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Super-Resolution for Synthetic Zooming

INTRODUCTION

Xin Li
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown WV 26506-6109, USA

Received 1 December 2004; Revised 3 March 2005; Accepted 4 March 2005

Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative
to optical zooming—synthetic zooming by super-resolution (SR) techniques. Synthetic zooming is achieved by registering a se-
quence of low-resolution (LR) images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or
increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajec-
tories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its
3D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data
inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data
inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a
PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results
with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.
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affecting the manufacturing cost. Synthetic zooming is an al-

Image resolution is a critical factor affecting the quality of
image and video. To increase the spatial resolution, we can
increase the sampling density or the focal length of CCD sen-
sors [1]. However, such physics-based approaches are limited
by the cost of manufacturing high-precision or power-zoom
optics. Recently, signal-processing-based alternatives, that is,
to reconstruct a high-resolution (HR) image from multiple
low-resolution (LR) images, have attracted much attention.
Super-resolution (SR) techniques exploit the fundamental
tradeoff between space and time—the multiple LR images
are acquired separately in time but fused together to enhance
the resolution in space.

The literature of SR image reconstruction is large. Inter-
ested readers are referred to several recent reviewing articles
[2—4]. As our understanding of SR improves, new techniques
with relaxed assumptions about motion model [5] and point
spread function (PSF) [6] appear. The performance of SR al-
gorithms has also improved in terms of robustness [7] and ef-
ficiency [6]. A natural generalization of SR, which deals with
resolution enhancement of video (also-called dynamic SR in
[3]), has been widely studied for both uncompressed [8, 9]
and compressed [10, 11] video.

In this paper, we investigate the problem of SR for syn-
thetic zooming. The zoom capability of optical lens, de-
termined by the range of focal length, is a primary factor

ternative low-cost approach of enhancing the imaging sys-
tem’s zoom capability by processing images acquired within
the range of focal length of existing imaging systems. Syn-
thetic zooming has various important applications from law
enforcement to geological surveillance. One salient feature
of synthetic zooming is the relaxed assumptions about the
acquisition process. For example, in some scenarios such as
video surveillance, security camera is mounted at some place
and cannot easily perform panning or rotation due to me-
chanical constraints, but is still able to zoom in. Another ex-
ample is when an object of interest moves in front of a cam-
era, object motion often causes scene depth changes, which
will generate zoom-like motion into the images (variation of
scene depth is geometrically equivalent to the change of focal
length).

Unlike translational or rotational motion assumed by
most existing SR techniques, zoom motion [12] has been
studied much less in the literature of motion estimation. Un-
der the assumption that the region of interest has the same
scene depth (e.g., a flat surface parallel to the imaging plane)
and the zooming speed is approximately constant, we argue
that all images are linked by a simple line-geometric model—
the projections of any point in the physical scene at different
focal lengths lie along a ray, and the rays corresponding to
different physical points intersect at a unique point called
“vanishing point” (VP). Such observation motivates us to
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solve the registration problem for synthetic zooming by es-
timating the 3D coordinate of VP. We present a spatio-
temporal analysis technique for tracking feature points along
the rays and a robust nonlinear optimization approach for
locating their intersection (VP). We also provide arguments
about the robustness of such VP-based registration based on
a rigorous analysis of error bounds in the Euclidean space.

Another issue at the heart of SR techniques is the sensor
PSE. The PSF of an optical system is affected by a number of
factors such as focal length, object distance, distance of the
point from the center, and so on [13]. One particular chal-
lenge with SR for synthetic zooming is that the sensor PSF is
not only unknown but also varying along the temporal axis.
Such observation gives rise to the issue of data consistency in
SR image reconstruction; that is, if LR image data correspond
to different PSFs, how do we fuse them together? We pro-
pose to divide the collection of LR frames into consecutive
groups (to alleviate inconsistency) and employ Delaunay-
triangulation (DT)-based interpolation [14] to fuse the data
for each group separately. The interpolated images from each
group are then linearly merged into the final result. We use
experimental results to support the effectiveness of such idea.

It should be noted that due to the nonlinearity behind the
zooming process (VP-related geometry and varying PSF), it
is extremely difficult to relate the LR and HR images by a
linear system such as the warping matrix used in [4, equa-
tion (1)]. Therefore, many effective regularized SR image
reconstruction techniques, such as maximum a posteriori
(MAP) [9] and projection-onto-convex-set (POCS), [8] are
not applicable. Instead, we advocate a PDE-based nonlinear
deblurring approach that originated from shock filters [15].
Our model is spiritually similar to [16] except the use of a
mean curvature diffusion flow term [17] in order to effec-
tively suppress the artifacts associated with interpolation er-
rors.

The rest of this paper is organized as follows. Section 2
introduces SR for synthetic zooming and emphasizes the role
of line geometry for image registration and the issue of PSF
for image deblurring. Section 3 describes a robust technique
for estimating VP via tracing the rays of feature points in
the spatio-temporal space and provides theoretical analysis
of error bounds. Section 4 covers the DT-based interpolation
and PDE-based nonlinear deblurring for synthetic zooming.
Simulation results with real-world image sequences are re-
ported in Section 5. We make several concluding remarks in
Section 6.

2. PROBLEM STATEMENT

The problem of synthetic zooming can be formulated as fol-
lows. It is well known that the capability of optical zooming
is determined by the range of focal length of optical lens. For
example, the lens with a focal length of 35-105 mm have the
power of 3 X zoom. Suppose {Ik},’f:1 are the K consecutive
frames captured by a video camera as we zoom in (or equiva-
lently, as the object moves closer to the camera). Without loss
of generality, we can assume that I; and Ix are the furthest
and closest shot of the scene.
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FIGURE 1: Synthetic zooming problem.

Synthetic zooming refers to generating a new image I;
(I > K) from {Ik}kK:1 as if it were captured at a larger focal
length, as shown in Figure 1. Note that although the sam-
pling density of I; is the same as that of I, the actual pixel size
is reduced due to the zoom-in along the temporal axis (we
call it “temporal mode” SR, refer to Figure 2(a)). Along with
the increased focal length, we can also artificially increase the
spatial sampling density (we call it “spatial mode” SR, refer
to Figure 2(b)). In practice, the sensor PSFs in temporal and
spatial modes would differ even if they are tuned to exactly
reach the same pixel size (resolution). However, under the
context of synthetic zooming, we do not need to distinguish
temporal mode and spatial mode because they will be shown
equivalent from a geometric perspective in the next section.

To make the problem of synthetic zooming tractable, we
need to make the following assumptions.

(1) Constant scene depth—that is, we assume that the
object of interest has a flat surface parallel to the imaging
plane. Just like translational motion models adopted by most
existing SR techniques, such assumption is for the reason of
simplifying the analysis. Otherwise, scene depth discontinu-
ities need to be taken into account, which dramatically in-
creases the complexity of motion estimation. We believe that
studying such simplified case is the first step to solve SR for
synthetic zooming in more general cases where motion seg-
mentation is required.

(2) Constant zooming speed—under such assumption,
motion trajectories of any physical point would arguably
vanish to a single point, called “vanishing point” (VP) as
shown in Figure 3. VP can be viewed as the limiting case
of zooming as the focal length goes to zero or the scene
depth goes to infinity. Such property greatly simplifies the
geometric modeling of zoom images, which serves as the ba-
sis for our SR image reconstruction techniques. In practice,
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F1GURE 2: (a) Temporal mode. (b) Spatial mode. Note that tempo-
ral mode requires a larger focal length to reach the same pixel size
(resolution) as spatial mode.

the speed of optical zooming determined by the lens me-
chanics or object motion is approximately constant at least
for a short time interval, which justifies the validity of such
assumption.

(3) Small K values—due to either limited zoom capabil-
ity of the lens or limited time interval T (usually a fraction of
a second) available for acquiring the object of interest. Such
assumption is made to both reflect practical constraints (e.g.,
a fast moving car passes the camera quickly) and simplify the
problem (as we will discuss in detail next). When video is
captured at 30 fps, we might assume that only a dozen or so
frames (K = 12, less than 0.5 second) are available for SR
image reconstruction.

The basic idea behind SR for synthetic zooming is illus-
trated (see Figure 3). In the continuous space, the projections

7 Vanishing
point

FIGURE 3: Geometry of zoom images and illustration of vanishing
point.

of a physical point at (X, Y, Z) at two different frames Iy and
I; are linked by a simple geometric relationship as follows:

x_k y_k
X z Y 2
, , (1)
X _ 1 y_ 1
X z Y Z°

Here (x, y) and (x', y") are the coordinates of the projected
point in frame k and J, respectively. As Z goes to infinity at
a constant speed, all projections will arguably converge to
a single point—the VP = (xo, y9,20). The zooming ratio of
frame Ij is then defined by

|zo| +k
E

(2)

Note that the zooming ratio is opted to be normalized at the
origin of temporal axis (frame number), though we do not
have an image at k = 0.

If we ignore the dissipation of light irradiance crossing
a short distance in the space, the following identity would
hold:

HSR(X’)’)dxd)’ = HS R(x',y")dx'dy’, (3)

where R denotes the incidence spectral irradiance (watts/unit
area) and S, " are the projected areas of the same physical
point onto I, Ij, respectively. After discrete sampling, the
pixel intensity value at a specific location (i, j) € [1,H] X
[1, W] is given by

R j) = Q| [ mii-vj- R vy | @

Here A = [(i — 1/2)d, (i + 1/2)d] X [(j — 1/2)d, (j + 1/2)d]
and Q[-] is the nonlinear quantization operator. We note
that hx(x, y), the PSF of optical lens while acquiring I could
change along with the variation of focal length fi [13]. We
also remark that the sampling distance d is related to the ac-
tual pixel size D by

NN

(5)
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Therefore, a larger focal length fi gives rise to a smaller D,
which implies a reduced pixel size or imaging at a higher res-
olution. Synthetic zooming essentially reconstructs an im-
age with a large focal length from the given K images with
smaller focal lengths.

The above geometric and radiometric analysis of opti-
cal zooming raises a fundamentally new challenge with SR
for synthetic zooming. In translational motion, it is often
convenient to explicitly write out the forward imaging pro-
cess by a linear system (e.g., the warping matrix W in [4,
equation (2)]). However, such linear system modeling would
become highly cumbersome and inaccurate for zoom mo-
tion due to the following two reasons. First, the fractional
part of the displacement among LR images is plausibly uni-
formly distributed over (0,1) due to the modulation with
scene depth Z. Second, the PSF of LR images varies along the
temporal axis due to its dependency on fi. Without linear
system models, many well-established SR image reconstruc-
tion techniques, such as MAP [9] and POCS [8], are not ap-
plicable any more. The intrinsic nonlinearity caused by VP-
related geometry and time-varying PSF distinguishes SR for
synthetic zooming from other SR techniques.

3. ESTIMATING VANISHING POINT OF
MOTION TRAJECTORIES

Image registration [18] or motion estimation (ME) [19] was
traditionally formulated as a problem with two frames only.
Such formulation enjoys conceptual simplicity and matches
the time-varying characteristics of motion in the real world.
However, when the motion model is constrained (e.g.,
constant-speed zooming), it is advantageous to employ mul-
tiple frames during ME for the reason of robustness as well as
computational efficiency. In this section, we present a multi-
frame ME technique for zoom images based on tracking a
selected group of feature points in the spatio-temporal do-
main.

3.1. Multi-frame motion estimation for zooming

Theoretically it is sufficient to use just two intersecting
straight lines (motion trajectories) to locate VP. However,
due to discrete sampling as well as potential errors with
matching feature points, it is wise to employ more than two
lines. Since any line in 3D Euclidean space is determined by
two points, we need to identify a group of matched feature
points {(x;, y1,23), (X7, v 22)1n-1-

To locate N pair of points, we propose to select a group
of feature points from the last frame (z2 = K) and trace them
back to the first frame (z}, = 1). The selection of good feature
points for object tracking have been widely studied in the
literature of computer vision (e.g., [20-22]). It is often sug-
gested that points with large local variance, indicating strong
texturedness or cornerness, are good candidates for tracking.
We adopt this idea in this paper but additionally put a con-
straint that the selected feature points be spatially uniformly
distributed. Such requirement is useful to avoid the potential
bias in the estimation of VP.

Specifically, the input image (Ix) is filtered by the differ-
ence-of-Gaussian operator in the scale space [20]. Then the
candidates of feature points are taken to be the local maxi-
mum in the filtered image. Unlike [20], we do not resample
the image at different scales because we have found that a
handful of feature points is sufficient for estimating VP. One
way of enforcing the uniformly-distributed constraint is to
structure the input image into nonoverlapping blocks and
pick out at most one feature point from a block if the vari-
ance of that block is above a chosen threshold.

To track the location of selected feature points in the first
frame, we propose an exhaustive search strategy within a lo-
cal window based on the following distortion criterion:

SADqyg(x, y)
1

K-1

X

M= |

T T
SO L([itxh+ (k= 18], [+ yi+(k—1)8,])
=-Tj=-T

k=2i

—L(i+xyj+y)ls

(6)

where 8, = (x — x})/(K —1),68, = (y — y})/(K — 1), and
[-] denotes the rounding operator. The best matching result
is therefore given by

(x3, 72) = min SADuyg(x, y). (7)

The above search strategy is a straightforward extension of
sum-of-absolute-distance-(SAD) based tracking [23] from
two-frame into multi-frame.

We note that assumptions (1) and (3) are critical to the
success of the above matching procedure. Assumption (1)
tells us that no occlusion occurs except around the image
border. Since Ik is the frame closest to the camera, we are
guaranteed that the selected feature points from the last
frame will not go outside the image border while tracking.
Due to assumption (3), we do not need to use sophisticated
affine-invariant distortion measures (e.g., [24]). However,
just like any feature-based vision algorithms, completely ac-
curate matching results are difficult to obtain. Instead, we
resort to robust statistical tools such as outlier rejection to
eliminate incorrectly matched pairs.

With a collection of straight lines L, = {p, = [x}, ¥}, 2],
qn = [x2, y2,22]}, the initial estimation of VP 7 = (xy, y0, o)
can be found by solving the following nonlinear optimization
problem:

. - 1 < SN2
minJ(r) = N > d(r, L), (8)
n=1

where d(r, L,) is the point-to-line distance given by

(i L,) = 1= X p=r) | (9)

|4 -l
There exist numerous techniques for solving the above non-
linear optimization problem. For example, we adopt the
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Nelder-Mead simplex method [25] whose implementation
is directly available from Matlab optimization toolbox. With
the initial estimate r*), we can obtain the distance profile
d(r O, L,). If its maximum is larger than a preselected thresh-
old (outlier detection), we reject the pair of feature points
above the threshold and update the VP estimation with the
remaining N' < N pairs. Such rejection procedure is contin-
ued until no more outlier is found.

3.2. Erroranalysis and implications

As mentioned above, discrete sampling and feature point
matching both contribute to the potential errors in VP es-
timation. Assuming a small disturbance with the feature
points, we can derive an upper bound on the distance metric
of (9). We summarize our analysis into the following lemmas
and their derivations can be found in the appendices.

Lemma 1. Given three consecutive points 1, p, q along a line
whose z-coordinates are zy = Z < 0,z = 0,z0 = K > 0,
respectively. If the middle point is perturbed by 8p = (8, 8,,0),
then the point-to-line distance (r-to-{p,q }) is bounded by d <

(1Z1,/82 + 82)/K.

Such theoretical bound is useful to check the validity of
our estimation. If the minimal distortion achieved by nonlin-
ear optimization is above this bound, the registration simply
fails due to either too few feature points or invalid assump-
tions.

Similar error analysis can also be applied to bound the
potential derivation of any point from its ground truth in
a synthetic frame I; (z, = I) caused by the errors in VP =
(%0, ¥0,20), 20 = Z < 0. Suppose the point of interest is lo-
cated atﬁ = (x1,¥1,b21), 21 = k (1 < k < K), then its pro-
jected location atz, = [ > k is

x2 = x1+ (%0 — x1)A, y2=y+ o —y)a,  (10)

where A = (2, — z1)/(z9 — z1) is the scaled sampling dis-
tance. From (10), we can see the equivalence between tempo-
ral mode SR and spatial mode SR. For example, spatially
doubling the sampling density (i.e., integer-pel to half-pel)
is equivalent to temporally increasing the value of z, to
2z, — z; (doubling the zoom ratio). Such geometric duality
between temporal and spatial mode can also be intuitively
justified with respect to Figure 2. The following lemma re-
lates the error bound of a projected location g = (x2, 2,22)
to that of VP.

Lemma 2. Suppose the VP is perturbed by 6t = (8x,0y,0;),
then the projected location given by (10) will be disturbed by at
most

, 81—k
2 -]~ % 11
, 8,1 k) (1)
-l = |20 |

Lemmas 1 and 2 together provide us guidance about the
tradeoff between space (pixel location) and time (zooming

speed) in SR for synthetic zooming. For example, the slower
the camera zooms in, the larger is |zo| = —Z (the slope of
motion trajectories decreases). According to Lemmal, a
larger |Z] has the potential of increasing the errors with VP
estimation; meantime, the pixel location in a synthesized
frame I; becomes more robust to the errors in VP based on
Lemma 2. Conversely, a fast zooming is beneficial to reduce
the estimation errors of VP, which is compensated by the in-
creased sensitivity of pixel location to the errors of VP. Al-
though it is easy to see that a large K is always preferred
from the geometric perspective, we note that collecting a
large number of LR frames is not always feasible in practice,
as we argued while presenting assumption (3). Additionally,
when K increases, the variation of sensor PSF becomes more
serious, as we will detail next.

4. SRIMAGE RECONSTRUCTION FOR
SYNTHETIC ZOOMING

With the estimated VP, we can map any pixel in I to a loca-
tion in the synthetic frame I; by (10). However, the mapped
locations could overlap with others and often do not exactly
align with the target HR grid points, which calls for the need
of interpolation. Even if the alignment occurs by coincidence,
the pixel intensity does not correspond to the desirable but
blurred version of HR image, which calls for the need of de-
blurring. In this section, we study the implications of PSF
variation on interpolation and deblurring in SR for synthetic
zooming.

4.1. Two-stage interpolation via
Delaunay triangulation

In most existing SR techniques with translational motion,
registered data points might not exactly align with the HR
grid points but still have uniform density in the spatial do-
main. In zoom motion, the spatial density of projected data
points is nonuniform and often irregular due to the modula-
tion with Z (see Figure 4). For such kind of data, DT has been
shown to be an effective interpolation technique [14]. The
basic idea behind DT is to use triangular patches to locally
fit the available data. Due to the simplicity and convexity of
triangles, DT-based interpolation enjoys low complexity and
suitability for hardware implementation [14].

Due to the varying PSF of zoom lens, one potential risk
with DT-based interpolation is data inconsistency, especially
for two distant frames (e.g., I; and Ix). If the LR images are
all obtained via an artificial warping operator (blurring fol-
lowed by downsampling) of a HR image, we will not have
the problem of data consistency. However, such artificial op-
erator often does not faithfully reflect the imaging system in
practice due to the ignorance of various factors (e.g., lighting
variation, nonuniform motion, varying scene depth, etc.).
Synthetic zooming represents a scenario where data incon-
sistency is easy to observe due to the variation of focal length
(and therefore PSF). The consequence of ignoring data in-
consistency is annoying artifacts in the interpolated image
(refer to Figure 10 and Section 5 for further illustrations).
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F1GURE 4: Nonuniform and irregular sampling points while project-
ing LR pixels to I; according to (10).

To overcome the difficulty with data inconsistency, we
propose a two-stage interpolation scheme. In the first stage,
we divide K LR frames into K, consecutive groups and ap-
ply DT-based interpolation within each group to produce K,
copies of HR image I} (¢ = 1,...,Kg). The basic criterion
for group division is that the data points within each group
cover the desired HR grid points as uniformly as possible. A
rule of thumb is based on the target frame number z, = [ and
the coordinate of VP zy = —Z, which jointly determines the
scaled sampling distance A in (10). The smaller the change of
the fractional part of A is, as k increases, the larger the group
size needs to be chosen.

In the second stage, K, copies of HR image are fused
through a linear weighting strategy:

Ké»’
LG, j) = > wali, DIFG, ), (12)

n=1
and the weight is given by

Lin, (i,j)>03

Wn(la]) = > (13)

K,
2t iz ij)>03

where 1y, j)>0; is a binary-value function indicating the va-
lidity of the interpolated data. More sophisticated weighting
strategy is possible—for example, w, (i, j) can be chosen to
reflect the confidence about the interpolated value at a given
location. The closer the projected data point to the desired
HR grid point, the higher confidence can be set. For simplic-
ity, we have only considered the ad hoc weighting strategies
of (13) in the simulation so far.

4.2. PDE-based nonlinear deblurring

There are primarily two challenges with deblurring in SR for
synthetic zooming. First, the blurring kernel is unknown and
could vary as the focal length varies. Therefore, blindness and
variation of PSF jointly increase the difficulty of deblurring.
Second, interpolation errors need to be taken into account;
otherwise, interpolation errors would easily get amplified
and become annoying artifacts in reconstructed images. The

above two challenges make it difficult to formulate image de-
blurring as an inverse problem under the traditional linear
filtering framework. Instead, we advocate the approach of
PDE-based nonlinear deblurring [15, 16].

One of the early pioneering works on PDE-based im-
age deblurring is shock filter [15], which does not require
the knowledge of PSF but assumes a piecewise smooth func-
tion for the target image. Later, the concept of shock fil-
ter is combined with anisotropic diffusion [26, 27] in [16]
to achieve simultaneous directional filtering (for suppress-
ing noise) and edge enhancement (for deblurring). There
also exists forward-and-backward nonlinear diffusion for SR
(28], in which forward and backward diffusion handle noise
suppression and image deblurring, respectively.

The PDE model employed in this work is conceptually
similar—that is, we want to deblur the HR image without
blowing up the noise. However, the noise model here is
different from that in previous works where additive white
Gaussian noise is often assumed. The errors introduced by
DT-based interpolation are not Gaussian and are often edge-
dependent. This is because the triangle patch model become
less effective around edge areas (in other words, more data
points are needed for an edge to be accurately reconstructed
than smooth regions). To suppress such signal-dependent
noise during the deblurring process, we propose the follow-
ing PDE:

ol
g = aFdiffusion + ﬁFshock: (14)
where
Lo (1 + 1) = 2L, Ly + Iy (1 + I)
Faiffusion =

201+ 12+13)"

Fohock = Vg(I) - VI,

(15)

where g(-) is the smooth nonincreasing edge-stopping func-
tion as proposed in [29]. The anisotropic diffusion flow
Fliffusion 1n (15) is essentially the mean curvature diffusion
(MCD) [17]. Since it is known that the MCD flow converges
to the surface of minimal area, interpolation errors around
edges, which have the tendency of increasing the surface area,
are effectively suppressed. We have found that a similar type
of diffusion, affine invariant anisotropic diffusion [30], gives
similar results. The constants («, 3) are the relaxation param-
eters controlling the balance between forward (anisotropic
diffusion) and backward (image deblurring) diffusion. Em-
pirical studies show that @ = f often gives good result for
small zoom ratio, but « > f§ is preferred in the case of large
zoom ratio where interpolation errors become more severe.

5. SIMULATION RESULTS

In this section, we report our simulation results with two
popular video sequences: tennis (SIF resolution) and mobile
(CIF resolution). Both sequences contain a segment of cam-
era zooming and we crop out the background portions (sized
120 x 120) of 50 zoom frames as the test material. Moreover,
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FIGURE 5: Sample LR frames used in our experiments. Left-to-right and top-down: k = 1, 3,5,7,9, 11.

we intentionally reverse their order in the temporal domain
to simulate the zoom-in operation (original sequences are
zoom-out). Among the extracted 50 LR frames, we only em-
ploy the first 12 frames (K = 12) to test our SR algorithms
(the rest are used as ground truth). A few sample frames are
shown in Figure 5. Such preprocessing is for the purpose of
validating assumptions (1) and (3). In particular, the object
of interest in our SR for synthetic zooming is assumed to be
the textual or texture information in the image.

5.1. Vanishing point estimation

In our implementation of feature point extraction from the
last frame, image is structured into nonoverlapping 10 x 10
blocks. Only when the standard deviation of a block is above
a chosen threshold, it is eligible for producing a feature point.
For each eligible block, its local maximum is marked to be
the feature point and the corresponding feature point in the
first frame is searched with a template sized by 7 x 7 (T = 3).
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FIGURE 6: Initially extracted feature points for the last frames of ten-
nis (a) and mobile (b) sequences.

Figure 6 shows the initial extracted 22 and 18 pairs of feature
points for tennis and mobile image sequences, respectively.
We note that no special effort is devoted to eliminate the mis-
matched pairs. The outliers will be automatically rejected as
we iteratively refine the estimate of VP (refer to Figure 7).

After iteratively eliminating the outliers, we find 10 and
9 pairs left for VP estimation, respectively (refer to Figure 8).
Solving (8) gives the coordinates of VP: (128,173, —45) for
tennis (Jmin = 0.78) and (118,340, —302) for mobile (Jmin =
49.96). The large registration error with mobile is not surpris-
ing because of its large |z | value. We remark that such results
should be interpreted properly due to the analysis given at
the end of Section 3.2. A large |zo| value gives rise to large
registration errors according to Lemma 1, but improves the
robustness of pixel locations in synthetic zooming according
to Lemma 2.

To see this clearly, we have designed the following simple
experiment. Since the 12 frames are cropped out from the
original sequence, we can perform synthetic zooming and
compare it with the actual optical zooming result (ground
truth). Furthermore, we can intentionally disturb the esti-
mated (xo, yo, 2z0) by additive white Gaussian noise and eval-
uate its impact on the synthesized images. Figure 9 shows the
synthesized 20th frame (with and without disturbance) and
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FiGgure 7: The evolution of distance profile in (9) for tennis (a) and
mobile (b) during iterative estimation of VP (red, green, and blue
colors denote 1st, 2nd, and 3rd iterations, resp.). Note how the out-
liers get rejected (N decreases) as the iteration proceeds.

the actual frames for both sequences. It can be observed that
for mobile sequence, its large |z | value leads to highly robust
reconstruction. Though the noise in VP geometrically dis-
torts the synthesized image, the visual quality does not ap-
pear to be affected. By contrast, due to a small |zy| value of
tennis sequence, it becomes more sensitive to the noise in VP.

5.2. Super-resolution for synthetic zooming

The problem of data inconsistency is easier to observe with
tennis than mobile due to its faster zooming speed. Figure 10
compares two synthesized frames of tennis in the tempo-
ral mode when | = 85 (zooming ratio is approximately
three). One is to merge all 12 frames into one frame and
apply DT-based interpolation; the other is to adopt the
two-stage interpolation strategy proposed in Section 4.1
(Kg = 4). The inconsistency among LR frames causes an-
noying jittering-like artifacts around edges. By contrast, the
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Ficure 9: Comparison among the original 20th frame (left), synthesized without noise (middle) and synthesized with noise N (0, 25). Top:
tennis; bottom: mobile. Note that the white strip on the right border (pixel values undefined) is due to the fact that VP is located outside the
right boundary of cropped portions.
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(a) (b)

F1Gure 10: Impact of data inconsistency on SR images. (a) interpo-
lated image by fusing all 12 LR frames; (b) interpolated image by
the proposed two-stage fusion strategy.

Ficure 11: SR images before (left) and after (right) PDE-based non-
linear deblurring. Top: synthetic double-size 20th frame of tennis;
bottom: synthetic double-size 20th frame of mobile.

proposed two-stage interpolation strategy effectively allevi-
ates the problem of data inconsistency.

In our implementation of PDE-based nonlinear deblur-
ring, the relaxation parameters are chosen to be « = f§ =
0.125. We stop the nonlinear diffusion after five iterations.
The SR images before and after deblurring of synthesized
20th frame for two sequences are shown in Figure 11. En-
hanced edge sharpness can be observed; though the de-
blurred images suffer from loss of naturalness. Such weak-
ness with PDE-based approaches has been known—the

(e) ()

FIGURE 12: SR reconstructed images with different zooming ratios.
Top: I = |zo]; middle: I = 2|zy|; bottom: I = 4|z].

limiting solution of shock filters tends to be a piecewise
smooth function. However, we remark that in some appli-
cations such as license plate detection in law enforcement,
the target object does satisfy the piecewise smooth condi-
tion, which supports the adoption of PDE-based nonlinear
deblurring.

We also want to demonstrate the performance of the pro-
posed SR algorithms at different zoom ratios. By setting tar-
get frames index [ to be |zyl, 2|21, 4|20], we obtain varying
zooming ratios of 2, 3, 5 according to (2). Figure 12 compares
the reconstructed SR images with different zoom ratios, re-
spectively. Note that as the zoom ratio increases, field of view
also increases. So we opt to only show portions of SR images
(240 x 240) when the zooming ratio is more than 2. The vi-
sual quality of reconstructed SR images appear to be satisfac-
tory.
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Finally, we comment on the computational cost of the
proposed SR algorithm. Feature extraction, outlier removal,
and estimating VP do not appear to be computationally de-
manding. The bottleneck lies in the tracking of feature points
across frames because of exhaustive search. On a 1.6 GHz
Pentium-IV laptop, we have found that it takes about 15 sec-
onds to track the extracted twenty or so feature points un-
der Matlab (faster search algorithms can be used to reduce
the computational cost). When the zoom ratio is set to be
two, another 10 seconds are required for DT-based two-stage
interpolation and 5 seconds for nonlinear deblurring.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we formulate the problem of SR for syn-
thetic zooming—that is, to simulate optical zooming from
asequence of zoom images. We present a robust line-
geometry-based algorithm for registering zoom images by
estimating their VP and analyze the tradeoff between regis-
tration errors and reconstruction robustness. We address the
issue of data inconsistency in fusing multiple LR image data
and propose a two-stage DT-based interpolation scheme. We
also propose a PDE-based nonlinear deblurring technique to
accommodate the blindness and variation of sensor PSE
One open problem beyond the scope of this work is syn-
thetic zooming for nonconstant scene depth (i.e., assump-
tion (1) is violated). When objects are located at different
scene depth, their VPs will vary. How to estimate multiple
VPs with an image sequence? How to segment objects based
on their corresponding VPs? How to handle the occluded
regions associated with scene depth discontinuities? These
questions are left for future work. Another related problem
is synthetic zooming for a large number of frames (i.e., as-
sumption (3) is violated). For a long sequence, the zooming
speed might vary, which renders multiple VPs. How to seg-
ment a sequence based on their varying VPs and how to fuse
multiple SR reconstructed images both deserve further study.

APPENDICES
A. PROOF OF LEMMA 1
If we write € = p — 7' = (ex, ey, e;), then,

0:(1Z] +K) 0,(1Z] + K)
e e e, =2

(A1)

Note that |g — ﬁ | > K. It follows from (8) that the disturbed
distance is given by

ispxa _ RO 8+ (e, b

lg-pl K (A2)
1218+ g
e

B. PROOF OF LEMMA 2

The disturbance of VP moves § = (x2, y2,1) toq' = (x3, y5,1),
where

(x0 = x1) (22 — 21)

Xy =x + . ,

oA (B.1)
C 4 ()’o—)’l)(zz—zl)
Ya=nNn 26—21 :

Comparing (10) and (B.1), we obtain the movement along
Xx-axis:

, Xy — X1 Xo—X
-] = ‘(91—01)@2—21). (82)
Zy) — 21 20 — 21
Assuming that &, is small, we have
, Xy — Xo Ox(I=k)
— ~ | — — = |—" B.
|5 — x| ‘ZO_Zl (22— 21) 7 % (B.3)

Analysis along y-axis is similar.
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