
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 60613, Pages 1–18
DOI 10.1155/ASP/2006/60613

Multiple-Clock-Cycle Architecture for the VLSI Design
of a System for Time-Frequency Analysis

Veselin N. Ivanović, Radovan Stojanović, and LJubiša Stanković

Department of Electrical Engineering, University of Montenegro, 81000 Podgorica, Montenegro, Yugoslavia

Received 29 September 2004; Revised 17 March 2005; Accepted 25 May 2005

Multiple-clock-cycle implementation (MCI) of a flexible system for time-frequency (TF) signal analysis is presented. Some very
important and frequently used time-frequency distributions (TFDs) can be realized by using the proposed architecture: (i) the
spectrogram (SPEC) and the pseudo-Wigner distribution (WD), as the oldest and the most important tools used in TF signal
analysis; (ii) the S-method (SM) with various convolution window widths, as intensively used reduced interference TFD. This
architecture is based on the short-time Fourier transformation (STFT) realization in the first clock cycle. It allows the mentioned
TFDs to take different numbers of clock cycles and to share functional units within their execution. These abilities represent the
major advantages of multicycle design and they help reduce both hardware complexity and cost. The designed hardware is suitable
for a wide range of applications, because it allows sharing in simultaneous realizations of the higher-order TFDs. Also, it can be
accommodated for the implementation of the SM with signal-dependent convolution window width. In order to verify the results
on real devices, proposed architecture has been implemented with a field programmable gate array (FPGA) chips. Also, at the
implementation (silicon) level, it has been compared with the single-cycle implementation (SCI) architecture.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION AND PROBLEM
FORMULATION

The most important and commonly used methods in TF sig-
nal analysis, the SPEC and the WD, show serious drawbacks:
low concentration in the TF plane and generation of cross-
terms in the case of multicomponent signal analysis, respec-
tively, [1–3]. In order to alleviate (or in some cases com-
pletely solve) the above problems, the SM for TF analysis is
proposed in [4]. Recently, the SM has been intesively used,
[5–8]. Its definition is [4, 9, 10]

SM(n, k)

=
Ld(n,k)∑

i=−Ld(n,k)
P(n,k)(i) STFT(n, k + i) STFT∗(n, k − i),

(1)

where STFT(n, k)=∑N/2
i=−N/2+1 f (n + i)w(i)e− j(2π/N)ik repre-

sents the STFT of the analyzed signal f (n), 2Ld(n, k) + 1
is the width of a finite frequency domain (convolution)
rectangular window P(n,k)(i) (P(n,k)(i)= 0, for |i|>Ld(n, k)),
and the signal’s duration is N = 2m. The SM produces, as
its marginal cases, the WD and the SPEC with maximal
(Ld(n, k)=N/2), and minimal (Ld(n, k)= 0) convolution
window width, respectively. In the case of a multicomponent

signal with nonoverlapping components, by an appropriate
convolution window width selection, the SM can produce a
sum of the WDs of individual signal components, avoiding
cross-terms [4, 10, 11]: P(n,k)(i) should be wide enough to
enable complete integration over the auto-terms, but nar-
rower than the distance between two auto-terms. In addi-
tion, the SM produces better results than the SPEC and the
WD, regarding calculation complexity [4] and noise influ-
ence [9]. Note that the essential SM properties are: the high
auto-terms concentration, the cross-terms reduction and the
noise influence suppression.

Two possibilities for the SM (1) implementation are

(1) with a signal-independent (constant) Ld(n, k), Ld(n,
k)=Ld = const, [4, 10], when, in order to get the WD
for each component, the convolution window width
should be such that 2Ld +1 is equal to the width of the
widest auto-term. For the entire TF plane, except at the
central points of the widest component, this window
would be too long. This fact might have negative ef-
fects regarding cross-terms reduction, [4, 10] and the
noise influence suppression, [9]. On the other hand,
the shorter window would result in lower concentra-
tion;

(2) with a signal-dependent Ld(n, k) (the so-called sig-
nal-dependent SM) [11], which may alleviate the

2 EURASIP Journal on Applied Signal Processing

disadvantages of the signal-independent form in the
analysis of multicomponent signals having different
widths of the auto-terms. In addition, it may fur-
ther significantly improve the essential SM properties,
[9, 11].

In order to improve concentration of highly nonstation-
ary signals, higher-order TFDs can be used [5, 12]. One of
them, which can be presented in a two-dimensional TF plane
and defined in the same manner as the SM, is the L-Wigner
distribution (LWD) [12]:

LWDL(n, k) =
Ld∑

i=−Ld
LWDL/2(n, k + i) LWDL/2(n, k − i),

(2)

where LWDL(n, k) is the LWD of the Lth order, and
LWD1(n, k) ≡ SM(n, k). Note that the LWD is implicitly
defined based on the SM and the STFT, so it can be imple-
mented in a similar way as the SM.

Definition (1), based on STFT, makes the SM very at-
tractive for implementation. However, all TFDs, beyond the
STFT, are numerically quite complex and require significant
calculation time. This fact makes them unsuitable for real-
time analysis, and severely restricts their application. Hard-
ware implementations, when they are possible, can overcome
this problem and enable application of these methods in nu-
merous additional problems in practice. Some simple imple-
mentations of the architectures for TF analysis are presented
in [10, 13–19]. An architecture for VLSI design of systems
for TF analysis and time-varying filtering based on the SM
is presented in [16, 17]. However, all these architectures give
the desired TFD in one clock cycle. It means that no archi-
tecture resource can be used more than once, and that any
element needed more than once must be duplicated. Con-
sequently, practical realization of these architectures requires
large chips. Besides, just a single TFD—SM with exactly de-
fined convolution window width—can be realized this way.

In this paper, we develop an MCI of a special purpose
hardware for TF analysis based on the SM, suitable for the
VLSI design. In the proposed implementation, each step in
the TFDs execution will take one clock cycle. In the first step,
proposed architecture realizes the STFT, as a key interme-
diate step in realization of the implemented TFDs. In each
higher-order clock cycle, different TFD is realized: in the sec-
ond one—the SPEC, in the third one—the SM with unitary
convolution window width, and so on. The WD is realized
in the clock cycle when the maximal convolution window
width is reached. Note that proposed architecture can real-
ize almost all commonly used TFDs. The MCI design allows
a functional unit to be used more than once per TFDs execu-
tion, as long as it is used on different clock cycles. This sig-
nificantly reduces the amount of the required hardware. The
ability to allow TFDs to take different number of clock cycles
and the ability to share functional units within the execution
of a single TFD are the major advantages of the proposed de-
sign.

The paper is organized as follows. After the intro-
duction, MCI architectures for the SM realization (in its

signal-independent and signal-dependent forms) are de-
signed, the corresponding controls are defined, and the
trade-offs and comparisons with the SCI are given. In
Section 3, the designed MCI system is used for the real-
time realization of the higher-order TFDs. The proposed ap-
proaches are verified in Section 4 by designing the FPGA
chips. Also, the obtained implementation results at silicon
level are compared with SCI architectures.

2. MULTICYCLE HARDWARE IMPLEMENTATION
OF THE S-METHOD

2.1. Signal-independent S-method

In this section, anMCI system for SM (1) realization, assum-
ing fixed convolution window width (Ld(n, k)= Ld), is pre-
sented. Since the STFT is a complex transformation, (1) in-
volves complex multiplications. In order to involve only real
multiplications in (1), we modify it by using STFT(n, k) =
STFTRe(n, k) + j STFTIm(n, k) (STFTRe(n, k) and STFTIm(n,
k) are the real and imaginary parts of STFT(n, k), resp.), as

SMR(n, k) = STFT2
Re(n, k)

+ 2
Ld∑

i=1
STFTRe(n, k + i) STFTRe(n, k − i),

(3)

SMI(n, k) = STFT2
Im(n, k)

+ 2
Ld∑

i=1
STFTIm(n, k + i) STFTIm(n, k − i),

(4)

where SM(n, k) = SMR(n, k) + SMI(n, k). The kth channel,
one of the N channels (obtained for k = 0, 1, . . . ,N − 1), is
described by (3)-(4). Note that it will consist of two iden-
tical sub-channels used for processing of STFTRe(n, k) and
STFTIm(n, k), respectively.

The hardware necessary for one channel MCI of the
signal-independent SM is presented in Figure 1. It is designed
based on a two-block structure. The first block is used for the
STFT implementation, whereas the second block is used to
modify the outputs of the STFT block, in order to obtain the
improved TFD concentration based on the SM. The STFT
block can be implemented by using the available FFT chips
[20, 21] or by using approaches based on the recursive algo-
rithm [10, 13, 17, 19, 22–24]. Note that, due to the reduced
hardware complexity, the recursive algorithm is more suit-
able for a VLSI implementation, [13]. The second block is
designed so that it realizes each summation term from (3)-
(4) in the corresponding step of themethod implementation.

We break the SM execution into several steps, each taking
one clock cycle. Our goal in breaking the SM execution into
clock cycles is to balance the amount of work done in each
cycle, so that we minimize the clock cycle time. In the first
step, the STFT will be executed, in the second step, the SPEC
will be executed based on the first step execution, in the third
step, the SM with the unitary convolution window width will

Veselin N. Ivanović et al. 3

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

f (t)

Signal
A/D

16
STFT block

f (n) STFT(n, k)

SignLoad

Clock

MSB MSB

SHl1

STFTRe(n, k)

STFTIm(n, k)

STFTRe(n, k + 1)
STFTRe(n, k + 2)

STFTRe(n, k +
N
2 − 1)

STFTRe(n, k − 1)
STFTRe(n, k − 2)

STFTRe(n, k − N
2 + 1)

STFTIm(n, k + 1)
STFTIm(n, k + 2)

STFTIm(n, k +
N
2 − 1)

STFTIm(n, k − 1)
STFTIm(n, k − 2)

STFTIm(n, k − N
2 + 1)

Sel STFT

MULT

MULT

SM block
STFT(n, k) TFD(n, k)

SHLorNo Add SelB

D
m
u
x

0

1

D
m
u
x

0

1

SHL1

SHL1

0

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

+

+

Real

Imag

CLK

CLK

+

O
u
tR
E
G

SMStore

TFD(n, k)

Figure 1: MCI architecture for the signal-independent S-method realization.

be executed based on the execution in the first two steps, and
so on. With each further step, one realizes the SM with the
incremented width of convolution window, based on the pre-
ceding steps. This improves the TFD concentration, aiming
at achieving the one obtained by the WD.

Proposed hardware has been designed for a 16-bit fixed-
point arithmetic. Each subchannel of the second block con-
tains exactly one adder, one multiplier, and one shift left reg-
ister for implementation of (3)-(4). These functional units
must be shared for different inputs in different steps by
adding multiplexors and/or a demultiplexor at their inputs.
Real and imaginary parts of the SM value, computed in each
execution step and based on (3)-(4), are saved into the Real
and Imag temporary registers, respectively. In the first step,
only the STFT block of the proposed two-block architec-
ture is used, whereas in the remaining steps only the second
block is used. This will be regulated by the set of control
signals introduced on temporary registers, and multiplexors

and a demultiplexor, see Table 1. Note that control signals
SHLorNo andAddSelB assume unity values in each step of the
TFD implementation, except in the second step (SPEC com-
pletion step), when they assume zero values. Consequently,
these signals can be replaced by one control signal SPECorSM
that enables the SPEC execution (with its zero value), or ex-
ecution of the TFDs with the nonzero convolution window
widths. Note that the multiplication operation results in a
two sign-bit and, assuming Q15 format (15 fractional bit),
the product must be shifted left by one bit to obtain correct
results. This shifter is included in the multiplier.

The longest path in the second block is one that con-
nects the inputs STFTRe(n, k) (or STFTIm(n, k)), through one
multiplier, one shift left register, and 2 adders, with the out-
put of the second block. If the STFT is realized based on
a recursive algorithm, than it has the same longest path,
[10, 17]. This path determines the clock cycle time and then
the fastest sampling rate. This design can be implemented as

4 EURASIP Journal on Applied Signal Processing

Table 1: Function of each of the control signal generated by the control logic.

Control signal Effect

SelSTFT (m− 1)-bit signal which controls N/2-input multiplexors (two of them per subchannel are intro-
duced to select between the STFT values from different channels)

SHLorNo 1-bit signal which enables use of the shift-left register in the corresponding steps (when we need
to implement multiplication by 2), or disables this (in the second step)

AddSelB 1-bit signal which enables use of only one adder per subchannel for implementing sums in (3)-(4)
by controlling its second input, which can be either the constant 0 (in the second step) or a register
Real (or Imag) value (in each further step)

SignLoad 1-bit signal which enables sampling of the analyzed analog signal f (t), but only after execution of
the desired TFD of the analyzed signal samples from the preceding time instant

SMStore 1-bit write control signal of the OutREG temporary register. It should be asserted during the step
in which the SM with corresponding convolution window width is computed

an application specified integral circuits (ASIC) chip to meet
the speed and performance demands of very fast real-time
applications, see Section 4.

Defining the control

From the defined multistep sequence of the multicycle TFDs
execution, we can determine what control logic must do at
each clock cycle. It can set all control signals, based solely on
the distribution code (TFDcode). This code determines TFD
which will be implemented by using the proposed architec-
ture. Taking N = 64, the TFDcode can be a 6-bit field which
determines the convolution window width. An architecture
with the control logic and the control signals are shown in
Figure 2.

Control for the MCI architecture must specify both the
signals to be set in any step and the next step in the sequence.
Here we use finite-state Moore machine to specify the multi-
cycle control, Figure 3. Finite-state control essentially corre-
sponds to the steps of desired TFD execution; each state in
the finite-state machine will take one clock cycle. This ma-
chine consists of a set of states and directions on how to
change states. Each state specifies a set of outputs that are
asserted or deasserted when the machine is in that particular
state. The labels on the arc are conditions that are tested to
determine which state is the next one. When the next state
is unconditional, no label is given. Note that implementation
of a finite-state machine usually assumes that all outputs that
are not explicitly asserted are deasserted, and the correct op-
eration of the architecture often depends on the fact that
a signal is deasserted. Multiplexors and demultiplexor con-
trols are slightly different, since they select one of the inputs,
whether they be 0 or 1. Thus, in the finite-state machine we
always specify the settings of all (de)multiplexor controls that
we care about.

2.2. Trade-offs and comparisons of the proposed
designwith the SCI ones

SCI architecture executes desired TFD in one clock cycle.
This means that no architecture resource can be used more

than once per TFD execution and that any element needed
more than once must be duplicated. Then, we can easily con-
clude that in the case of the considered SM block (3)-(4)
implementation we have to use (2Ld + 1) adders, 2(Ld + 1)
multipliers, and 2Ld shift left registers, if we prefer an SCI
approach. This can be tested by studying the SCI architec-
tures represented in [16, 17], as well as real-time SCI of the
SM with Ld=3 given in Section 4.2.

Comparison of the architectures’ resources used in the
SCI and MCI designs, as well as comparison of their clock
cycle times are given in Table 2. The following advantages of
the MCI design, compared with the SCI ones, can be noted:

(i) required reduction of the amount of hardware,
achieved by introducing the temporary registers and
several multiplexors at the inputs of the functional
units. The achieved hardware reduction is significant,
and it increases as the convolution window width in-
creases;

(ii) since temporary registers and the introduced multi-
plexors are fairly small, this could yield a substantial
reduction in the hardware cost, as well as in the used
chip dimensions;

(iii) the clock cycle time in theMCI design is much shorter.

Finally, the ability to realize almost all commonly used
TFDs by the same hardware represents a major advantage of
the proposed MCI design.

On the other hand, the fastest sampling rate in the MCI
design of the SMwith arbitrary Ld is (Ld+2)×(Tm+2Ta+Ts),
see Table 2, while it is equal to the clock cycle time in the cor-
responding SCI design (2Tm + (Ld + 3)Ta + Ts, see Table 2).
Then, the SCI approach improves execution time. However,
this disadvantage of the MCI approach is significantly allevi-
ated by the fact that the SM with small Ld is usually used,1

when the execution times in these two cases (the SCI and the
MCI approaches) do not differ significantly.

1 High TFD concentration (almost as high as in the WD case) is achieved
even with small Ld [4, 9], whereas the interference effects [10] and the
noise influence [9] are more reduced with decreasing of the convolution
window width.

Veselin N. Ivanović et al. 5

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

f (t)

Signal
A/D

16 STFT block
f (n) STFT(n, k)

Clock

SignLoad

TFD code

Control
logic

SMStore

SPECorSM

SelSTFT

STFTRe(n, k)

STFTRe(n, k + 1)
STFTRe(n, k + 2)

STFTRe(n, k +
N
2 − 1)

STFTRe(n, k)

STFTRe(n, k − 1)
STFTRe(n, k − 2)

STFTRe(n, k − N
2 + 1)

STFTIm(n, k)

STFTIm(n, k + 1)
STFTIm(n, k + 2)

STFTIm(n, k +
N
2 − 1)

STFTIm(n, k)

STFTIm(n, k − 1)
STFTIm(n, k − 2)

STFTIm(n, k − N
2 + 1)

MULT

MULT

D
m
u
x

0

1

D
m
u
x

0

1

SHL1

SHL1

0

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

+

+

Real

Imag

CLK

CLK

+

O
u
tR
E
G TFD(n, k)

Figure 2: MCI architecture for the signal-independent S-method realization together with the necessary control lines. Thick solid line
highlights the control line as opposed to a line that carries data.

More technical details about practical implementation of
the MCI and the SCI architectures can be found in Section 4.

Hybrid implementation

In order to achieve a balance between minimal chip dimen-
sions, hardware consumption and cost from the MCI ap-
proach and minimal execution time from the SCI approach,
the hybrid implementation approachmay be considered. The
SM block of this implementation would be based on the SCI
design of the SM with exactly defined convolution window
width Ld (Ld ≥ 1). As in the MCI design case, hybrid imple-
mentation would give the desired TFD in a few clock cycles:
in the second one this architecture could implement the SMs
with convolution window widths up to the Ld (up to the SM
that is a base for the SM block realization) and in each further

step it could realize the SM with the incremental convolution
window width. Then, total number of clock cycles would not
be greater than the one from the MCI design. In particular,
both implementation approaches, hybrid and MCI, use the
same number (two) of clock cycles for the SPEC implemen-
tation only. In the case of the SM with nonzero convolution
window width implementation, total number of clock cycles
would be smaller by using hybrid implementation design.

For the SM block implementation one would use (2Ld +
1) adders, 2(Ld + 1) multipliers, and 2Ld shift left registers,
and the corresponding clock cycle time would be Tm + (Ld +
1)Ta + Ts. Note that the hybrid implementation (even the
one based on the SM with Ld = 1) increases hardware com-
plexity, chip dimensions, and cost, as well as the clock cy-
cle time from the MCI design. Then, the SM with Ld = 1
cannot be so useful as a base for the SM block of hybrid

6 EURASIP Journal on Applied Signal Processing

SignLoad = 1
SMStore = 0

SignLoad = 0
SelSTFT = 010
SPECorSM = 0
(SMStore = 1)

SignLoad = 0
SelSTFT = 110
SPECorSM = 1
(SMStore = 1)

SignLoad = 0
SelSTFT = 210
SPECorSM = 1
(SMStore = 1)

SignLoad = 0

SelSTFT = (N2 − 1)10
SPECorSM = 1
(SMStore = 1)

Start

0

1

2

3

N
2 + 2

(TFD code = ‘SPEC’)

(TFD code = ‘SM with Ld = 1’)

(TFD code = ‘SM with Ld = 2’)

(TFD code =‘WD’)

...

Figure 3: The finite-state machine control for the architecture shown in Figure 2. Output (SMStore= 1) means that the SMStore control
signal is asserted during only the final step of the corresponding TFD execution.

implementation, since it would only slightly improve the ex-
ecution time from MCI architecture (it requires only one
step—SPEC completion—less than the MCI approach). The
SM with Ld = 2 would be a reasonable choice for this pur-
pose. However, the hybrid approach would not use the whole
SM block in each step. For example, part of the SM block
for SPEC implementation (see Figure 12 from Section 4.2)
would be used in the second step only. Note that the clock cy-
cle time is determined by the longest possible path in the SM
block, which does not have to be used in any step here. Con-
sequently, hybrid architecture could not succeed to balance
the amount of work done in each clock cycle, so that we could
not minimize the clock cycle time.

Note that the overall performance of the hybrid imple-
mentation is not likely to be very high, since all the steps (ex-
cept, in some cases, the second one) could fit in a shorter
clock cycle. The second step is an exception when the SM
with convolution window width of at least Ld is imple-
mented by using hybrid design, where Ld is the convolu-
tion window width of the SM that is a base for this par-
ticular implementation. This fact leads to the dispersion of
the hardware resources as well as needed time in almost
all steps used in TFD execution. Also, control logic of the
hybrid implementation would be similar but, at the same
time, more complicated, as compared to the MCI approach
case.

Veselin N. Ivanović et al. 7

Table 2: Total number of functional units per channel in an SM block and the clock cycle time in the cases of (a) single-cycle implementation
(SCI) and (b) the multicycle implementation (MCI). Tm is the multiplication time of a two-input 16-bit multiplier, Ta is the addition time
of a two-input 16-bit adder, whereas Ts is the time for 1-bit shift. The recursive form of the STFT block implementation is assumed when
the clock cycle time in the SCI case is represented.

Implementation Adders Multipliers Shift left registers Clock cycle time

SCI 2Ld + 1 2(Ld + 1) 2Ld 2Tm + (Ld + 3)Ta + Ts

MCI 3 2 2 Tm + 2Ta + Ts

2.3. Signal-dependent S-method

Disadvantages of the signal-independent convolution win-
dow in the analysis of multicomponent signals, having dif-
ferent widths of the auto-terms, motivates the introduction
of a signal-dependent convolution window width. It follows,
for each point of TF plane, the widths of the auto-terms
excluding the summation in (1) where one or both of the
components STFT(n, k + i) and STFT(n, k − i) are equal
to zero. In addition, it should stop the summation outside
a component. Practically, it means that when the absolute
square value of STFT(n, k + i) or STFT(n, k − i) is smaller
than an assumed reference level Rn, the summation in (1)
should be stopped. In practice, reference value is selected
based on a simple analysis of the analyzed signal and the
implementation system [10, 17]. It is defined as a few percent
of the SPEC’s maximal value at a considered time-instant n,
R2
n =maxk{SPEC(n, k)}/Q2, where SPEC(n, k) is the SPEC

of analyzed signal and 1 ≤ Q < ∞. In the sequel, the signals
that determine nonzero values of STFT(n, k± i) (i= 0, 1, . . . ,
Ld(n, k)) will be denoted by x±i: x±i = 1 if | STFT(n, k± i)|2>
R2
n, and x±i=0 otherwise.
Sampling rate of the analyzed analog signal f (t) depends

on the clock cycle time Tc and on the number of the exe-
cuted steps. Consequently, the same number of steps in dif-
ferent time instants must be executed. In that sense, we have
to assume maximal possible convolution window width as
2Ldmax + 1 (variable convolution window width approach
with the predefined maximal window width), and to define
sampling rate by (2Ldmax + 1)Tc. Since the SM(n, k) value is
calculated in the Lth step, where L ≤ Ldmax + 1, it must be
saved up to the (Ldmax + 1)th step into the OutREG tempo-
rary register.

In order to accommodate hardware from Figures 1 and
2 for signal-dependent window width, we add two N/2-
input multiplexors to generate SignDep(endent) control sig-
nal, which determines whether or not the ith term enters
the summation in (3)-(4). With the zero value of the Sign-
Dep control signal, adding the new term to the calculated
SM value is disabled, since the additional improvement of
the TFD concentration is impossible. It takes different values
in different steps defined as

SignDep = xi · x−i, i = 0, 1, 2, . . . ,Ldmax. (5)

Signals xi are set in the first step after the STFT calculation.
The circuit needed to generate signal xi is separated within
the dashed box and presented in Figure 4.

Multistep sequence of the signal-dependent SM is the
same as in the signal-independent case. Two first steps have
to be executed, since SPEC value should be forwarded to the
output anyway. Namely, even if | STFT(n, k)|2 ≤ R2

n, for all
k, that is x0 = 0, (practically, these are points (n, k) with no
signal) the convolution window width takes zero value, and
then the SM takes its marginal form—SPEC [4, 9]. Execu-
tion of the second step is provided by setting the unit value
instead of x0 to the first respective inputs of the N/2-input
multiplexors, so SignDep ≡ 1 in the second—SPEC comple-
tion step.

Defining the control

Control logic for theMCI realization of the signal-dependent
SM can set all but one of the control signals, based solely
on the SM enable code (SM en). Write control signal of the
OutREG temporary register is the exception. To generate it,
we will need to AND together an SMStoreCond signal from
the control unit, with SignDep control signal. The finite-state
Moore machine that specifies the multicycle control is pre-
sented in Figure 5.

3. MULTICYCLE HARDWARE IMPLEMENTATION
OF THE HIGHER-ORDER TFDS

Since the LWD is defined in the same manner as the SM (see
the LWD definition (2) and the SM definition (1)), it may be
realized by using the same hardware presented in Figures 1
and 2. For that purpose, the SM block of the proposed ar-
chitecture and the second input of the output adder in the
SM block must be shared (by introducing two-input mul-
tiplexors) for realization of the LWD with L= 2, Figure 6.
This must be done since only one subchannel of the SM
block is used when the SM block realizes the LWD, [25].
Namely, in that case the SM block always processes the real
function SM(n, k). The function of the proposed hardware is
determined by the SMorLWD control signal: the SM imple-
mentation and the LWD implementation are determined by
the SMorLWD zero and unit value, respectively, see Figure 7.
Note that the OutREG temporary register is used for saving
the computed SM value when we need to use the SM block
for the LWD implementation.

Then, the control logic defined in Section 2 must be ex-
panded with the SMorLWD control signal. In the first Ld + 2
clock cycles, system realizes SM(n, k). The calculated SM
value, saved in the OutREG register, will be used in the
next Ld + 1 clock cycles, when the LWD with L= 2 will
be realized. It is done by asserting the SMorLWD control

8 EURASIP Journal on Applied Signal Processing

0
1
2
...

N
2 − 1

M
u
x

1
x1
x2

x N
2 −1

SignLoad

SM en

SMStoreCond

SPECorSM

SelSTFT

SignDep
Control
logic

SignDep

0
1
2
...

N
2 − 1

M
u
x

1
x−1
x−2

x− N
2 +1

STFTRe(n, k)

STFTIm(n, k)

f (t)

Signal
A/D

16 STFT block
f (n) STFT(n, k)

Clock

0
1
2

...

N
2 −1

M
u
x

0
1
2

...

N
2 −1

M
u
x

0
1
2

...

N
2 −1

M
u
x

0
1
2

...

N
2 −1

M
u
x

STFTRe(n, k + 1)
STFTRe(n, k + 2)

STFTRe(n, k +
N
2 − 1)

STFTRe(n, k − 1)
STFTRe(n, k − 2)

STFTRe(n, k − N
2 + 1)

STFTIm(n, k + 1)
STFTIm(n, k + 2)

STFTIm(n, k+
N
2 −1)

STFTIm(n, k − 1)
STFTIm(n, k − 2)

STFTIm(n, k− N
2 +1)

MULT

MULT
D
m
u
x

0

1

D
m
u
x

0

1

SHL1

SHL1

0

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

+

+

Real

Imag

CLK

CLK

+

O
u
tR
E
G TFD(n, k)

STFTRe(n, k + i)

STFTIm(n, k + i)

MULT

MULT

+

R2

Comp xi

Figure 4: MCI architecture for the signal-dependent S-method realization.

SignLoad = 1
SMStoreCond = 0

SignLoad= 0
SelSTFT = 010
SPECorSM = 0

SMStoreCond = 1

SignLoad = 0
SelSTFT = 110
SPECorSM = 1
SMStoreCond= 1

SignLoad = 0
SelSTFT = 210
SPECorSM = 1
SMStoreCond= 1

SignLoad = 0

SelSTFT = (Ldmax)10
SPECorSM = 1

SMStoreCond = 1

Start

0 1 2 3

Ldmax + 1

Figure 5: The finite-state machine control for the MCI design of the signal-dependent S-method from Figure 4.

Veselin N. Ivanović et al. 9

1

0

M

u
x

SignLoad

TFD code

SMStore

Add SelB

SHLorNo

SelSTFT

Control
logic

SMorLWD

STFTRe(n, k)

STFTIm(n, k)

f (t)

Signal
A/D

16 STFT block

f (n) STFT(n, k)

CLK

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

0
1
2

...

N
2 − 1

M
u
x

STFTRe(n, k)

STFTRe(n, k + 1)
STFTRe(n, k + 2)

STFTRe(n, k +
N
2 − 1)

STFTRe(n, k − 1)
STFTRe(n, k − 2)

STFTRe(n, k − N
2 + 1)

STFTIm(n, k)

STFTIm(n, k + 1)
STFTIm(n, k + 2)

STFTIm(n, k +
N
2 − 1)

STFTIm(n, k − 1)
STFTIm(n, k − 2)

STFTIm(n, k − N
2 + 1)

MULT

MULT

D
m
u
x

0

1

D
m
u
x

0

1

SHL1

SHL1

0

0

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

+

+

Real

Imag

CLK

CLK

+

O
u
tR
E
G

TFD(n, k)
SMorLWD

1

0

M
u
x

0

Figure 6: A complete hardware for one channel simultaneous realization of the S-method/L-Wigner distribution.

signal. The finite-state machine control for this system is
shown in Figure 7. If we repeat the last Ld + 1 steps from
Figure 7 (i.e., steps Ld + 2 to 2Ld + 2), together with assert-
ing of the SMStore control signal in the (2Ld + 2)th step, the
LWD with L= 4 is implemented by using the proposed ar-
chitecture.

Here we do not analyze the finite register length influence
on the accuracy of the results obtained by the proposed archi-
tecture. Its rigorous treatmentmay be found in [26]. Also, for
the numerical illustration we refer the readers to the papers
where the theoretical approach for the methods used in this
paper is given, [4, 9, 10, 12, 16].

4. PRACTICAL IMPLEMENTATION APPROACH

The architectures for the SM calculation from the STFT sam-
ples can be practically realized by using different technologies

such as PC- or DSP-based solutions, running special soft-
ware, or applying specified chips in forms of ASICs or pro-
grammable devices (PDs). The first way is not so useful for
real-time processing, since it is mostly based on the VonNeu-
mann architecture that significantly reduces the speed per-
formances. Otherwise, a great degree of parallelism at high
speed, as well as low power consumption, can be achieved
with the chip-based solutions. Using the FPGA chips in-
stead of classical ASICs has numerous advantages, especially
in prototype development. Some of them are: (i) reasonable
cost for small number of pieces, (ii) in system programming
(ISP) possibilities, (iii) availability of software design support
provided by different development systems for Windows-
based PCs and workstations, and (iv) the developed FPGA’s
cores and schematics entries can be directly translated to
the ASIC’s code. In contrast to first families, present FPGAs
offer not only a lot of logic cells, but also a huge register

10 EURASIP Journal on Applied Signal Processing

SignLoad = 1
SMStore = 0

SMorLWD = 1
SignLoad = 0
SelSTFT = 010
SHLorNo = 0
Add SelB = 1
SMStore = 1

SMorLWD = 1
SignLoad = 0
SelSTFT = 110
SHLorNo = 1
Add SelB = 1
SMStore = 0

SMorLWD = 1
SignLoad = 0
SelSTFT = 210
SHLorNo = 1
Add SelB = 1
SMStore = 0

SMorLWD = 1
SignLoad = 0

SelSTFT = (Ld)10
SHLorNo = 1
Add SelB = 0
SMStore = 0

SMorLWD = 0
SignLoad = 0
SelSTFT = 010
SHLorNo = 0
Add SelB = 0
(SMStore = 1)

SMorLWD = 0
SignLoad = 0
SelSTFT = 110
SHLorNo = 1
Add SelB = 1
(SMStore = 1)

SMorLWD = 0
SignLoad = 0
SelSTFT = 210
SHLorNo = 1
Add SelB = 1
(SMStore = 1)

SMorLWD = 0
SignLoad = 0

SelSTFT = (Ld)10
SHLorNo = 1
Add SelB = 1
SMStore = 1

Start

0

1

2

3

Ld + 1

2Ld + 2

2Ld + 1

2Ld

Ld + 2

(TFD code=‘LWD with L = 2 and Ld = 1’)

(TFD code=‘LWD with L = 2 and Ld = 2’)

(TFD code=‘LWD with L = 2 and Ld ’)

(TFD code=‘SPEC’)

(TFD code=‘SM with Ld = 1’)

(TFD code=‘SM with Ld = 2’)

(TFD code=‘SM with Ld ’)

...
...

Figure 7: The finite-state machine control for the multicycle hardware implementation from Figure 6.

blocks and memory areas. These can be used to built power-
ful specialized parallel processing units such as adders, mul-
tipliers, shifters, and so forth in form of schematic entry or
the VHDL code. The internal memory blocks (RAMs, ROMs
and FIFOs, etc.) are usable for fast interconnection between
parallel structures, as well as to generate the control signals
and to configure the system.

In this section, both MCI and SCI architectures are
implemented in the FPGA chips. The MCI architecture

was implemented following the approach proposed here,
whereas the SCI one was implemented following the ap-
proach given in [17]. The design was carried out in Altera
Max+plus II software. For hardware realization the Al-
tera’s FLEX 10K chips family has been chosen. This fam-
ily is fabricated in CMOS SRAM technology, running up
to 100MHz and consuming less than 0.5mA on 5V. It
has a high density of 10,000 to 250,000 typical gates, up
to 40,960 RAM bits, 2,048 bits per embedded array block

Veselin N. Ivanović et al. 11

From STFT module

0

Ld

2Ld

...

...

...

STFT(n, k + Ld)

STFT(n, k + Ld − 1)

STFT(n, k)

STFT(n, k − Ld + 1)

STFT(n, k − Ld)

MUX1

SelSTFT 1

MUX2

SelSTFT 2

×

MULT

ShLEFT

SHLorNo

CumADD

OutREG

SM(k)+

1-bits

Shift memory buffer
(ShMemBuff)

Configuration signals
(from PC or MC)

SMStore/STFTLoad

RESET

Control logic

Bin counter

TFD code

System
clock

LUT
(RAM
or

ROM)

LUT Add

SelSTFT 1
SelSTFT 2
CLK
RESET
SHLorNo
SMStore/STFTLoad

CLK1

RESET (ADD clear)

SMStore/STFTLoad

Figure 8: Block diagram of FPGA implementation of the MCI approach.

(EAB), and so on. The computation units are realized by
using standard digital components in form of schematics
entries or by Altera hardware design language (AHDL)-
based mega-functions (library of parametrized modules
(LPM)).

The proposed MCI and SCI architectures, implemented
in FPGA technology, will be shortly described and com-
pared against usual criteria such as chip capacity, computa-
tion speed, power consumption, and cost.

4.1. Implementation of theMCI architecture

The FPGA-based implementation of the MCI architecture
follows the design logic given in Figure 8. Since the real and
imaginary computation lines are identical, the interpreta-
tion will be done through real ones. As seen, it consists of
several functional blocks (units). The STFT sample is im-
ported from the STFT module to the Shift Memory Buffer
(ShMemBuff) that is implemented as an array of parallel-
in-parallel-out registers. Their outputs represent the STFT
samples in time order STFT(n, k + Ld), STFT(n, k + Ld −
1), . . . , STFT(n, k), . . . , STFT(n, k − Ld + 1), STFT(n, k − Ld)
and due to each SMStore/STFTLoad cycle, they have been
shifted for one position. These are also fed to the inputs of
multiplexors MUX1 and MUX2 and, two-by-two, regarding
on multiplexor’s addresses SelSTFT 1 and SelSTFT 2, for-
warded to the parallel multiplier MULT in order to produce

partial product term according to (3). This term is either
shifted left or not, depending on the signal SHLorNo. This
shift is performed by shifter ShLEFT, the output of which
is connected to the first input of the cumulative pipelined
adder CumADD. The CumADD has been designed to replace
an adder and a multiplexor (addressed by the AddSelB con-
trol signal) from Figures 1 and 2. The time diagram of calcu-
lation process is presented in Figure 9. As shown, the multi-
plying and shifting operations are parallel, while the adding
has a latency of one clock. After Ld + 1 clocks, the output
of the CumADD will contain the sum SM(n, k) that repre-
sents the final value of the SM. The next two cycles are used
for the signals SMStore/STFTLoad and RESET that will store
the sum SM(n, k) in the output register and reset CumADD
to zero, respectively. Use of the RESET signal will increase
the calculation time for one clock. It means that the calcula-
tion process takes Ld + 3 cycles, one more than is elaborated
in Figure 3. Note that the RESET signal can be generated by
the signal SMStore/STFTLoad, using a short delay, that will
reduce the calculation process to Ld + 2 cycles. In order to
clarify the principle of calculation and simulation (the pro-
cess of cumulative sums cumSM represented in Figure 11),
we have used the first variant of RESET generation, with
Ld + 3 clocks.

Look-up-table (LUT), realized in the form of ROM or
RAM memory, manages the computation process. As illus-
trated in Table 3, its memory location consists of the control

12 EURASIP Journal on Applied Signal Processing

System clock CLK

SMStore/STFTLoad

RESET

SHLorNo

1 2 Ld + 1

StoreSM(n, k − 1)/LoadSTFT(n, k + Ld)

SelSTFT 1(n, k)/SelSTFT 2(n, k)

0+STFT(n, k)∗STFT(n, k) = Sum(0)

SelSTFT 1(n, k + 1)/SelSTFT 2(n, k − 1)

Sum(0) + 2∗(STFT(n, k + 1)∗STFT(n, k − 1) = Sum(1)

SelSTFT 1(n, k + Ld)/SelSTFT 2(n, k − Ld)

Sum(Ld − 1) + 2∗(STFT(n, k + Ld)∗STFT(n, k − Ld)) = SM(n, k)

StoreSM(n, k)/Load STFT(n, k + Ld + 1)

Figure 9: The calculation-timing diagram for block diagram from Figure 8.

Table 3: LUT’s values for given Ld . The ADD(STFT(n, k)) means the address location of the STFT(n, k) sample inside ShMemBuff, whereas
m = CEIL(log2N) = Length(SelSTFT 1). Symbol “�” denotes logical shift left operation. Note that signals SHLorNo, RESET and SM-
Store/STFTLoadmake control signals area.

LUT’s memory location SHLorNo RESET SMStore/STFTLoad SelSTFT 1 bits SelSTFT 2 bits

0 0 0 0 ADD(STFT(n, k))� m ADD(STFT(n, k))

1 1 0 0 ADD(STFT(n, k + 1))� m ADD(STFT(n, k − 1))

— 1 0 0 — —

Ld 1 0 0 ADD(STFT(n, k + Ld))� m ADD(STFT(n, k − Ld))

Ld + 1 0 0 1 0 0

Ld + 2 0 1 0 0 0

signals area (which consists of signals SHLorNo, RESET, and
SMStore/STFTLoad, resp.) and MUXs’ addresses. The binary
counter (see Figure 8) generates the low LUT’s addresses,
while TFDcode register sets the high ones. It means that
starting address of the running memory block is assigned
to the corresponding value Ld stored in TFDcode register.
At the end of the sequence, the binary counter is cleared
by the signal RESET. During system initialization, the mem-
ory contents and value of TFDcode register are automati-
cally loaded from outside by using PC or general-purpose
microcontroller. Of course, these parameters can be perma-
nently stored using ROMs, EEPROMs, and FLASHs instead
of RAMs.

Figure 10 shows a schematic diagram for SM calculation
from the STFT samples (STFT to SM gateway) using MCI
approach. The control logic is realized by using ROM. The
maximal register widths for each unit determine the capacity
of the assigned chip. The critical point is the width of the
CumADD. It is a function of both STFT data length and
the maximal possible convolution window width Ldmax that
can be implemented by using proposed architecture. Table 4
shows the relations between minimum widths of units and
parameters l (data length) and Ldmax. In order to verify the
chip operation before its programming, the compilation and
simulation have been performed by using the various test
vectors. An example of simulation is shown in Figure 11.

Veselin N. Ivanović et al. 13

ST
FT

(n
,k

+
L
d
)

(M
u
lt
ip
le
xe
rs
)

(M
u
lt
ip
lie
r)

(S
h
if
t
re
gi
st
er
)

(C
u
m
u
la
ti
ve

ad
de
r)

M
u
x1

M
U
LT

Sh
L
E
FT

C
u
m
A
D
D

L
P
M

M
U
X

L
P
M

M
U
LT

L
P
M

C
LS

H
IF
T

L
P
M

A
D
D

SU
B

In
pu

t

ST
FT

[7
..0
][
7.
.0
] d

at
a[
][
]

ST
FT

[0
][
7.
.0
]

ST
FT

[7
..0
][
7.
.0
]d

at
a[
][
]

R
es
u
lt
[]

R
es
u
lt
[]

O
u
tp
u
t

se
l[
]

se
l[
]

Se
lS
T
FT

[5
..3
]

Se
lS
T
FT

[2
..0
]

C
u
m
SM

[1
9.
.0
]

ST
FT

[0
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[1
][
7.
.0
]

8b
it
re
g

D
[7
..0
]
Q
[7
..0
]

C
L
K

ST
FT

[2
][
7.
.0
]

8b
it
re
g

D
[7
..0
]
Q
[7
..0
]

C
L
K

ST
FT

[3
][
7.
.0
]

8b
it
re
g

D
[7
..0
]
Q
[7
..0
]

C
L
K

ST
FT

[4
][
7.
.0
]

8b
it
re
g

D
[7
..0
]
Q
[7
..0
]

C
L
K

ST
FT

[5
][
7.
.0
]

8b
it
re
g

D
[7
..0
]
Q
[7
..0
]

C
L
K

ST
FT

[6
][
7.
.0
]

8b
it
re
g

D
[7
..0
]
Q
[7
..0
]

C
L
K

ST
FT

[7
][
7.
.0
]

Se
lS
T
FT

[6
]

(S
h
if
t
m
em

or
y
bu

ff
er
)

Sh
M
em

B
u

ff

M
U
X
2

L
P
M

M
U
X

C
on

tr
ol
Lo

gi
c

Se
lS
T
FT

[7
]

74
93

R
O
1

R
O
2

C
L
K
A

C
L
K
B

Q
A

Q
B

Q
C

Q
D

C
ou

n
te
r

A
dd

[0
]

A
dd

[1
]

A
dd

[2
]

A
dd

[3
]

C
L
K

IN
P
U
T

N
O
T

C
L
K
1

A
dd

[3
..0
]
L
P
M

R
O
M

A
dd

re
ss
[] q[

]

R
O
M

Se
lS
T
FT

[7
]
So
ft

Se
lS
T
FT

[6
]
So
ft

Se
lS
T
FT

[8
..0
]

Se
lS
T
FT

[8
]

So
ft

O
u
tp
u
t

O
u
tp
u
t

O
u
tp
u
t

O
u
tp
u
t

R
es
et

St
or
eS
M
/L
oa
d
ST

FT

Se
lS
T
FT

[8
..0
]

Sh
Lo

rN
o[
0]

Sh
Lo

rN
o[
0]

Sh
Lo

rN
o[
1]

Sh
Lo

rN
o[
2]

Sh
Lo

rN
o[
3]

Sh
Lo

rN
o[
4]

G
N
D

G
N
D

G
N
D

G
N
D

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]
c[
15
..0
]

c[
17
..0
]

c[
17
..1
6]

G
N
D

Sh
Lo

rN
o[
4.
.0
]

G
N
D

D
at
a[
]

D
is
ta
n
ce
[]

D
ir
ec
ti
on

R
es
u
lt
[]

U
n
de
rfl
ow

O
ve
rfl
ow

a[
17
..0
]

a[
19
..0
]

a[
19
..1
8]

G
N
D

C
L
K
1

C
in

D
at
aa
[]

C
lo
ck

D
at
ab
[]

A
cl
r

R
es
u
lt
[]

C
ou

t

L
P
M

D
FF

Se
lS
T
FT

[6
]

D
at
a[
]

q[
]

O
u
tR
E
G

(O
U
T
P
U
T
R
E
G
IS
T
E
R
)

O
u
tp
u
t

SM
[1
9.
.0
]

Se
lS
T
FT

[7
]

Fi
g
u
re

10
:T

h
e
sc
h
em

as
ti
c
di
ag
ra
m

of
th
e
8-
bi
t
ST

FT
to

SM
ga
te
w
ay

im
pl
em

en
te
d
in

FP
G
A
u
si
n
g
M
C
I
ap
pr
oa
ch
.I
t
is
im

pl
em

en
te
d
fo
r
L
d
≤
3
an
d
N
=8

.

14 EURASIP Journal on Applied Signal Processing

Table 4: Output register lengths for used digital units depending on the parameters l, Ldmax.

Length of MUX1, MUX2 MULT ShLEFT CumADD and OutREG

Parameters l, Ldmax l 2 · l 2 · l + 1 CEIL(log2((2
2l+1 − 1) · (Ldmax + 1)))

Ref: 0 ns Time: 2.32 us Interval: 2.32 us

Name: Value: 5 us 10 us 15 us 20 us

CLK

SM/Load STFT

RESET

SelSTFT[8..0]

ShLorNo[0]

STFT0 [7..0]

cumSM[19..0]

SM[19..0]

0

0

0

D 18

D 0

D 5

D 0

D 0

18 267 260 64 18 267 260 64 18 267 260 64

0 1 1 0 0 1 1 0 0 1 1 0

5 6 7

0 0 0 25

0

(a)

Ref: 0 ns Time: 26.36 us Interval: 26.36 us

Name: Value: 25 us 30 us 35 us 40 us 45 us

CLK

SM/Load STFT

RESET

SelSTFT[8..0]

ShLorNo[0]

STFT0 [7..0]

cumSM[19..0]

SM[19..0]

0

0

0

D 18

D 0

D 5

D 0

D 0

64 18 267 260 64 18 267 260 64 18 267 260

0 0 1 1 0 0 1 1 0 0 1 1

7 8 9 0

25 0 36 106 0 49 145 235 0 64 190

25 106 235

(b)

Figure 11: Simulation illustration for test vector V={5, 6, 7, 8, 9, 0, 0, . . . } and Ld=3.

4.2. Implementation of the SCI architecture

As opposite to the MCI architecture, the SCI has no latency
[17]. The arithmetic units are realized by using combina-
tional logic, meaning that all calculation operations are per-
formed in parallel. The schematic diagram of its FPGA im-
plementation is given in Figure 12. As seen, there is no need
for input multiplexors and control signals such as SMStore/
STFTLoad, SelSTFT 1, SelSTFT 2, RESET and SHLorNo.
Thus, the ROM based generator is needless. At the rising
edge of the system clock CLK, the STFT samples are shifted,
and due to falling edge, the final result is stored in output
register OutREG, as shown in the simulation diagram given
in Figure 13. One parallel multiplier and one shift register
are used for each of product terms from (3), expect for the
SPEC term that has no shift register. These terms are added
by using cascade network of two-inputs parallel adders,

giving the final sum SM[19 · · · 0]. The register widths are
the same as in the case of MCI. It should be emphasized
that the number of multipliers, shift register, and adders
drastically increases with the order of Ld. For example, for
Ld = 3 we need 4 multipliers (MULT1 · · · 4), 3 shift registers
(ShLEFT1 · · · 3), and 3 adders (ParADD1 · · · 3), Figure 12.

4.3. Comparison ofMCI and SCI architectures

During the test phase we have implemented 8-bit and 16-bit
computation configurations for both architectures MCI and
SCI. The different Lds have been considered. Having in mind
the design symmetry, both real and imaginary parts have
been developed separately or together. Some implementation
details for Ld = 3, N = 8, and selected real devices from
10K and 20K families are summarized in Table 5. In order to
generate visual conclusions, the dependence of used logical

Veselin N. Ivanović et al. 15
ST

FT
(n
,k

+
L
d
)

(M
u
lt
ip
lie
rs
)

(S
h
if
t
re
gi
st
er
s)

(P
ar
al
le
la
dd

er
s)

M
U
LT

1

Sh
L
E
FT

1

Pa
rA

D
D
1

L
P
M

M
U
LT

L
P
M

C
LS

H
IF
T

L
P
M

A
D
D

SU
B

In
pu

t
ST

FT
[0
][
7.
.0
]

ST
FT

[1
][
7.
.0
]

ST
FT

[7
][
7.
.0
]

ST
FT

[2
][
7.
.0
]

ST
FT

[6
][
7.
.0
]

ST
FT

[3
][
7.
.0
]

ST
FT

[5
][
7.
.0
]

ST
FT

[0
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[1
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[2
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[3
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[4
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[5
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[6
][
7.
.0
]

8b
it
re
g

D
[7
..0
]

Q
[7
..0
]

C
L
K

ST
FT

[7
][
7.
.0
]

Sh
M
em

B
u

ff

(S
h
if
t
m
em

or
y
bu

ff
er
)

Sh
M
em

B
u

ff

C
L
K
IN

C
L
K
IN

In
pu

t

V
C
C

SH
Lo

rN
o[
0]

SH
Lo

rN
o[
1]

SH
Lo

rN
o[
2]

SH
Lo

rN
o[
3]

SH
Lo

rN
o[
4]

ST
FT

[4
][
7.
.0
]

SH
Lo

rN
o[
4.
.0
]

G
N
D

G
N
D

G
N
D

G
N
D

M
U
LT

2
L
P
M

M
U
LT

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

c0
[1
5.
.0
]

c0
[1
7.
.0
]

c0
[1
7.
.1
6]

G
N
D Sh

Lo
rN

o[
4.
.0
]

G
N
D

M
U
LT

3
L
P
M

M
U
LT

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

c1
[1
5.
.0
]

c1
[1
7.
.0
]

c1
[1
7.
.1
6]

G
N
D

Sh
Lo

rN
o[
4.
.0
]

G
N
D

M
U
LT

4
L
P
M

M
U
LT

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

c2
[1
5.
.0
]

c2
[1
7.
.0
]

c2
[1
7.
.1
6]

G
N
DSh

Lo
rN

o[
4.
.0
]

G
N
D

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

c3
[1
5.
.0
]

c3
[1
9.
.0
]

c3
[1
9.
.1
6]

G
N
D

D
at
a[
]

D
is
ta
n
ce
[]

D
ir
ec
ti
on

R
es
u
lt
[]

U
n
de
rfl
ow

O
ve
rfl
ow

a0
[1
7.
.0
]

a0
[1
9.
.0
]

a0
[1
9.
.1
8]

G
N
D

Sh
L
E
FT

2
L
P
M

C
LS

H
IF
T

D
at
a[
]

D
is
ta
n
ce
[]

D
ir
ec
ti
on

R
es
u
lt
[]

U
n
de
rfl
ow

O
ve
rfl
ow

a1
[1
7.
.0
]

a1
[1
9.
.1
8]

G
N
D

Sh
L
E
FT

3
L
P
M

C
LS

H
IF
T

D
at
a[
]

D
is
ta
n
ce
[]

D
ir
ec
ti
on

R
es
u
lt
[]

U
n
de
rfl
ow

O
ve
rfl
ow

a2
[1
7.
.0
]

a2
[1
9.
.0
]

a2
[1
9.
.1
8]

G
N
D

N
ot

C
L
K
IN

C
in

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

C
ou

t

Pa
rA

D
D
1

L
P
M

A
D
D

SU
B

C
in

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

C
ou

t

Pa
rA

D
D
1

L
P
M

A
D
D

SU
B

C
in

D
at
aa
[]

D
at
ab
[]

R
es
u
lt
[]

C
ou

t

L
P
M

D
FF

D
at
a[
]

q[
]

O
u
tR
E
G

O
u
tp
u
t

SM
[1
9.
.0
]

a1
[1
9.
.0
]

Fi
g
u
re

12
:F
P
G
A
sc
h
em

at
ic
di
ag
ra
m

of
th
e
8-
bi
t
SC

I
ar
ch
it
ec
tu
re

fo
r
L
d
=3

.

16 EURASIP Journal on Applied Signal Processing

Ref: 9 ns Time: 0 us Interval: −9 us

Name: Value: 2 us 4 us 6 us 8 us 10 us 12 us 14 us 16 us
9 us

CLK
STFT0 [7..0]

SM[19..0]

1
D 9

D 25
5 6 7 8 9 0

0 25 106 235 190

Figure 13: Simulation diagrams for SCI architecture. The overall computation process is performed in one clock cycle.

Table 5: Summarized implementation utilization for real devices and Ld=3 and N=8 and data lengths l=8 and l=16.

Computation architecture Total logic
cells (LCs)
used

Total flip-
flops used

Memory
bits used

Total I/O
pins used

Utilized
LCs for
recom-
mended
device

Recommended device

Real 8-bits MCI 641 101 144 41 55% EPF10K20TC144-3

Real 8-bits SCI 1728 75 0 29 100% EPF10K30RC208-3

Real 16-bits MCI 1772 197 144 69 76% EPF10K40RC208-3

Real 16-bits SCI 5498 147 0 57 No fit Not fit in the largest of 10 K
EPF10K100GC503-
3DX4992

66% EP20K200

Real + Imag 8-bits MCI 1281 198 144 69 74% EPF10K30RC208-3

Real + Imag 8-bits SCI 3532 150 0 57 94% EPF10K70RC240-2

Real + Imag 16-bits MCI 3543 397 144 125 94% EPF10K70RC248-3

Real + Imag 16-bits SCI 11237 294 0 113 No fit Not fit in the largest of 10 K
EPF10K100GC503-
3DX4992

67% EP20K400

devices (total logic cells (LCs)) as a function of Ld, for con-
stant N=16, and data length l=8 is illustrated in Figure 14.

As seen, the main advantages of MCI architecture are as
follows:

(i) for the same Ld, the MCI architecture needs signifi-
cantly less LCs for its implementation. It is known that
the capacity of chip, that is, the silicon area, is directly
proportional to the number of allowed LCs. Since the
MCI architecture is structurally identical for different
Lds, the number of LCs could only slightly increase
with the increase of N . That is caused by the input
span and address lengths of multiplexors (MUX1 and
MUX2 from Figure 10);

(ii) the reduced power consumption, which is strongly
proportional to the chip capacity; and

(iii) less implementation cost (about 2-3 times).

An advantage of the SCI architecture is the processing
speed that is of importance for time-critical applications. The
number of LCs significantly varies by Ld (about 400–500 LCs
per Ld) that complicates the design and increases the imple-
mentation cost and power consumption.

After the simulation, the real FLEX 10K devices are
configured at system power-up using Atlera’s UP2 develop-
ment board with data from ByteBlasterMV. Microcontroller
emulated the STFT front end, while the calculated SM was
collected and verified by a PC. Because reconfiguration re-
quires less than 320ms (in case of using external configura-
tion EEPROM), real-time changes can be made during sys-
tem operation.

5. CONCLUSION

Flexible system for TF signal analysis is proposed. Its MCI
design is presented. Proposed architecture can be used for
real-time implementation of some commonly used quadratic
and higher-order TFDs. It allows a functional unit to be used
more than once per TFDs execution, as long as it is used
on different clock cycles, and, consequently, enables a signif-
icant reduction of hardware complexity and cost. The ma-
jor advantages of the proposed design are the ability to al-
low implemented TFDs to take different numbers of clock
cycles and to share functional units within a TFDs execu-
tion. Finally, proposed architecture is practically verified by

Veselin N. Ivanović et al. 17

0

500

1000

1500

2000

2500

2 3 4 Ld 5

MCI

SCI

Total LCs used

Figure 14: The dependance of the LCs used assuming N = 16, and
data length l=8.

its implementations in FPGA devices and compared with the
SCI architecture against usual criteria such as chip capacity,
computation speed, power consumption, and cost.

REFERENCES

[1] L. Cohen, “Time-frequency distributions—a review,” Proceed-
ings of the IEEE, vol. 77, no. 7, pp. 941–981, 1989.

[2] F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and
quadratic time-frequency signal representations,” IEEE Signal
Processing Magazine, vol. 9, no. 2, pp. 21–67, 1992.

[3] L. Cohen, “Preface to the special issue on time-frequency anal-
ysis,” Proceedings of the IEEE, vol. 84, no. 9, pp. 1197–1197,
1996.

[4] LJ. Stanković, “A method for time-frequency analysis,” IEEE
Transactions on Signal Processing, vol. 42, no. 1, pp. 225–229,
1994.

[5] B. Boashash and B. Ristic, “Polynomial time-frequency distri-
butions and time-varying higher order spectra: application to
the analysis of multicomponent FM signals and to the treat-
ment of multiplicative noise,” Signal Processing, vol. 67, no. 1,
pp. 1–23, 1998.

[6] P. Goncalves and R. G. Baraniuk, “Pseudo affineWigner distri-
butions: definition and kernel formulation,” IEEE Transactions
on Signal Processing, vol. 46, no. 6, pp. 1505–1516, 1998.

[7] C. Richard, “Time-frequency-based detection using discrete-
time discrete-frequency Wigner distributions,” IEEE Transac-
tions on Signal Processing, vol. 50, no. 9, pp. 2170–2176, 2002.

[8] L. L. Scharf and B. Friedlander, “Toeplitz and Hankel ker-
nels for estimating time-varying spectra of discrete-time ran-
dom processes,” IEEE Transactions on Signal Processing, vol. 49,
no. 1, pp. 179–189, 2001.

[9] LJ. Stanković, V. N. Ivanović, and Z. Petrović, “Unified ap-
proach to the noise analysis in the spectrogram and Wigner

distribution,” Annales des Telecommunications, vol. 51, no. 11-
12, pp. 585–594, 1996.

[10] S. Stanković and LJ. Stanković, “An architecture for the real-
ization of a system for time-frequency signal analysis,” IEEE
Transactions on Circuits And Systems—Part II: Analog and Dig-
ital Signal Processing, vol. 44, no. 7, pp. 600–604, 1997.

[11] LJ. Stanković and J. F. Böhme, “Time-frequency analysis of
multiple resonances in combustion engine signals,” Signal Pro-
cessing, vol. 79, no. 1, pp. 15–28, 1999.

[12] LJ. Stanković, “A method for improved distribution concen-
tration in the time-frequency analysis of multicomponent sig-
nals using the L-Wigner distribution,” IEEE Signal Processing
Magazine, vol. 43, no. 5, pp. 1262–1268, 1995.

[13] K. J. R. Liu, “Novel parallel architectures for short-time
Fourier transform,” IEEE Transactions on Circuits And
Systems—Part II: Analog and Digital Signal Processing, vol. 40,
no. 12, pp. 786–790, 1993.

[14] M. G. Amin and K. D. Feng, “Short-time Fourier transforms
using cascade filter structures,” IEEE Transactions on Circuits
And Systems—Part II: Analog and Digital Signal Processing,
vol. 42, no. 10, pp. 631–641, 1995.

[15] B. Boashash and P. Black, “An efficient real-time implemen-
tation of the Wigner-Ville distribution,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 35, no. 11, pp.
1611–1618, 1987.

[16] D. Petranović, S. Stanković, and LJ. Stanković, “Special pur-
pose hardware for time-frequency analysis,” Electronics Letters,
vol. 33, no. 6, pp. 464–466, 1997.

[17] S. Stanković, LJ. Stanković, V. N. Ivanović, and R. Stojanović,
“An architecture for the VLSI design of systems for time-
frequency analysis and time-varying filtering,” Annales des
Telecommunications, vol. 57, no. 9-10, pp. 974–995, 2002.

[18] K. Maharatna, A. S. Dhar, and S. Banerjee, “A VLSI array ar-
chitecture for realization of DFT, DHT, DCT and DST,” Signal
Processing, vol. 81, no. 9, pp. 1813–1822, 2001.

[19] K. J. R. Liu and C.-T. Chiu, “Unified parallel lattice structures
for time-recursive discrete cosine/sine/Hartley transforms,”
IEEE Transactions on Signal Processing, vol. 41, no. 3, pp. 1357–
1377, 1993.

[20] A. Papoulis, Signal Analysis, McGraw-Hill, New York, NY,
USA, 1977.

[21] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.

[22] M. G. Amin, “A new approach to recursive Fourier transform,”
Proceedings of the IEEE, vol. 75, no. 11, pp. 1537–1538, 1987.

[23] M. Unser, “Recursion in short-time signal analysis,” Signal
Processing, vol. 5, no. 3, pp. 229–240, 1983.

[24] M. G. Amin, “Spectral smoothing and recursion based on the
nonstationarity of the autocorrelation function,” IEEE Trans-
actions on Signal Processing, vol. 39, no. 1, pp. 183–185, 1991.

[25] V. N. Ivanović and LJ. Stanković, “Multiple clock cycle real-
time implementation of a system for time-frequency analysis,”
in Proceedings of 12th European Signal Processing Conference
(EUSIPCO ’04), pp. 1633–1636, Vienna, Austria, September
2004.

[26] V. N. Ivanović, LJ. Stanković, and D. Petranović, “Finite word-
length effects in implementation of distributions for time-
frequency signal analysis,” IEEE Transactions on Signal Process-
ing, vol. 46, no. 7, pp. 2035–2040, 1998.

18 EURASIP Journal on Applied Signal Processing

Veselin N. Ivanović was born in Cetinje,
Montenegro, April 10, 1970. He received
the B.S. degree in electrical engineering
(1993) and the M.S. degree in electrical
engineering from the University of Mon-
tenegro (1996). He received the Ph.D. de-
gree in electrical engineering from the same
University (2001) in time-frequency signal
analysis and architecture design for imple-
mentation of time-frequency methods and
time-varying filtering. In 2001, he received the Siemens Award for
scientific achievements in his Ph.D. research. Dr. Ivanović is an
Assistant Professor (Docent) at the Electrical Engineering Depart-
ment, University of Montenegro. He is also Vice-Dean at the elec-
trical engineering Department, University of Montenegro. His re-
search interests are in the areas of time-frequency signal analysis,
hardware/software codesign, computer organization and design,
and design with microcontrollers.

Radovan Stojanović was born in Berane,
Montenegro, Yugoslavia, November 18,
1965. He received the B.S.E.E. and M.S.E.E.
degrees from the University of Montenegro,
and the Ph.D. degree from the University of
Patras, Greece, in 1991, 1994, and 2001, re-
spectively. From 1990 to 1998, he was at the
Electrical Engineering Department, Univer-
sity of Montenegro. From 1998 to 2001, he
was a Research Associate at the Department
of Electrical Engineering and Computer Technology, University of
Patras, Greece. After that, he spent two years as a Senior Researcher
in the Industrial System Institute (ISI), Patras, Greece. Currently,
he is an Assistant Professor at the University of Montenegro guid-
ing the group of applied electronics. His fields of interest are hard-
ware/software codesign, applied signal and image processing, and
industrial and medical electronics.

LJubiša Stanković was born in Montene-
gro, June 1, 1960. He received the B.S. de-
gree in electrical engineering from the Uni-
versity of Montenegro, in 1982, with the
honor “the best student at the University,”
the M.S. degree in electrical engineering, in
1984, from the University of Belgrade, and
the Ph.D. degree in electrical engineering
in 1988 from the University of Montene-
gro. As a Fulbright grantee, he spent the
1984/1985 academic year at the Worcester Polytechnic Institute,
Massachusetts. Since 1982, he has been on the faculty at the Uni-
versity of Montenegro, where he now holds position of a Full Pro-
fessor. Stanković was also active in politics, as a Vice-President
of the Republic of Montenegro (1989–1991), and then the leader
of democratic (anti-war) opposition in Montenegro (1991–1993).
During 1997/1998 and 1999, he was on leave at the Ruhr University
Bochum, Germany, with Signal Theory Group, supported by the
Alexander von Humboldt foundation. At the beginning of 2001, he
spent a period of time at the Technische Universiteit Eindhoven,
the Netherlands, as a Visiting Professor. During the priod of 2001–
2002 he was the President of the Governing Board of the Mon-
tenegrin mobile phone company “MONET.” His current interests
are in signal processing and electromagnetic field theory. He pub-
lished about 270 technical papers, more than 80 of them in lead-
ing international journals, mainly the IEEE editions. He has pub-
lished several textbooks about signal processing (in Serbo-Croat)
and the monograph Time-Frequency Signal Analysis (in English).

For his scientific achievements, he was awarded the Highest State
Award of the Republic of Montenegro in 1997. Professor Stanković
is aMember of the IEEE Signal Processing Society’s Technical Com-
mittee on Theory and Methods. He is an Associate Editor of the
IEEE Transactions on Image Processing. He is a Member of the
Yugoslav Engineering Academy, and a Member of the National
Academy of Science and Art of Montenegro (CANU). Professor
Stanković is the Rector of the University of Montenegro since 2003.

	1. INTRODUCTION AND PROBLEM FORMULATION
	2. MULTICYCLE HARDWARE IMPLEMENTATION OF THE S-METHOD
	2.1. Signal-independent S-method
	2.2. Trade-offs and comparisons of the proposed design with the SCI ones
	2.3. Signal-dependent S-method

	3. MULTICYCLE HARDWARE IMPLEMENTATION OF THE HIGHER-ORDER TFDS
	4. PRACTICAL IMPLEMENTATION APPROACH
	4.1. Implementation of the MCI architecture
	4.2. Implementation of the SCI architecture
	4.3. Comparison of MCI and SCI architectures

	5. CONCLUSION
	REFERENCES

