as the dotted line units shown
in Figure 3 for an example of 16-point FFT.

From the recursion, it can be shown that we can prune
the redundant computations by replacing the complex mul-
tiplication in the butterfly units for some portion of the FFT
BFU tree. Before considering the many zeros in the input

Table 1: Complexity comparison for different FFT schemes.

Real mult Real add

Full FFT 2LF log2 LF LF log2 LF

RS-FFT w/o ZP 2N log2 LF − 2LF + 2 LF log2 LF − 2LF + 2

RS-FFT with ZP 2LF log2 LF − 6LF + 12 LF log2 LF − 4LF + 12

coefficients, the total number of PBFU is LF − 1. Since the
total number of BFU is (LF/2) log2 LF , the total number of
full-BFU (FBFU) is given by (LF/2) log2 LF − LF + 1. Con-
sidering that x(i) �= 0 only for i ∈ [1,L], L < LF/2, we can
further truncate the computations related to the zero values.
After pruning all the unnecessary BFU branches, the FBFUs
and PBFUs only take effects from stage 3. The number of
FBFU is reduced to (LF/2) ∗ log2 LF − 2LF + 6. This also
reduces the number of memory access and register files for
stage 1 and stage 2 as well as in the partial BFUs. The fi-
nal data flow is shown as the BFU tree in Figure 3. In the
figure, only the shaded portion has full-BFUs. Table 1 sum-
marizes the required operations in terms of the real mul-
tiplications/additions and memory read/write. In the table,
RS-FFT indicates the reduced-state FFT- and ZP-means zero
pruning. Although the saving diminishes when the length of
FFT increases to a very large number, the RS-FFT with ZP
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saves roughly 50% of the real multiplications because the FFT
length within 64 points will suffice formost realistic equalizer
applications.

4.3. Hermitianmatrix inverse architectures

In this section, we utilize the Hermitian feature and focus on
the optimization of the submatrix inverse and multiplication
module following the element-wise FFT modules in the tap
solver. Although the FFT-based tap solver avoids the direct
matrix inverse of the original covariance matrix with the di-
mension of (NF × NF), the inverse of the diagonal matrix
F is inevitable. For a MIMO receiver with high receive di-

mension, the matrix inverse and multiplication in F−1ĥm is
not trivial. Because F is a block-diagonal matrix, its inverse
can be decomposed to the inverse of LF submatrices of size
(N ×N) as in

F−1 = diag
(
F[0]−1,F[1]−1, . . . ,F

[
LF − 1

]−1)
. (15)

A traditional (N×N)matrix inverse using Gaussian elim-
ination has the complexity at O(N3) complex operations.
Cholesky decomposition can be applied to facilitate the in-
verse of these matrices. However, this method requires arith-
metic square root operation, which is expensive for hardware
implementation. Considering the fact that it is unlikely to
have more than four Rx antennas in a mobile terminal, we
consider the two special cases individually, that is, 2 and 4 Rx
antennas. We propose complexity-reduction schemes and ef-
ficient architectures suitable for VLSI implementation based
on the exploration of block partitioning. The commonality
of the partitioned block matrix inverse is extracted to design
generic RTL modules for reusable modularity. We then build
the (4× 4) receiver by reusing the (2× 2) block partitioning.

4.3.1. Dual-antennaMIMO receiver

From (11), a straightforward partitioning is at the matrix
inversion of F and then the matrix multiplication of the
dimension-wise FFT of the channel coefficients as F−1(D ⊗
I)ĥm. In this partitioning, we would first compute the inverse
of the entire subblock matrix in F and then carry out a ma-
trix multiplication. However, this partitioning involves two
separate loop structures. In the VLSI circuit design, this will
introduce some overhead for memory access and finite-state
machine logic. Since the two steps have the same loop struc-
ture, it is more desirable to merge the two steps and reduce
the overhead shown as follows. The inverse of a (2× 2) sub-
matrix is given by

F[k]−1 =
(
f00(k) f01(k)
f10(k) f11(k)

)−1

= 1
f00(k) f11(k)− f01(k) f10(k)

(
f11(k) − f01(k)
− f10(k) f00(k)

)

.

(16)

Let Γ = (D ⊗ I)ĥm = [Γ[0],Γ[1], . . . ,Γ[LF − 1]], where
Γ[k] = [e1(k) e2(k)] is the combination of the kth elements

of the dimension-wise FFT coefficients, then a merged com-
putation of the matrix inverse and multiplication is given by

W = F−1 · (D⊗ I)ĥm

= diag
(
F[0]−1, F[1]−1, . . . ,F

[
LF − 1

]−1)
Γ

=
[
F[0]−1Γ[0]T ,F[1]−1Γ[1]T , . . . ,F

[
LF−1

]−1
Γ
[
LF−1

]T]
.

(17)

Thus, we can use a single merged loop to compute the
final result of W instead of using separate loops. Moreover,
with theHermitian features of F00 and F11, we can reduce the
number of real operations in the matrix inverse and multi-
plication module. This leads to a simplified equation for the
kth element of the matrixW as

W(k) = 1

f00(k) · f11(k)−
∣
∣ f01(k)

∣
∣2

·
(

f11(k) ◦ e1(k)− f01(k)∗ e2(k)

− f10(k) ◦ e2(k)− f01(k)∗ e1(k)

)

,

(18)

where “a · b,” “a ◦ b,” and “a ∗ b” indicate a “real× real,”
“real× complex” and “complex× complex” multiplication,
respectively. The complex division is replaced by a real divi-
sion. From this, we derived the simplified data path with the
Hermitian optimization as in Figure 4. In this figure, f00(k)
and f11(k) are real numbers. The single multiplier means a
real multiplication. The multiplier with a circle means the
“real× complex” multiplication and the multiplier with a
rectangle is a “complex× complex” multiplication. The sim-
plified data path facilitates the scaling, and thus increases the
stability in the fixed-point implementation.

4.3.2. Receiver with 4 Rx antennas

The principle operation of interest is the inverse of the (4×4)
submatrices. To achieve a scalable design, we first partition
the (4 × 4) submatrices in F[i] into four (2 × 2) block sub
matrices as

F(i)4×4 =

⎛

⎜
⎜
⎜
⎜
⎝

f11(i) f12(i) f13(i) f14(i)

f21(i) f22(i) f23(i) f24(i)

f31(i) f32(i) f33(i) f34(i)

f41(i) f42(i) f43(i) f44(i)

⎞

⎟
⎟
⎟
⎟
⎠

=
(
B11(i) B12(i)

B21(i) B22(i)

)

.

(19)

The inverse of the (4 × 4) matrix can be carried out by a se-
quential inverse of four (2×2) submatrices. We also partition
the inverse of the (4× 4) element matrix as

F(i)−1 =
(
C11(i) C12(i)

C21(i) C22(i)

)

. (20)
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Figure 4: The merged 2× 2 inverse and multiplication.

B11

B12

B21

B22

[o]−1
B−111

[·]× [·]
B−111 B12

[·]× [·]
B21 B−111

B12

[·]× [·]
B21 B−111 B12

[·]− [·] [o]−1 C22

[·]× [·] C21

[·]× [·]
C12

[·]× [·]
[·]− [·] C11

Figure 5: The data path of the partitioned 4× 4 matrix inverse for each subcarrier.

It can be shown that the subblocks are given by the following
equations from the matrix inverse lemma [22]:

C22(i) =
[
B22(i)− B21(i)B11(i)−1B12(i)

]−1
,

C12(i) = −B11(i)−1B12(i)C22(i),

C21(i) = −C22(i)B21(i)B11(i)−1,

C11(i) = B11(i)−1 − C12(i)B21(i)B11(i)−1.

(21)

Without looking into the data dependency, a straightfor-
ward computation will have 8 complex matrix multiplica-
tions, 2 complex matrix inverses, and 2 complex matrix sub-
tractions, all of the size (2 × 2). By examining the data de-
pendency, we will find some duplicate operations in the data
path. For a general case before considering the Hermitian
structure of the F[i] matrix, a sequential computation has the
data-dependency path given by Figure 5. The raw complex-
ity is given by 6 matrix mult, 2 inverses, and 2 substractions.
From the data path flow, the critical path can be identified.

Now we utilize the Hermitian feature of the F matrix
to derive more parallel computing architecture. Because the
inverse of a Hermitian matrix is Hermitian, that is, F−1 =
[F−1]H , it can be shown that

B−111 (i) =
[
B−111 (i)

]H =⇒ C11(i) =
[
C11(i)

]H
,

B12(i) =
[
B21(i)

]H =⇒ C12(i) =
[
C21(i)

]H
,

B22(i) =
[
B22(i)

]H =⇒ C22(i) =
[
C22(i)

]H
.

(22)

This leads to the data path by removing the duplicate compu-
tation blocks that has the Hermitian relationship. However,
this straightforward treatment still does not lead to the most
efficient computing architecture. The data path is still con-
structed with a very long dependency path. To fully extract
the commonality and regulate the design blocks in VLSI, we
define the following special operators on the (2×2) matrices
for the different complex operations. These special operators
are mapped to VLSI processing units to deal with the special
Hermitian matrix.

Definition 1 (pseudo-power). pPow(a, b) = �(a) · �(b) +

(a) · 
(b) is defined as the pseudo-power function of two
complex numbers and �(a, b) = �(a) · �(b) − 
(a) · 
(b)
is defined as the real part of a complex multiplication.

Definition 2 (complex-hermitian-mult). For a general (2×2)
matrix A and a Hermitian (2× 2) matrix B = BH , we define
the operator CHM (Complex-Hermitian-mult) as

M(A,B) = AB =
(
a11 a12
a21 a22

)(
b11 b∗21
b21 b22

)

. (23)

Note that all the numbers are complex except {b11, b22} ∈ R.

Definition 3 (Hermitian inverse). For a (2 × 2) Hermitian
matrix B = BH , the Hermitian inverse (HInv) operator is
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defined as

HInv(B) = 1

b11b22 −
∣
∣b21

∣
∣2

(
b22 −b∗21
−b21 b11

)

, (24)

where there are only real multiplications and divisions.

Definition 4 (diagonal transform). Given the (4 × 4) Her-
mitian matrix A which is partitioned into four subblocks as

A =
(
A11 AH

21
A21 A22

)
= AH , the DT (diagonal transform) of A is de-

fined as

T(A) = T
(
A11,A21,A22

)

= A22 − A21A11A21H

= A22 −M
(
A21,A11

)
AH
21.

(25)

With these definitions, we regulate the inverse of the
(4 × 4) Hermitian matrix F = FH into simplified operations
on (2×2)matrices. After somemanipulation, the partitioned
subblock computation equations can be mapped to the fol-
lowing procedure using the defined operators:

Binv = HInv
(
B11
) = BH

inv;

D =M
(
B21,Binv

)
;

C22 = HInv
(
T
(
Binv,B21,B22

))
;

C12 = −M
(
DH ,C22

)
;

C11 = Binv +DHC22D = T
(− C22,DH ,Binv

)
.

(26)

The overall computation complexity is reduced to 2 HInv
operations, 2 DTs, 1 extra CHM block. Because the sign in-
verter and the Hermitian formatter [·]H have no hardware
resource at all, the computation complexity is determined by
these three generic blocks. The data path of the computation
shows the timing relationship between different design mod-
ules. This regulated procedure facilitates the design of effi-
cient parallel VLSI modules, whose details are given in the
following.

4.3.3. Parallel architecture modules

Now we derive the efficient VLSI modules for the genericM
and T operations. Because the operationM is also embedded
in the T transform, we need to design the interface so that the
computing architecture is reused efficiently. The grouping of
computations and the smart usage of interim registers will
eliminate the redundancy and give simple and generic inter-
face to the design modules. For a singleM(A,B) module, we
define

D̃ =
(
d11 d12

d21 d22

)

=M(A,B)

=
(
a11 ◦ b11 + a12 ∗ b21 a11 ∗ b∗21 + a12 ◦ b22
a21 ◦ b11 + a22 ∗ b21 a21 ∗ b∗21 + a22 ◦ b22

)

.

(27)

To extract the commonality in the M and T operations, we
have the following lemma for Hermitian matrix.

Lemma 3 (inverse 4 × 4). If B = BH is a (2 × 2) Hermitian
matrix, then ABAH is also aHermitianmatrix, whereA in this
lemma is a general (2×2)matrix. The associated computation
is given by 6 complex multiplications(CM)s, 4 complex-real
multiplication (CRM)s, 4pPow(a, b), and 2�(a, b).

Proof. We extend the computation of G = ABAH as

G =
(
g11 g12
g21 g22

)

= ABAH =M(A,B)AH

=
(
a11◦ b11+ a12∗ b21 a11∗ b∗21+ a12◦ b22
a21◦ b11+ a22∗ b21 a21∗ b∗21+ a22◦ b22

)

·
(
a∗11 a∗21
a∗12 a∗22

)

.

(28)

We then group the operations for each element as

g11 =
(
a11 ◦ b11

)∗ a∗11 +
[
a12 ∗ b21 ∗ a∗11 + a11 ∗ b∗21 ∗ a∗12

]

+
(
a12 ◦ b22

)∗ a∗12,

g21 = d21 ∗ a∗11 + d22 ∗ a∗12,

g12 = d21 ∗ a∗11 + d22 ∗ a∗12,

g22 =
(
a21 ◦ b11

)∗ a∗21 +
[
a22 ∗ b21 ∗ a∗21 + a21 ∗ b∗21 ∗ a∗22

]

+
(
a22 ◦ b22

)∗ a∗22.
(29)

We define the interim registers tmp1 = (a11◦b11), tmp2 =
(a12 ∗ b21), tmp3 = (a12 ◦ b22), tmp5 = (a21 ◦ b11), tmp6 =
(a22∗b11), tmp7 = (a22◦b22). These interim values are added
to generate d11, d12, d21, d22. Moreover, instead of having a
general complex multiplication, we can employ the special
functional components. For example, it is easy to verify that
(a11 ◦b11)∗a∗11 = pPow(tmp1, a11). By changing the compu-
tation order and combining common computations, we can
finally show that G is a Hermitian matrix with the elements
given by

g11=pPow
(
tmp1, a

∗
11

)
+ 2�( tmp2, a

∗
11

)
+pPow

(
tmp3, a

∗
12

)
,

g21 = d21 ∗ a∗11 + d22 ∗ a12∗,
g12 = g∗21,

g22=pPow
(
tmp5, a

∗
21

)
+ 2�( tmp6, a

∗
21

)
+pPow

(
tmp7, a

∗
22

)
.

(30)

Thus the simplified M(A,B) RTL module can be de-
signed as in Figure 6, with the input of both real and
imaginary parts of A as {a11(r/i), a12(r/i), a21(r/i), a22(r/i)}
and only the necessary elements of the Hermitian ma-
trix B as in {b11(r), b21(r/i), b22(r)}. The output ports in-
clude {tmp1, tmp2, tmp3, tmp5, tmp6, tmp7}. We only need
to compute d21 and d22 to get the G elements. Built from the
simplifiedM(A,B) module, the data path RTLmodule of the
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Figure 6: The simplified parallel VLSI RTL layout of theM(A,B) processing unit.
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Figure 7: The VLSI RTL architecture layout of the T(A11,A21,A22) block.

transform T(A11,A21,A22) of the (4×4) Hermitian matrix is
given by Figure 7. The output ports of the T(A11,A21,A22)
include the independent elements {t11, t21, t22}.

We can further simplify the top-level RTL schematic by
extracting the commonality of the M and T module designs
as in Figure 8 to eliminate the extra individual M module.
Thus, the results of C11,C12, and C21 are generated together
from the second T module. Compared with the design in
Figure 5, the architecture demonstrates better parallelism
and reduced redundancy. The data path is much better bal-
anced and facilitates the pipelining in multiple subcarriers
for high-speed design.

If we use a standard computing architecture of the par-
titioned (4 × 4) matrix inverse, we need 308 real multi-
plications before dependency optimization (DO). With a

straightforward DO, the complexity is still 244 real multipli-
cations. Traditionally, a complex multiplication is given by
“c = cr + jci = (ar + jai)∗ (br + jbi) = (arbr−aibi)+ j(arbi+
aibr).” This has 4 real multiplications (RM) and 2 real ad-
ditions (RA). By rearranging the computation order, we can
reduce the number of real multiplications as (1) p1 = arbr ,
p2 = aibi, s1 = ar + ai, s2 = br + bi; (2) cr = p1 − p2,
d = (p1 + p2), s = s1s2; (3) ci = s − d. This requires 3
real multiplications and 5 real additions in three steps. A sin-
gle T transform needs only 38 RMs for a (4 × 4) Hermitian
matrix. Thus, there are 90 RMs to compute the F(i)−1 with
the optimized Hermitian architecture. This is only less than
1/3 of the real multiplications for a traditional architecture as
shown in Table 2. Note that the critical data path is also dra-
matically shortened with better modularity and pipelining.
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Figure 8: The commonality extracted VLSI design architecture based on T ,M, and HINV.

5. COMPARATIVE PERFORMANCE AND
COMPLEXITY ANALYSIS

5.1. BER performance

The performance is evaluated in a MIMO-HSDPA simula-
tion chain for different antenna configurations. We compare
the performance of four different schemes: the LMS adap-
tive algorithm, the CG algorithm, the FFT-based algorithm,
and the DMI using Cholesky decomposition. We simulated
the Pedestrian-A and Pedestrian-B channels following the
I-METRA channel model [23], which are typical for high-
speed downlink application. The chip rate for the transmit
signal is 3.84 Mcps, which is in compliance with the 3GPP
standard. The channel state information is estimated from
the CPICH at the receiver. Ten percent of the total transmit
power is dedicated to the pilot training symbols.

We provide the simulation results for QPSK modula-
tion with antenna configuration in the form of (M × N).
In the figures, Lh is the channel delay spread. Figures 9
and 10 show the fully loaded system for Pedestrian-A and
Pedestrian-B channels with (2 × 2) configuration, while
Figure 11 shows a highly loaded system with 10 codes for
(2×2) Pedestrian-B channel. Figure 12 shows the simulation
results for Pedestrian-A with (4× 4) configuration. It can be
seen that for Figure 9, the FFT-based algorithm overlaps with
both the DMI and the CG at 5 iterations very closely. In a
(2× 2) case for Pedestrian-B channel, both the CG and FFT-
based algorithms show very small divergence from the DMI
at the very high SNR range in Figure 10. For a fully loaded
system, CG with 5 iterations seems to be slightly better than
FFT-based algorithm. But in a case with 10 codes, FFT-based
algorithm outperforms the CG for both 3 iterations and 5
iterations. In the (4 × 4) case as shown in Figure 12, the
FFT-based algorithm also outperforms the CG with 5 iter-
ations. However, because the realistic system is most unlikely
to work in the very high SNR range, the small difference in
the BER performance is negligible. In all cases, the DMI, CG,
and FFT-based algorithms significantly outperform the LMS
adaptive algorithm.

It should be pointed out that the performance of the
LMMSE-based chip equalizer is limited for the fast fading
channel because of its block-based feature could not track the
fast fading channel environments very well. To deal with this,

Table 2: Complexity reduction for submatrix inverse in F−1.

Architecture RM

Traditional w/o DO(4× 4) 308LF

Traditional w/ DO(4× 4) 244LF

Hermitian opt(4× 4) 90LF

a Kalman filter-based equalizer has been proposed in one of
the authors’ papers [24] with much higher complexity. The
discussion of the related architecture is out of the scope of
this paper.

5.2. Complexity

The complexity is a very important consideration for real-
time implementation. Although the complete equalizer sys-
tem consists of the correlation/channel estimation, the tap
solver, and the FIR filtering, we focus on the three-tap-solver
complexity with similar performance, that is, the DMI, the
CG, and the FFT-based algorithm. The other two parts are
common for the algorithms presented here. Cholesky de-
composition is assumed for the DMI. The complexity is com-
pared in terms of number of equivalent complex multiplica-
tions and additions.

For the DMI, the complexity is at the order of O((N(F +
1))3) for the inverse of Rrr andO((N(F +1))2M) for the ma-
trix multiplication in (Rrr)−1hm. For the conjugate gradient
algorithm, there areO{MJ[N(F +1)]2 +M(5J +1)N(F +1)}
complex multiplications andO{MJ[N(F +1)]2 +8MJN(F +
1)} complex additions. Usually, J = 5 iterations for the CG
algorithmwill suffice for convergence near the DMI solution.
For the FFT-based algorithm, the overall complexity before
Hermitian optimization is O{(N2 + 2MN)LF(log2 LF)/2 +
(N3 +MN2)LF}. With the Hermitian optimization, the com-
plexity reduces to O{(N2/2 + 2MN)LF(log2 LF)/2 + (N3 +
MN2)LF/2}. For the FFT-based algorithm, we usually require
LF ≥ 2F + 1. The complexity is summarized in Table 3. For
simplicity, we only list the most significant part of equivalent
number of complex multiplications. An example is given for
the (4×4) case with F = 10, J = 5. The length of FFT LF = 32
will suffice for both Pedestrian-A and Pedestrian-B channels.
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Figure 9: BER performance of 2× 2 in Pedestrian-A channel; K = 14, G = 16, Lh = 3, T = 2,M = 2, and F = 10.
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Figure 10: BER performance of 2× 2 in Pedestrian-B channel; K = 14, G = 16, Lh = 6, T = 2,M = 2, and F = 10.

In Figure 13, we show the complexity trend for different J
and different LF versus the channel length for a (4 × 4) sys-
tem. Although the conjugate gradient algorithm has reduced
complexity compared with the DMI, the complexity reduc-
tion in the FFT-based algorithm is much more significant.

6. VLSI DESIGN ARCHITECTURE EXPLORATION

6.1. High-level-synthesis architecture scheduling

As a major revolution for the design of integrated circuits,
SoC architecture leads to a demand in new methodologies
and tools to address design, verification, and test problems in

this rapidly evolving area. There are many area/time/power
tradeoffs in the VLSI architectures. Extensive study of the
different architecture tradeoffs provides critical insights
into implementation issues and allows designers to identify
the critical performance bottlenecks in meeting real-time
requirements. Field-programmable gate array (FPGA) can
behave like a number of different ASICs with hardware
programmability to study architecture area/time tradeoffs.
This makes FPGA a good platform to build, verify, and
prototype SoC designs quickly. It has been well accepted as
a powerful rapid prototyping platform for the SoC architec-
tures in the literature [13, 25]. A detailed discussion on the
tradeoffs using FPGA and DSP for real-time implementation
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Figure 11: BER performance of 2× 2 in Pedestrian-B channel case 2: K = 10 codes; K = 10, G = 16, Lh = 6, T = 2,M = 2, and F = 10.

0 2 4 6 8 10 12 14 16

SNR (dB)

10−2

10−1

100

B
it
er
ro
r
ra
te

LMS
CG, iter. = 5

FFT-based
DMI

Figure 12: BER performance of 4× 4 in Pedestrian-A channel; K = 12, G = 16, Lh = 3, T = 4,M = 4, and F = 10.

is presented in [13].
However, this type of SoC design space exploration is

very time consuming because the current standard trial-
and-optimize approaches apply hand-coded VHDL/Verilog
or graphical schematic tools. In this section, we present
a Catapult C-based HLS methodology [26] to explore the
VLSI architecture space extensively in terms of the area/time
tradeoff. This is enabled with high-level architecture and re-
source constraints. Synthesizable RTL is generated from a
fixed-point C/C++ level design and imported to the graph-

ical tools for module binding. The proposed procedure for
implementing an algorithm to the SoC hardware is shown
in Figure 14. The number of FUs is assigned according to
the time/area constraints. Software resources such as regis-
ters and arrays are mapped to hardware components and re-
quired finite-state machines (FSMs) necessary for accessing
these resources are generated. In this way, we can study sev-
eral architecture solutions efficiently. In the next step of the
design flow, the generated RTL is imported into the HDL en-
vironment and integrated with other modules of the system,
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Table 3: The overall tap-solver complexity comparison.
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Figure 13: Overall tap-solver complexity comparison; algorithm complexity comparison forM = 4, N = 4 tap solver.
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Figure 14: Integrated Catapult C high-level-synthesis design methodology.

which are either another Catapult C design or a legacy IP
core. Leonardo spectrum is invoked for gate-level synthesis.
Xilinx ISE place & route tool is used to generate gate-level
bit-stream file. Raising the language level may lead to con-

cerns about the architecture efficiency, which highly depends
on the design tool’s capability. To address these concerns,
we have compared both the architecture area/time efficiency
and the achieved productivity in [13] with the conventional
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Figure 15: Throughput mode correlation update module using PMS.

design flow. In most cases, the manual tradeoff study of a
complex design with hundreds of multipliers could be ex-
tremely time consuming and difficult. However, we can al-
most achieve themost efficient design architecture for a given
specification using the architecture scheduling in Catapult C,
especially for the computation-intensive algorithms. Com-
pared with the conventional hand-code and schematic-based
design methodologies, the Catapult C-based methodology
demonstrates not only improved productivity, but also a ca-
pability to study the architecture tradeoffs extensively in a
short design cycle.

6.2. Real-time VLSI architecture exploration

The complete equalizer includes two major steps: the com-
putation of the equalizer coefficients ŵ and the actual FIR
filtering using the updated equalizer taps as in ŵHrA(i). The
update of the equalizer coefficients is a block-based opera-
tion depending on the channel varying speed. The FIR filter-
ing depends on the chip rate. Thus, we need to compute the
L-tap convolution for each input chip from theN receive an-
tennas for the FIR filtering within fclk/ fchip cycles, where fclk
and fchip are the system clock rate and chip rate, respectively.
The WCDMA chip rate is 3.84MHz. We applied a clock rate
of 38.4MHz for the Xilinx Virtex-II V6000-4 FPGA. There
will be 10 cycles time constraint per input chip. For the tap
solver, the experiment shows that 2 updates per slot are suf-
ficient to provide acceptable performance for slow and me-
dian fading channels. Since there are 1920 chips per slot, the
latency requirement for each update is 250 microseconds.

We schedule architectures in two basic modes according
to the real-time behavior of the subsystem in Catapult C: the
throughput mode or the block mode. Throughput mode as-

sumes that there is a top-level main loop for each incoming
sample, which is processed immediately in the computation
period. The module processes for each input sample period-
ically, so there is a strict limit for the processing time. Block-
mode processes once after a block data is ready. Because
the finite-state machine (FSM) usually depends on complex
logic and extensive memory access, the computation patten
is more like a processor architecture in loading data to the
functional units. In the following, we use two typical design
modules to demonstrate these different working modes.

6.2.1. Scalable pipelined-multiplexing scheduler

The covariance estimation is computed as

Rrr =
(

1
NB

) NB−1∑

i=0
rA(i)rHA (i) (31)

assuming ergodicity. Theoretically, the front-end covariance
estimation module can also be designed in block mode sim-
ilar to a processor implementation. However, this architec-
ture causes a large processing latency and requires big ping
pong buffers to store the input samples. For NB = 960 chips
per block, the fastest RTL takes more than 6 millisecond la-
tency because the heavy memory access stalls the pipelining
and does not provide sufficient parallelism. To meet the real-
time requirement, a scalable architecture is designed with
throughputmode as in Figure 15. L input-shift-latches (ISLs)
shift the new samples and the delayed samples in one cycle.
The core is the pipelined-multiplexing scheduler (PMS) with
a set of functional-unit banks (FUB) for both multipliers
and adders. The temporary values are stored in intermediate-
multiplication registers (IMRs) and accumulation-register
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Table 4: Architecture tradeoff exploration for covariance estima-
tion module.

Cycles 1 2 3 4–8 9 10

MU(a) 0 176 0 0 0 0

AD(a) 0 0 136 0 0 0

MU(b) 0 22 22 22 22 0

AD(b) 0 0 17 17 17 17

(ACR). After the word length is adjusted by shifting, a
separate parallel-read-shuffle (PRS) module designed by
Catapult C reads the registers in parallel for [E0, . . . ,EL] and
writes the memory and shuffles the Hermitian part [EHL ,
. . . ,EH1 ]. Memory stalls are avoided and scalability is achieved
because it can stop at any chip to adjust to different update
rates.

In the PMS, the number of FUs is assigned according
to the time/area constraints. As an example for a (2 × 2)
case with L = 10, the VLSI area/time tradeoff is shown in
Table 4. The complexity is 176 multiplications and 136 ad-
ditions in each computation period. A typical manual de-
sign will layout 176 multipliers and 136 adders all in parallel.
This will take 4 cycles to complete the computation. How-
ever, the multipliers are in IDLE state for 9 cycles and wasted.
On the other extreme, an area-constraint solution will reuse
one multiplier and one adder, but has to take more than 176
cycles. The most area/time efficient architecture in 10 cy-
cles is to reuse 22 multipliers and 15 adders as the pipelined
operations. The multiplexing of so many multipliers in man-
ual RTL layout could be very difficult and time consuming.
Moreover, for a changed specification such as the chip rate or
clock rate, we can rapidly reschedule the design to meet the
real-time requirement by using the minimum hardware re-
source. The similar design method is applied for the FIR and
channel estimation.

6.2.2. Block-basedMIMO-FFT IP cores

For the multiple FFTs in the tap solver, the keys for optimiza-
tion of the area/speed are loop unrolling, pipelining, and re-
source multiplexing. Although Xilinx provides FFT IP cores,
they are considerably large and much faster than required.
For example, a single v32FFT core in Xilinx CoreGen library
utilizes 12 multipliers and 2066 slices. Moreover, it is not
easy to apply the commonality by using the IP core for the
MIMO-FFTs. To achieve the best area/time tradeoff in differ-
ent situations, we design the customized MIMO-FFT mod-
ules to utilize the commonality in control logic and phase co-
efficient loading. Parallelism/pipelining in the parallel FFTs
are studied extensively in multilevels, for example, the BFU
level, the stage level, and the FFT-processor level. Catapult
C scheduled RTLs for 32-point FFTs with 16 bits are com-
pared with Xilinx v32FFT Core in Table 5 for a single FFT.
Catapult C design demonstrates much smaller size for differ-
ent solutions, for example, from solution 1 with 8 multipli-
ers and 535 slices to solution 3 with only one multiplier and
551 slices. Overall, solution 3 represents the smallest design

Table 5: Architecture efficiency comparison for Catapult C versus
Xilinx IP core.

Architecture mult Cycles Slices

Xilinx core 12 128 2066

Catapult C Sol1 8 570 535

Catapult C Sol2 2 625 543

Catapult C Sol3 1 810 551

Table 6: The area/time specification of the major FPGA design
cores.

Architecture Latency CLB ASICMult

Correlator 1 chip 22399 80

16-FFT32 43.1 μs 2530 4

32 MatInvMult(4× 4) 37.6 μs 4526 6

16-IFFT32 43.1 μs 2530 4

Overall tap solver 123.8 μs 7109.3 14

with slower but acceptable speed for a single FFT. For the
MIMO-FFT/IFFTmodules, we can reuse the control logic in-
side the FFT module and schedule the number of FUs more
efficiently in the merged mode.

6.3. Prototyping implementation

Based on the above algorithmic and architectural optimiza-
tions, we have prototyped the VLSI architecture of a (4 × 4)
MIMO equalizer on the Aptix FPGA platform [27]. The cor-
relation window is set to 10 chips for all 4 receive anten-
nas. Fixed-point simulation shows that 8-bit input chip could
provide negligible performance loss. To give a safe range, the
input chip samples to both the corelator and the channel esti-
mator have 10-bit precision. The 32-point MIMO-FFTmod-
ule has 16-bit input word length for both the covariance and
channel coefficients. To support even faster fading speed, we
design the prototyping system for up to 4 updates per slot
with an overall tap-solving latency requirement of 125 mi-
croseconds. In Table 6, we give the specification of the ma-
jor design blocks. Overall, we utilize only 4 multipliers to
achieve area/time efficient design for 16 merged FFT/IFFT
modules. For the LF inverse of the (4 × 4) Hermitian sub-
matrices, the latency is 38 microseconds with 6 multipliers.
It is also noticed that the different modules have very similar
latency, which provides a very balanced pipelining in multi-
ple stages. The overall 124 microseconds meet the real-time
requirement very closely and give area efficiency. This effi-
ciency not only benefits from the afore-mentioned algorith-
mic and architectural optimization, but also from the exten-
sive design space exploration to find the most compact de-
sign by meeting the real-time requirement. The integration
of theMIMO equalizer into the complete HSDPA transceiver
system following the same methodology as in [13] is also be-
ing considered.
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7. CONCLUSION

In this paper, we propose an efficient circulant MIMO chip
equalizer for multicode CDMA downlink by using FFT-
based operations to avoid the direct matrix inverse. A
comparative study demonstrates very promising perfor-
mance/complexity tradeoff. VLSI-oriented optimizations
are proposed to reduce the number and complexity of FFTs.
The inverse of (4 × 4) submatrices is solved by partitioned
(2 × 2) submatrices, which leads to dramatically simplified
VLSI modules. The VLSI design space is explored extensively
for area/time efficiency by a Catapult C-based HLS method-
ology. The VLSI design is validated in a real-time FPGA
prototyping system.
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