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This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition) from
a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level
interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from
the camera’s point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-
based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using
imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim
of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of
its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the
system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This
system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real

and virtual worlds in ambient intelligence systems.
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1. INTRODUCTION

Human motion analysis is an important area of research in
computer vision devoted to detecting, tracking, and under-
standing people’s physical behaviour. This strong interest is
driven by a wide spectrum of applications in various areas
such as smart video surveillance [1], interactive virtual real-
ity systems [2, 3], advanced and perceptual human-computer
interfaces (HCI) [4], model-based coding [5], content-based
video storage and retrieval [6], sports performances analy-
sis and enhancement [7], clinical studies [8], smart rooms
and ambient intelligence systems [9, 10], and so forth. The
“looking at people” research field has recently received a lot
of attention [11-16]. Here, the considered applications are
video surveillance and smart rooms with advanced HClIs.
Video surveillance covers applications where people are
being tracked and monitored for particular actions. The de-
mand for smart video surveillance systems comes from the
existence of security-sensitive areas such as banks, depart-
ment stores, parking lots, and so forth. Surveillance cameras
video streams are often stored in video archives or recorded
on tapes. Most of the time, these video streams are only used
“after the fact” mainly as an identification tool. The fact that
the camera is an active sensor and a real-time processing me-
dia is therefore sometimes unused. The need is the real-time

video analysis of sensitive places in order to alert the police
of a burglary in progress, or of the suspicious presence of a
person wandering for a long time in a parking lot. As well
as obvious security applications, smart video surveillance is
also used to measure and control the traffic flow, compile
consumer demographics in shopping malls, monitor elderly
people in hospitals or at home, and so forth.

W4 “Who? When? Where? What?” is a real-time visual
surveillance system for detecting and tracking people and
monitoring their activities in an outdoor environment [1].
It operates on monocular grey scale or on infrared video se-
quences. It makes no use of colour cues, instead it uses ap-
pearance models employing a combination of shape analy-
sis and tracking to locate people and their body parts (head,
hands, feet, torso) and track them even under occlusions. Al-
though the system succeeds in tracking multiple persons in
an outdoor complex environment, the cardboard model used
to predict body posture and activity is restricted to upright
persons, that is, recognised actions are, for example, stand-
ing, walking, or running. The DARPA VSAM project leads
to a system for video-based surveillance [17]. Using multiple
cameras, it classifies and tracks multiple persons and vehi-
cles. Using a star skeletonisation procedure for people, it suc-
ceeds in determining the gait and posture of a moving human
being, classifying its motion between walking and running.
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As this system is designed to track vehicles or people, hu-
man subjects are not big enough in the frame, so the individ-
ual body components cannot be reliably detected. Therefore
the recognition of human activities is restricted to gait analy-
sis. In [18], an automated visual surveillance system that can
classify human activities and detect suspicious events in a
scene is described. This real-time system detects people in
a corridor, tracks them, and uses dynamic information to
recognise their activities. Using a set of discrete and previ-
ously trained hidden Markov models (HMMs), it manages
to classify people entering or exiting a room, and even mock
break-in attempts. As there are many other possible activ-
ities in a corridor, for instance speaking with another per-
son, picking up an object on the ground, or even lacing shoes
squatting near a door, the system has a high false alarm rate.

For advanced HCIs, the next generation will be multi-
modal, integrating the analysis and recognition of human
body postures and actions as well as gaze direction, speech,
and facial expressions analysis. The final aim of [4] is to de-
velop human-computer interfaces that react in a similar way
to a communication between human beings. Smart rooms
and ambient intelligence systems offer the possibility of mix-
ing real and virtual worlds in mixed reality applications [3].
People entering a camera’s field of view are placed into a
virtual environment. Then they can interact with the envi-
ronment, with its virtual objects and with other people (us-
ing another instance of the system), by their behaviour (ges-
tures, postures, or actions) or by another media (for instance,
speech).

Pfinder is a real-time system designed to track a single
human in an indoor environment and understand its phys-
ical behaviour [2]. It models the human body and its parts
using small blobs with numerous characteristics (position,
colour, shape, etc.). The background and the human body are
modelled with Gaussian distributions and the human body
pixels are classified as belonging to particular body parts us-
ing the log-likelihood measure. Nevertheless, the presence of
other people in the scene will affect the system as it is de-
signed for a single person. Pfinder has been used to explore
several different HCIs applications. For instance, in ALIVE
and SURVIVE (resp., [9, 10]), a 3D virtual game environ-
ment can be controlled and navigated through by the user
gestures and position.

In this paper, we present a system that can automati-
cally detect and track several persons, their faces and hands,
and recognise in real-time four static human body postures
(standing, sitting, squatting, and lying). Whereas our previ-
ous publications focused on a single part of the system, here
the entire system is described in detail and both an evalu-
ation of the performances and a discussion are given. Low-
level data are extracted using dynamic video sequence anal-
ysis. Then, depending on the desired application, part or all
of these data can be used for human behaviour high-level
recognition and interpretation. For instance, static posture
recognition is performed by data fusion using the belief the-
ory. The belief theory is considered here as a new approach
for performing posture recognition.

1.1. Overview
Overview of the paper

Sections 2 to 5 present the low-level data extraction pro-
cessing steps: 2D segmentation of persons (Section 2), ba-
sic temporal tracking (Section 3), face and hands localisation
(Section 4), and Kalman filtering-based tracking (Section 5).
Section 6 illustrates an example of high-level human be-
haviour interpretation, dealing with static posture recogni-
tion. Finally Section 7 concludes the paper, discusses the re-
sults of the system, and gives some perspectives.

Overview of the system

As processing has to be close to real-time, the system has
some constraints in order to design low-complexity algo-
rithms. Moreover, with respect to the considered applica-
tions, they are not so restrictive. The general constraints, nec-
essary for all processing steps, are

(1) the environment is filmed by one static camera;
(2) people are the only both big and mobile objects;
(3) each person enters the scene alone.

The constraint 1 comes from the segmentation process-
ing step, as it is based on a background removal algorithm.
The constraints 2 and 3 follow from the aim of the system to
analyse and interpret human behaviour. They are assumed
to facilitate the tracking, the face and hands localisation, and
the static posture recognition processing steps.

Figure 1 gives an overview of the system. On the left side
are presented the processing steps and on the right side the
resulting data. Figure 2 illustrates the processing steps.

Abbreviations

(i) FRBB: face rectangular bounding box.
(ii) FPRBB: face predicted rectangular bounding box.
(iii) FERBB: face estimated rectangular bounding box.
(iv) ID: identification number.
(v) PPRBB: person predicted rectangular bounding box.
(vi) PERBB: person estimated rectangular bounding box.
(vii) SPAB: segmentation principal axes box.
(viii) SRBB: segmentation rectangular bounding box.

2. PEOPLE 2D SEGMENTATION

Like most vision-based systems whose aim is the analysis of
human motion, the first step is the extraction of persons
present in the scene. Considering people moving in an un-
known environment, this extraction is a difficult task [19]. It
is also a significant issue since all the subsequent steps such
as tracking, skin detection, and posture or action recognition
are greatly dependent on it.

2.1. Ourapproach

When using a static camera, the two main approaches have
been considered. On the one hand, only consecutive frames
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FIGURE 1: Overview of the system.

differences are used [20-22], but one of the major draw-
backs is that no temporal changes occur on the overlapped
region of moving objects especially if they are low textured.
Moreover, if the objects stop, they are no more detected. As
a result, segmented video objects may be incomplete. On the
other hand, only a difference with a reference frame is used
[23-25]. It gives the whole video object area even if the object
is low textured or stops. But the main problem is the building
and updating of the reference frame. In this paper, moving
people segmentation is done using the Markov random field
(MRF)-based motion detection algorithm developed in [26]
and improved in [27]. The MRF modelling involves consecu-
tive frame differences and a reference frame in a unified way.
Moreover the reference frame can be built even if the scene is
not empty.

The 2D segmentation processing step is summarized in
Figure 3.

2.2. Labels and observations

Motion detection is a binary labelling problem which aims at
attributing to each pixel or “site” s = (x, y) of frame I at time
t one of the two possible labels:

obj if s belongs to a person,

> > t = bl t = .
ebo 1) = els 1) <|bg if s belongs to the background.

(1)

e = {e(s,t),s € I} represents one particular realization
(at time t) of the label field E. Additionally, we define {e} as
the set of possible realizations of field E.

With the constraint 1 of the system, motion information
is closely related to temporal changes of the intensity func-
tion I(s,t) and to the changes between the current frame
I(s,t) and a reference frame Irgr(s,t) which represents the

static background without any moving persons. Therefore,
two observations are defined:

(i) an observation Opp coming from consecutive frame
differences:
OFD(S)t)Z |I(S)t)_l(5)t_l)|) (2)

(ii) an observation Oggr coming from a reference frame:

OREF(S) t) = |I(S> t) - IREF(S: t) |
orp = {orp(s,1), s € I}, orer = {orer(s,1), s € I},
(3)
representing one particular realization (at time ) of

the observation fields Opp and Oggr, respectively.

To find the most probable configuration of field E given
fields Ogp and Oggr, we use the MAP criterion and look for
e € {e}, such that (Pr[-] denotes probability)

Pr[E = e/Ogp = 0rp, Orer = Orer] max, (4)

which is equivalent to finding e € {e}, such that (using the
Bayes theorem)

PI'[E = e] Pr [OFD = OFD, OREF = OREF/E = e] max. (5)

2.3. Energy function

The maximisation of this probability is equivalent to the
minimisation of an energy function U which is the weighted
sum of several terms [28]:

U (e, 0rp, 0rer) = Up(e) + Arp Ua(0rp, €)

+ Arer Ua (R €).

(6)
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FIGURE 2: Example of system processing steps. (a) Original frame,
(b) people 2D segmentation, (c) basic temporal tracking, (d) face
and hands localisation, (e) Kalman filtering-based tracking, and (f)
static posture recognition.

The model energy U,,(e) may be seen as a regularisation
term that ensures spatio-temporal homogeneity of the masks
of moving people and eliminates isolated points due to noise.
Its expression resulting from the equivalence between MRF
and Gibbs distribution is

Un(e) = Z Vc(es> er)- (7)

ceC

¢ denotes any of the binary cliques defined on the spatio-
temporal neighbourhood of Figure 4.

A binary clique ¢ = (s,7) is any pair of distinct sites in
the neighbourhood, including the current pixel s and anyone
of the neighbours r. C is the set of all cliques. V(es, ;) is an
elementary potential function associated to each clique ¢ =
(s, 7). It takes the following values:

—Pr ifes = €
VC(eS)eV) :‘| ﬁ

B, ifes e (®)

where the positive parameter 3, depends on the nature of the
clique: 5, = 20, B, = 5, B, = 50 for spatial, past temporal,
and future temporal cliques, respectively. Such values have
been experimentally determined once and for all.

I(s,t—1) I(s,1) IRgr (s, 1)

[ J [ J
¥ v

Orp (s, t) ORgr (s, 1)

\fl
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—
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FIGURE 3: Scheme of the people 2D segmentation processing step.
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FIGURE 4: Spatio-temporal neighbourhood and binary cliques.

The link between labels and observations (generally
noted O) is defined by the following equation:

o(s,t) = ¥(e(s,t)) + n(s), (9)
where

0 ife(s,t) = bg,

10
a>0 ife(s,t) = obj, (10)

¥(e(s,t)) = <|

and n(s) is a Gaussian white noise with zero mean and vari-
ance ¢2. ¢ is roughly estimated as the variance of each ob-
servation field, which is computed online for each frame of
the sequence so that it is not an arbitrary parameter.
Y(e(s,t)) models each observation so that »n represents
the adequation noise: if the pixel s belongs to the static back-
ground, no temporal change occurs neither in the intensity
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function nor in the difference with the reference frame so
each observation is quasi null; if the pixel s belongs to a mov-
ing person, a change occurs in both observations and each
observation is supposed to be near a positive value app and
arer standing for the average value taken by each observa-
tion.

Adequation energies U, (orp, €) and U,(oggr, €) are com-
puted according to the following relations:

Ua(orp, €) = % z [orp (s, ) — ¥ (e(s, t))]2>
sel (11)
U, (orgr, €) = TI%EF Z [orer(s, ) — ¥ (e(s, t))]2~
sel

Two weighting coefficients App and Aggr are introduced
since the correct functioning of the algorithm results from
a balance between all energy terms. App = 1 is set once and
for all, this value does not depend on the processed sequence.
Arer is fixed according to the following rules:

(1) Argr = 0 if Igge(s, t) does not exist: when no reference
frame is available at pixel s, orgr(s,t) does not influ-
ence the relaxation process;

(ii) Argr = 25 if Irgp(s, t) exists. This high value illustrates
the confidence in the reference frame when it exists.

2.4. Relaxation

The deterministic relaxation algorithm ICM (iterated con-
ditional modes [29]) is used to find the minimum value of
the energy function given by (6). For each pixel in the im-
age, its local energy is computed for each label (obj or bg).
The label that yields a minimum value is assigned to this
pixel. As the pixel processing order has an influence on the
results, two scans of the image are performed in an ICM iter-
ation, the first one from the top left to bottom right corner,
the second one in the opposite direction. Since the greatest
decrease of the energy function U occurs during the first it-
erations, we decide to stop after four ICM iterations. More-
over, one ICM iteration out of two is replaced by morpho-
logical closing and opening, see Figure 3. It results in an in-
crease of the processing rate without losing quality because
the ICM process works directly on the observations (tem-
poral frame differences) computed from the frame sequence
and does not work on binarised observation fields. The ICM
algorithm is iterative and does not insure the convergence to-
wards the absolute minimum of the energy function, there-
fore an initialisation of the label field E is required: it results
from a logical or between both binarised observation fields
Orp and Oggg. This initialisation helps converging towards
the absolute minimum and requires two binarisation thresh-
olds which depend on the acquisition system and the envi-
ronment type (indoor or outdoor).

Once this segmentation process is performed, the la-
bel field yields a segmentation mask for each video object
present in the scene (single person or group of people). The
segmentation masks are obtained through a connex com-
ponent labelling of the segmented pixels whose label is obj.
Figure 5 shows an example of obtained segmentation in our

FIGURE 5: Segmentation example. (a) Original frame, (b) seg-
mented frame.

system. The results are good, the person is not split and
the boundaries are precise, even if there are some shadows
around the feet.

For each video object, single person, or group of people,
once the segmentation mask is obtained, more low-level data
are available and computed:

(i) surface: number of pixels of an object,
(ii) centre of gravity of the object,
(iii) SRBB: segmentation rectangular bounding box,
(iv) SPAB: segmentation principal axes box, whose direc-
tions are given by the principal axes of the object shape.

After this first step of low-level information extraction,
the next step after segmentation is basic temporal tracking.

3. BASIC TEMPORAL TRACKING

In many vision-based systems, it is necessary to detect and
track moving people passing in front of a camera in real time
[1, 2]. Tracking is a crucial step in human motion analysis,
for it temporally links features chosen to analyse and inter-
pret human behaviour. Tracking can be performed for a sin-
gle human or for a group, seen as an object formed of several
humans or as a whole.

3.1. Ourapproach

The tracking method presented in this section is designed to
be fast and simple. It is used mainly to help the face local-
isation step presented in the next section. Therefore it only
needs to establish a temporal link between people detected at
time t and people detected at time ¢ — 1. This tracking stage
is based on the computation of the overlap of the segmenta-
tion rectangular bounding boxes. The segmentation rectangu-
lar bounding boxes are noted SRBBs. This method does not
handle occlusions between people but allows the detection of
temporal split and merge. In the case of a group of people, as
there is only one video object composed of several persons,
this group is tracked as a whole in the same way as if the ob-
ject was composed of a single person.

After the segmentation step, each SRBB should contain
either a single person or several persons, in the case of a
merge. Only the general constraints of the system are as-
sumed, in particular constraint 2 (people are the only both
big and mobile objects) and constraint 3 (each person enters
the scene alone).
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As the acquisition rate of the camera is 30 fps, we can sup-
pose that the persons in the scene have a small motion from
one frame to the next, that is, there is always a non null over-
lap between the SRBB of a person at time ¢ and the SRBB of
this person at time t — 1. Therefore a basic temporal tracking
is possible by considering only the overlaps between detected
boxes at time ¢ and those detected at time ¢ — 1. We do not use
motion compensation of the SRBBs because it would require
motion estimation which is time consuming.

In order to detect temporal split and merge and to ease
the explanations, two types of objects are considered:

(i) SP:single person,
(ii) GP: group of people.

This approach is similar to the one used in [30], where
the types: regions, people, and group are used. When a new
object is detected, with regard to constraint 3 of the system,
this object is assumed to be an SP human being. It is given
a new ID (identification number). GPs are detected when at
least two SPs merge.

The basic temporal tracking between SRBBs detected on
two consecutive frames (time ¢ — 1 and ¢) results from the
combination of a forward tracking phase and a backward
tracking phase. For the forward tracking phase, we look for
the successor(s) of each object detected at time t — 1 by
computing the overlap surface between its SRBB and all the
SRBBs detected at time ¢. In the case of multiple successors,
they are sorted by decreasing overlap surface (the most prob-
able successor is supposed to be the one with the greatest
overlap surface). For the backward tracking phase, the proce-
dure is similar: we look for the predecessor(s) of each object
detected at time t. Considering a person P detected at time
t: if P’s most probable predecessor has P as most probable
successor, a temporal link is established between both SRBBs
(same ID). If not, we look in the sorted lists of predecessors
and successors until a correspondence is found, which is al-
ways possible if P’s box has at least one predecessor. If this is
not the case, P is a new SP (new ID).

As long as an object, that is, a single person or a group of
people, is successtully tracked, without any temporal split or
merge, its ID remains unchanged.

Figure 6 illustrates the backward-forward tracking prin-
ciple. In Figure 6(a), three objects are segmented, all SP, and
in Figure 6(b), only two objects are segmented. On the over-
lap frame (Figure 6(c)), the backward and forward trackings
lead to a correct tracking for the object on the left side (there
is only one successor and predecessor). It is tracked as an SP.
For the object on the right side, the backward tracking yields
two SP predecessors, and the forward tracking one successor.
A merge is detected and it is a new group that will be tracked
as a GP until it splits.

This basic temporal tracking is very fast and allows the
following.

(i) Segmentation problems correction: if one SP has sev-
eral successors, in case of a poor segmentation, we
can merge them back into an SP and correct the
segmentation.

SP, SP,

GP;

SP;

(®)

FIGURE 6: Overlap computation. (a) Frame at time ¢ — 1, (b) frame
at time ¢, and (c) overlap frame.

(ii) GP split detection: if a GP splits in several SPs, nothing
is done, but a split is detected.

(iii) SP merge detection: if several SPs merge, the resulting
object has several SP predecessors so it is recognised as
a GP and a merge is detected.

Figure 7 shows frames of a video sequence where two per-
sons are crossing, when they are merging into a group and
when this group is splitting. Segmentation results, SRBBs,
and trajectories of gravity centres are drawn on the original
frames. The trajectories are drawn as long as there is no tem-
poral split or merge, that is, as long as the tracked object type
does not change. In frame 124, tracking leads to SP P; on the
left side and SP P, on the right side. In frame 125, a GP Gj,
composed of P; and P,, is detected. For the forward track-
ing phase between times 124 and 125, P; and P, have G, as
the only successor. For the backward tracking phase, G; has
Py as first predecessor and P, as second predecessor. But, in
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FIGURE 7: Basic temporal tracking example. Frames 99, 124, 125,
139, 140, and 162 of two persons crossing.

this case, as P; and P, are SPs, a merge is detected. Therefore
G, is a new GP, which will be tracked until it splits again. It
is the opposite on frames 139 and 140. The GP G; splits into
two new SPs, Ps and Py, that are successfully tracked until the
end.

In the first tracking stage, a person may not be identi-
fied as a single entity from beginning to end if there are more
than one person present in the scene. This will be done by
the second tracking stage. The results of this processing step
are the identification numbers (IDs), the object types (SP or
GP), and the temporal split and merge information. More-
over, the trajectories for the successfully tracked objects are
available.

In this paper, the presented results have been obtained
after carrying out experiments on a great majority of se-
quences with one or two persons, and on a few sequences
with three. We consider that it is enough for the aimed ap-
plications (HClIs, indoor video surveillance, and mixed re-
ality applications). The constraint 2 of the system specifies
that people are the only both big and mobile objects in the
scene. For this reason, up to three different persons can be ef-
ficiently tracked with this basic temporal tracking method. If
there are more than three persons, it is difficult to determine,
for instance, whether a group of four persons have split into
two groups of two persons or into a group of three persons
and a single person.

After this basic temporal tracking processing step, the
next step is face and hands localisation.

4. FACE AND HANDS LOCALISATION

Numerous papers on human behaviour analysis focus on
face tracking and facial features analysis [31-33]. Indeed,
when looking at people and interacting with them, our gaze
focuses on faces, as the face is our main expressive commu-
nication medium, followed by the hands and our global pos-
ture. Hand gesture analysis and recognition is also a large re-
search field. The localisation of the face and of the hands,
with right/left distinction, is also an interesting issue with
respect to the considered applications. Several methods are
available to detect faces [33—35]: using colour information
[36, 37], facial features [38, 39], and also templates, optic
flow, contour analysis, and a combination of these meth-
ods. It has been shown in those studies that skin colour is a
strong cue for face detection and tracking and that it clusters
in some well-chosen colour spaces.

4.1. Ourapproach

With our constraints, for computing cost reasons, the same
method has to be used to detect the face and the hands in or-
der to achieve real-time processing. As features would be too
complex to define for hands, a method based on colour is
better suited to our application. When the background has a
colour similar to the skin, this kind of method is perhaps less
robust than a method based on body modelling. However, re-
sults have shown that the proposed method works on a wide
range of backgrounds, providing efficient skin detection. In
this paper, we present a robust and adaptive skin detection
method working in the YCbCr colour space and based on
an adaptive thresholding in the CbCr plane. Several colour
spaces have been tested and the YCbCr colour space is one
of those that yielded the best results [40, 41]. A method of
selecting the face and hands among skin patches is also de-
scribed. For this processing step, only the general constraints
(1, 2, and 3) are assumed. When the static posture recogni-
tion processing step was developed, we had to define a ref-
erence posture (standing, both arms stretched horizontally),
see Section 6.1. Afterwards, we decided to use this reference
posture, if it occurs and if necessary, to reinitialise the face
and hands locations.
Figure 8 summarises the face/hands localisation step.

4.2. Skin detection

This section describes the detection of skin pixels, based on
colour information. For each SRBB (segmentation rectangu-
lar bounding box) provided by the segmentation step, we
look for skin pixels. Only the segmented pixels inside the
SRBBs are processed. Thanks to this, few background pixels
(even if the background is skin colour-like) are processed.

A skin database is built, composed of the Von Luschan
skin samples frame (see Figure 9(a)) and of twenty skin
frames (see examples Figure 9(b)) coming from various skin
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FI1GURE 8: Scheme of the face and hands localisation processing step.

(a) (b)

FiGure 9: Skin database. (a) Von Luschan frame, (b) 6 skin samples.

colours of hands or arms. The skin frames are acquired with
the camera and frame grabber we use in order to take into
account the white balance and the noise of the acquisition
system.

Figure 10 is a 2D plot of all pixels from the skin database
on the CbCr plane with an average value of Y. It exhibits two
lobes: the left one corresponds to the Von Luschan skin sam-
ples frame and the right one to the twenty skin samples ac-
quired with our camera and frame grabber.

Figure 11 shows an example of skin detection where op-
timal manually tuned thresholds were used. Results are good:
face and hands (arms here) are correctly detected with accu-
rate boundaries.

The CbCr plane is partitioned into two complementary
areas: skin area and non-skin area. A rectangular model for
the skin area shape yields a good detection quality with a low
computing cost. It limits the required computations to a dou-
ble thresholding (low and high) for each Cb and Cr compo-
nent. As video sequences are acquired in the YCbCr4:2: 0
format, Cb and Cr components are subsampled by a factor of
2. The skin/non-skin decision for a 4 x 4 pixels block of the
segmented frame is taken after the computation of the aver-
age values of a 2 X 2 pixels block in each Cb or Cr subframe.

Cb

FiGure 10: 2D plot of all skin samples pixels.

(a) (b)

FiGure 11: Example of skin detection. (a) Original frame, (b) skin
detection.

Those mean values are then compared with the four thresh-
olds. Computation is therefore even faster.

A rectangle containing most of our skin samples is de-
fined by Cb € [86;140] and Cr € [139;175] (big rectangle
of Figure 10). This rectangle is centred on the mean values
of the lobe corresponding to our skin samples frames to ad-
just the detection to our acquisition system. The right lobe
is not completely included in the rectangle in order to avoid
too much false detection. In [42] considered thresholds are
slightly different Cb € [77;127] and Cr € [133;173], which
justifies the tuning of parameters to the first source of vari-
ability, that is, the acquisition system and the lighting condi-
tions. The second source of variability is the interindividual
skin colour. Each small rectangle of Figure 10 only contains
skin samples from a particular person in a given video se-
quence. Therefore it is also useful to automatically adapt the
thresholds to each person during the detection process in or-
der to improve the skin segmentation.

Several papers detail the use of colour models, for in-
stance Gaussian pdf in the HSI or rgb colour space [36], and
perform an adaptation of model parameters. An evaluation
of Gaussianity of Cb and Cr distributions was performed on
the pixels of the skin database. As a result, approximately
half of the distributions cannot be reliably represented by a
Gaussian distribution [41]. Therefore thresholds are directly
adapted without considering any model.

Skin detection thresholds are initialised with (Cb, Cr) val-
ues defined by the big rectangle of Figure 10. In order to
adapt the skin detection to interindividual variability, trans-
formations of the initial rectangle are considered (they are
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applied separately to both dimensions Cb and Cr). These
transformations are performed with respect to the mean val-
ues of the face skin pixels distribution of the considered per-
son. Only the skin pixels of the face are used, as the face
moves more slowly and is easier to detect than hands. This
prevents the adaptation from being biased by detected noise
or false hands detection. Three transformations are consid-
ered for the threshold adaptation.

(i) Translation: the rectangle is gradually translated to-
wards the mean values of skin pixels belonging to the
selected face skin patch. The translation is of only one
colour unit per frame in order to avoid transitions
being too sharp. The translated rectangle is also con-
strained to remain inside the initial rectangle.

(ii) Reduction: the rectangle is gradually reduced (also of
one colour unit per frame). Either the low threshold
is incremented or the high threshold is decremented
so that the reduced rectangle is closer to the observed
mean values of skin pixels belonging to the face skin
patch. Reduction is not performed if the adapted rect-
angle reaches a minimum size (15 X 15 colour units).

(iii) Reinitialisation: the adapted rectangle is reinitialised to
the initial values if the adapted thresholds lead to no
skin patch detection.

Those transformations are applied once to each detection
interval for each frame of the sequence. As a result, skin de-
tection should improve over time. In most cases, the adapta-
tion needs ~ 30 frames (~ 1s of acquisition time) to reach a
stable state.

4.3. Face and hands selection

This section proposes a method in order to select relevant
skin patches (face and hands). Pixels detected as skin after
the skin detection step are first labelled into connex compo-
nents that can be either real skin patches or noise patches. All
detected connex components inside a given SRBB are asso-
ciated to it. Then, among these components, for each SRBB,
skin patches (if present) have to be extracted from noise and
selected as face or hands. To reach this goal, several criteria
are used. Detected connex components inside a given SRBB
are sorted in decreasing order in lists according to each cri-
terion. The left or right side of the lists are from the user’s
point of view.
Size and position criteria are the following.

(i) List of biggest components (Lb): face is generally
the biggest skin patch followed by hands, and other
smaller patches are generally detection noise.

(i) List of leftmost components (LI): useful for left hand.

(iii) List of rightmost components (Lr): useful for right
hand.
(iv) List of uppermost components (Lu): useful for face.

Temporal tracking criteria are the following.

(i) List of closest components to last face position (Lcf).
(ii) List of closest components to last left hand position
(Lcl).

(iii) List of closest components to last right hand position
(Ler).

Selection is guided by heuristics related to human mor-
phology. For example, the heuristics used for the face selec-
tion are that the face is supposed to be the biggest, the upper-
most skin patch, and the closest to the previous face position.
The face is the first skin patch to be searched for because it
has a slower and steadier motion than both hands and there-
fore can be found more reliably than hands. Then the skin
patch selected as the face is not considered any longer. After
the face selection, if one hand was not found in the previous
frame, we look for the other first. In other cases, hands are
searched without any a priori order.

Selection of the face involves (Lb, Lu, Lcf), selection of
the left hand involves (Lb, L1, Lcl), and selection of the right
hand involves (Lb, Lr, Lcr). The lists are weighted depending
on the skin patch to find and if a previous skin patch position
exists. The list of biggest components is given a unit weight.
All other lists are weighted relatively to this unit weight. If a
previous skin patch position exists, the respective list of clos-
est components is given a triple weight. As the hand does not
change side from one frame to another, if the skin patch pre-
vious position is on the same side as the respective side list
(Lr for the right hand), this list is given a double weight. The
top elements of each list are considered as likely candidates.
When the same element is not at the top of all lists, the next
elements in the list(s) are considered. The skin patch with the
maximum weighted lists rank sum is finally selected.

For the face, in many cases there is a connex component
that is at the top of those three lists. In the other cases, Lcf
(tracking information) is given the biggest weight because
face motion is slow and steady. The maximum rank consid-
ered in other lists is limited to three in order to avoid unlikely
situations and poor selection.

After selection, the face and right and left hands rectan-
gular bounding boxes are also computed (noted, resp., FRBB,
RHRBB, and LHRBB). For the face skin patch, considering
its slow motion, we add the constraint of a non null rect-
angular bounding box overlap with its successor. This helps
to handle situations where a hand passes in front of the
face. Moreover, if the person is in the reference posture (see
Section 6), this posture is used to correctly reinitialise the lo-
cations of the face and of the hands in the case of a poor
selection or a tracking failure.

Figure 12 illustrates some results of face/hands localisa-
tion. Skin detection is performed inside the SRBB. Face and
hands are correctly selected and tracked as shown by the
small rectangular bounding boxes. Moreover, even if the per-
son crosses his arms (frames 365 and 410), the selection is
still correct.

For each object in the scene, the low-level data avail-
able at the end of this processing step are the three selected
skin patches segmentation masks (face, right hand, and left
hand) and their rectangular bounding boxes (noted, resp.,
FRBB, RHRBB, and LHRBB). In the next section, an ad-
vanced tracking dealing with occlusions problem is presented
thanks to the use of face-related data. The data about hands
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(a) (b)

(c) (d)

Frcure 12: Face and hands localisation. Frames number 110, 365,
390, and 410.

are not used in the rest of this paper but have been used in
other applications, like the art.live project [3].

5. KALMAN FILTERING-BASED TRACKING

The basic temporal tracking presented in Section 3 does not
handle temporal split and merge of people or groups of peo-
ple. When two tracked persons merge into a group, the basic
temporal tracking detects the merge but tracks the resulting
group as a whole until it splits. Then people in the group are
tracked again but without any temporal link with the previ-
ous tracking of individuals. In Figure 7 two persons P; and P,
merge into a group G;. When this group splits again into two
persons, they are tracked as P3 and Py, not as P; and P,. Tem-
poral merge and occlusion make the task of tracking and dis-
tinguishing people within a group more difficult [30, 43, 44].
This section proposes an overall tracking method which uses
the combination of partial Kalman filtering and face pursuit
to track multiple persons in real-time even in case of com-
plete occlusions [45].

5.1. Ourapproach

We present a method that allows the tracking of multiple
persons in real-time even when occluded or wearing simi-
lar clothes. Apart from the general constraints of the system
(1, 2, and 3), no other particular hypothesis is assumed here.
We do not segment the persons during occlusion but we ob-
tain bounding boxes estimating their positions. This method
is based on partial Kalman filtering and face pursuit. The
Kalman filter is a well-known optimal and recursive signal
processing algorithm for parameters estimation [46]. With
respect to a given model of parameters evolution, it com-
putes the predictions and adds the information coming from
the measurements in an optimal way to produce a posteriori
estimation of the parameters. We use a Kalman filter for
each new detected person. The global motion of a person is

Segmentation masks,
SRBBs, FRBBs

2
Estimation of faces motion
v

Selection of KF mode:
SPCompKF,SPParKF, GPParKF, GPPreKF

2
Attribution of measurements
J

Kalman filtering

2

Final tracking IDs, faces speeds
PPRBBs, FERBBs, FPRBBs, FERBBs

FIGURE 13: Scheme of the Kalman filtering-based tracking process-
ing step.

supposed to be the same as the motion of this person’s face.
Associated with a constant speed evolution model, this leads
to a state vector x of ten components for each Kalman filter:
the rectangular bounding boxes of the person and of his/her
face (four coordinates each) and two components for the 2D
apparent face speed:

xT = (Xp1s Xpr> Vpt> Vpbor Xf1s X 1> Vi Vs Vi Vy ). (12)

In x” expression, p and f, respectively, stand for the per-
son and face rectangular bounding box, J, , t, and b, respec-
tively, stand for left, right, top, and bottom coordinate of a
box. v, and v, are the two components for the 2D appar-
ent face speed. The evolution model leads to the following
Kalman filter evolution matrix:

M 00000O0O0T1 0]
0100000010
0010000001
0001000001
0000100010
A=A=10000010010 (13)
0000001001
0000000101
0000000010
000000000 1]

Figure 13 summarises the Kalman filtering-based track-
ing processing step.

5.2. Face motion estimation

For each face that is detected, selected, and located at time
t — 1 by the method presented in Section 4, we estimate a face
motion from t — 1 to t by block-matching in order to obtain
the 2D apparent face speed components v, and v,. For each
face, the pixels inside the FRBB (face rectangular bounding
box) are used as the estimation support.
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5.3. Notations

The segmentation step may provide SRBBs (segmentation
rectangular bounding boxes) that can contain one or several
persons in it (in the case of a merge), whereas the Kalman
state vector (and therefore the Kalman person rectangular
bounding box) is defined for a single person. Therefore three
different person rectangular bounding boxes exist and are as-
sociated to each person:

(i) one segmentation rectangular bounding box (SRBB)
provided by the segmentation step,

(ii) one person predicted rectangular bounding Box
(PPRBB) predicted by Kalman filtering,

(ii) one person a posteriori estimated rectangular bound-
ing box (PERBB) estimated by Kalman filtering.

In a similar way, three different face rectangular bound-
ing boxes exist and are associated to each person:

(i) one face rectangular bounding box (FRBB) provided
by the face localisation step,
(ii) one face predicted rectangular bounding box (FPRBB)
predicted by Kalman filtering,
(iii) one face a posteriori estimated rectangular bounding
box (FERBB) estimated by Kalman filtering.

5.4. Kalman filtering modes

Measurements that are injected into the Kalman filter come
from the SRBBs, the FRBBs, and the face motion estimations.
All the measurements are not necessarily available. For in-
stance, if two persons have just merged into a group, some
measurements are not available, on the group SRBB, for each
person’s PPRBB estimation (e.g., one side measurement will
not be available).

Depending on the objects types and available measure-
ments, there are four Kalman filtering modes:

(1) SPCompKF: single person complete Kalman filtering,
(2) SPParKF: single person partial Kalman filtering,

(3) GPParKF: group of people partial Kalman filtering,
(4) GPPreKF: group of people predictive Kalman filtering.

First, we must determine if we are in a single person
mode or a group of people mode, that is, if the person SRBB
contains only one person or not. This is given by the basic
temporal tracking step, as we can detect a merge between two
SP objects, we know if there is one person or more in each
SRBB.

If the SRBB contains only one person, all measurements
used for the PPRBB estimation are available. Then either the
face was correctly located at times t — 1 and at time ¢ or not.
If so, we are in SPCompKF mode as all state vector measure-
ments are available. Otherwise we are in SPParKF mode as
some face-related measurements are not available.

If the SRBB contains several persons, some measure-
ments are not available for the PPRBBs estimation. Depend-
ing on whether there is only one face overlapped by the
PERBB or not, we are, respectively, in GPParKF mode or in
GPPreKF mode.

5.4.1. Single person complete Kalman filtering mode

This mode is selected when there is no temporal merge and
all face-related measurements are available.

(i) The SRBB contains only one person (all measurements
for the PPRBB estimation are available).
(ii) The person’s face is located at time ¢ (all measurements
for the FPRBB estimation are available).
(iii) The person’s face has been located at time ¢ — 1 (face
speed estimation measurements are available).

In this mode, the Kalman filtering is carried out for all
state vector components.

5.4.2. Single person partial Kalman filtering mode

This mode is selected when there are no temporal merge but
some or all face-related measurements are not available. If so,
face localisation step has failed at time t — 1 and/or at time t,
leading to unavailable measurements.

When there are unavailable measurements, two choices
are possible. The first is to perform a Kalman filtering only
on the available measurements and the other is to replace
the unavailable measurements. Performing a Kalman filter-
ing only on available measurements is a difficult issue for
code implementation, as all matrix sizes have to be predicted
in order to take into account all possible cases. Replacing un-
available measurements by predictions is a simple and in-
tuitive way of performing a Kalman filtering when observa-
tions (available measurements) are missing. Hence, in order
to perform a Kalman filtering for all state vector components
in one computation, when there are unavailable measure-
ments, they are replaced by predictions. Doing so does not
seem to greatly influence the results because the variances
of estimation errors are only of a few pixels, with respect to
available measurements.

In this mode, the filtering is carried out for all compo-
nents, including those that have been replaced by predicted
values.

5.4.3.  Group of people partial Kalman filtering mode

This mode is selected when there are temporal merge(s) (i.e.,
some measurements are not available for the PPRBB estima-
tion) and when the PERBB overlaps a unique face.

As the SRBB contains a group of people, available mea-
surements can be used for different PPRBBs. The attribution
of available measurements to one person in a group is per-
formed in two steps by comparing the group SRBB and each
person PPRBB centres and sides coordinates. The principle
of measurements attribution is illustrated on frame 203 of
Figure 14.

In the first step, we compare the coordinates of the
PPRBBs centres to the coordinates of the SRBB centre. With
respect to the SRBB quarter, where each PPRBB centre is
located, the two closest sides coordinates are used as mea-
surements for the corresponding PPRBB estimation. For ex-
ample, on frame 203 of Figure 14, if two persons have just
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(e) ()

FiGURE 14: Example of multiple persons tracking with complete oc-
clusion.

merged (hands touching), we have only four measurements
available (instead of eight) that can be used as observations
for the two PPRBBs. With the first step, person P; will have
the left and bottom sides coordinates as measurements, per-
son P, will have the right and bottom sides coordinates.
Thanks to this step, we are sure that at least two measure-
ments are used for each PPRBB estimation.

In the second step, we compare each PPRBB side coor-
dinate to the corresponding SRBB side. If the distance be-
tween both is smaller than a threshold, depending on each
PPRBB surface, and if it has not already been taken into ac-
count, the corresponding SRBB side coordinate is added to
the measurements used for the PPRBB estimation. With this
step, in our example, the person P; receives the top side co-
ordinate of the SRBB as an added measurement. This step
generally allows adding one or two measurements in order
to perform a better estimation.

In the example of Figure 14, the left, top, and bottom side
measurements of the SRBB will be used as measurements for
the PPRBB on the left side (person P;). The right and bot-
tom side measurements will be used as measurements for the
PPRBB on the right side (person P,). As for the bottom side
measurement in the example, some measurements can be
used for different persons. For each person, in this GPParKF
mode, we generally have two or three available measurements
(up and/or down side(s) and one side measurements).

If some face-related measurements are unavailable, Kal-
man predicted values replace the missing measurements. The
filtering is performed as long as the PERBB contains a unique
face. If the PERBB overlaps more than one face, even par-
tially, the Kalman filter works in GPPreKF mode since the
face localisation step could provide wrong positions.

5.4.4. Group of people predictive mode

This mode is selected when temporal merge(s) occur (i.e.,
some measurements are not available for the PPRBB estima-
tion) and when the PERBB overlaps more than one face.

No measurements are taken into account. All the state
vector components are predicted according to the last face
speed estimation, that is, only the Kalman filter predictions
equations are used. The Kalman filter works in GPPreKF
mode until a unique face is again overlapped by one of the
PERBBs, leading back to the GPParKF mode.

5.5. Results

Figure 14 illustrates a successful multiple persons tracking
performed on a video sequence in which two persons are
crossing and turning one around the other. In this sequence,
the moving directions and speeds are not constant and, at
some moments, a person is completely occluded, see for in-
stance frame 212. Segmented and tracked persons are visible
on the original frames of the sequence. SP or GP SRBBs are
drawn in white lines, PERBBs and FERBBs in dashed lines.
Frames 200 and 228 show a SPCompKF mode tracking with
all measurements available for the Kalman filters before the
merge (frame 203) and after the split (frame 228). Frames
212 and 219 illustrate the tracking in a GPPreKF mode when
one face is occluded. Frames 203 and 221 (just before the
split) illustrate the tracking in GPParKF mode.

In single person Kalman filtering modes, SPCompKF
mode, and SPParKF mode, the person final tracking ID is
the same as the basic temporal tracking ID, because there
are no temporal split or merge. In group of people modes,
GPParKF and GPPreKF, the final tracking IDs are not up-
dated with the basic temporal tracking IDs, as temporal split
and merge yield new IDs. Therefore it is possible to track
multiple persons even under complete occlusions. The ex-
tracted information for this processing step consists of the fi-
nal tracking IDs, the face speed estimation, the PPRBBs, the
PERBBs, the FPRBBs, and the FERBBs, that is, the predicted
and a posteriori estimated rectangular boxes of the person
and of his/her face.

This section presented the last processing step for low-
level data extraction. Part of the data will now be used for
higher-level processing.

6. HIGH-LEVEL HUMAN BEHAVIOUR
INTERPRETATION: STATIC POSTURE
RECOGNITION

After having successfully tracked people, the problem of un-
derstanding human behaviour follows naturally. It involves
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action/pose recognition and description. The three main ap-
proaches used for human behaviour analysis used are dy-
namic time warping (DTW) [47], hidden Markov models
(HMMs) [48], and neural networks (NNs) [49]. Most of the
research work done on the human body as a whole is mainly
gait analysis and recognition, or recognition of simple inter-
actions between people, or between people and objects. In
this section, we present a method to recognise a set of four
static human body postures (standing, sitting, squatting, and
lying) thanks to data fusion using the belief theory [50, 51].

The belief theory has been used for facial expression clas-
sification (see [52, 53]) but not for posture recognition in hu-
man motion analysis. The TBM (transferable belief model)
was introduced by Smets in [54, 55]. It follows the works
of Dempster [56] and Shafer [57]. The main advantage of
the belief theory is the possibility to model data imprecision
and conflict (a conflict occurs when measurements used for
recognition yield contradictory results). It is also not com-
putationally expensive, compared to HMMs and, as doubt
(the possibility of recognising a union of postures instead of
a unique one) is taken into account, leads to a low false alarm
rate.

6.1. Ourapproach

Static recognition is based on information obtained by dy-
namic sequence analysis. For this processing step, we assume
the general constraints of the system (1, 2, and 3) and also
the following two more hypotheses.

(i) Each person has to be at least once in a reference pos-
ture, standing with both arms stretched horizontally,
also known as the “Da Vinci Vitruvian Man posture,”
see Figure 15(b).

(ii) Each person is to be filmed entirely (not occluded).

Three distances are computed, see Figure 15: D, the ver-
tical distance from the FRBB centre to the SRBB bottom, D,
the distance from the FRBB centre to the SPAB centre (grav-
ity centre), and D3 the SPAB semi-great axe length. Each
distance D; is normalised with respect to the correspond-
ing distance D' obtained when the person is observed in
the reference posture in order to take into account the in-
terindividual variations of height and the distance of the per-
son with respect to the camera. The measurements are noted
ri=Dy/D (i=1,...,3).

6.2. Belieftheory

The belief theory approach needs the definition of a world Q
composed of N disjunctive hypotheses H;. Here the hypothe-
ses are the following four static postures: standing (H;), sit-
ting (H,), squatting (H3), and lying (Hy). If the hypotheses
are exhaustive, () is a closed world, that is, the truth is nec-
essarily in Q. In this paper, we consider an open world, as
all possible human body postures cannot be classified in the
considered postures. We add a hypothesis for the unknown
posture class (Hy), but this hypothesis is not included in Q.
Hy is a reject class: if we cannot recognise a posture between

(a) (b)

FiGure 15: Examples of distances D;. (a) Sitting posture, (b) refer-
ence posture.

our considered postures, we will recognise an unknown pos-
ture. Therefore we have Q = {H;, H,, H3, H4} and Hy. In this
theory, we consider the 2V subsets A of Q). In order to express
the confidence degree in each subset A without favouring one
of its composing elements, an elementary belief mass m(A)
is associated to it.

The m function, or belief mass distribution, is defined by

m:2% — [0;1],

A— m(A) with > m(A) =1 (14)
Ae2?

6.2.1. Modelling

A model has to be defined for each measurement r; in or-
der to associate an elementary belief mass to each subset A,
depending on the value of r;. In a similar way to what was
proposed in [52], two different model types are used (see
Figure 16). The first model type is used for r; and the sec-
ond for r, and r;.

The first model type is based on the idea that the lower
the face of a person is located, the closer the person is to the
lying posture. Conversely, the higher the face is located, the
closer the person is to the standing posture. Depending on
the value of ry, either a single posture is recognised or the
combination of a single posture and a union of two postures.
In this last case the respective zones illustrate the impreci-
sion and the uncertainty of the models (see, e.g., Table 1 and
Figure 16(a)).

The second model type is based on the idea that squat-
ting is a compact human shape, whereas sitting is a more
elongated shape. Standing and lying are even more elongated
shapes. The thresholds g — j are different for r, and r3. De-
pending on the value of each measurement r, or r3, the sys-
tem can set non null belief masses to the single posture Hs, to
the union of all postures (Q corresponds to H; UH, UH3 UH,
here), to the subset standing, sitting, or lying (H, U H, U Hy),
or to two of the previous subsets.

6.2.2. Data fusion

The aim is to obtain a belief mass distribution m,,,, that takes
into account all available information (the belief mass distri-
bution of each r;). It is computed by using the conjunctive
combination rule called orthogonal sum proposed by Demp-
ster [56].
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TABLE 1
r1 value H; recognised non null belief masses
f<71 H, m,l(Hl) =1
e+ f
T<Tl<f H,,H, UH, mrl(Hl)+m,I(H1UH2)=1
e+ f
e<r < T H1 UHz,HZ m,l(Hl UH2)+H’I,1 (Hz) =1
etc. etc. etc.
1
s Hy H;
0
0 1
"
(a)
Q
. 1
S
g H; H, UH, U H4
0
0 i g 1
12,73

(b)

FiGure 16: Belief models. (a) First model used for m,,, (b) second
model used for m,, and m,,. H; defines recognised posture(s).

The orthogonal sum m;,,; of two distributions m,, and m;,
is defined, for each A subset of 2, as follows:

My, = My, & My}

My, (A) = Z

Be29,Ce2%,BNC=A

my(B) - my (). 1)

The orthogonal sum is associative and commutative, so
the order of the belief mass distributions fusion does not
matter.

In case when m,,,(D) # 0, @ being the empty set, there
is a conflict, which means that the chosen models give con-
tradictory results. This usually happens when some of the r;
are in the transition zones of the models. With these models,
the subset with the maximum number of elements that can
be obtained at the end of the data fusion process is a union of
two postures. Therefore, subsets with three elements or Q) it-
self cannot be obtained after fusion. Hence, we are sure that,
in the worst case, there will be a possible confusion between
two postures and not more. This is compliant with respect
to the considered postures: it is difficult to imagine, for ex-
ample, that a person can be simultaneously either standing,
sitting, or lying.

6.2.3. Decision

The decision is the final step of the process. Once all the be-
lief mass distributions have been combined into a single one,
here m;,,,,, there is a choice to make between the different
hypotheses H; and their possible combinations. A criterion
defined on the final belief mass distribution is generally opti-
mised to choose the classification result A. For example, if the
criterion is the belief mass, A= argmaxaese My, (A). Note
that A may not be a singleton but a union of several hypothe-
ses or even the empty set. In this paper, the hypothesis Hy is
chosen if the classification result is the empty set &, that is,
My, (D) is maximum. There are other criteria used to make
a decision: the belief, the plausibility, and so forth [54].

6.3. Posture recognition results

In order to evaluate the static posture recognition perfor-
mances, two sets of video sequences are used, a training set
and a test set. The training set consists of 12 different video
sequences representing ~ 5000 frames. 6 different persons
are filmed twice in the same 10 successive postures. People
are of various heights, between 1.55m and 1.95m, in order
to take into account the variability of heights and improve the
robustness. The constraints are to be in “natural” postures in
front of the camera. The statistics (means y and standard de-
viations o) of the three measurements r; are computed over
the training set to find the thresholds (see Figure 16) that
yield a minimum of conflict. These most suitable thresholds
are defined by the comparison of the y + 20 computed for
the respective postures or set of postures. This expertise step
was performed by a human operator. In fact, one of the hard-
est steps in the belief theory is to find models (or thresholds)
that lead to a minimum of conflicts. The test set consists of 12
other video sequences representing ~ 11 000 frames. 6 other
persons, also of various heights, are filmed twice in different
successive postures. In order to test the limits of the system,
people are allowed to move the arms, sit sideways, and even
be in postures that do not often occur in everyday life, for
instance squatting with arms raised above the head. Results
are computed on frames of the video sequences where the
global body posture is static, that is, the person’s torso and
legs are approximately still. We present the classification re-
sults obtained when using the maximum belief mass as crite-
rion. Comparison between criteria and subsequent classifiers
is available in [51]. Training step and test step recognition
rates are available in Tables 2 and 3. Columns show the real
posture and lines the postures recognised by the system.

Training step

As the thresholds of the belief models are generated from
the r; statistical characteristics computed over the same set of
video sequences, the results are very good. The average recog-
nition rate is 97.7%. There is only 0.1% of occurring conflicts
on more than 5000 frames. There are no problems recognis-
ing the standing or the lying postures. The sitting and the
squatting postures are also well recognised even if there is a
little doubt between both.
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TaBLE 2: Training step confusion matrix.

System\H H,; H, H; H,
H, 0% 0.1% 0% 0%
H, 100% 0% 0% 0%
H, UH, 0% 0% 0% 0%
H, 0% 95.9% 1.0% 0%
H, U H; 0% 2.1% 4.0% 0%
H; 0% 1.9% 95.0% 0%
H; U H, 0% 0% 0% 0%
H, 0% 0% 0% 100%

TaBLE 3: Test step confusion matrix.

System\H H,; H, H; H,
H, 0% 10.3% 5.0% 0%
H, 99.5% 0.4% 0% 0%
H, UH, 0.5% 0% 0% 0%
H, 0% 56.3% 20.3% 0%
H, U H; 0% 27.1% 18.0% 0%
H; 0% 5.9% 56.7% 0%
H; UH, 0% 0% 0% 0%
H, 0% 0% 0% 100%
Test step

There are more recognition errors but the results show a
good global recognition rate. The average recognition rate is
78.1%. There are never any problems recognising the stand-
ing or the lying postures. For the sitting and the squatting
postures, there are more errors, especially when people have
their arms raised over their heads or sit sideways. The reasons
are that these postures are quite alike and that not everybody
sits and/or squats in the same way, hands on knees or touch-
ing ground, back bent or straight, and so forth. These facts
yields more conflicts, near 15%. There are also more postures
that lead to the doubt H, U Hj. Nevertheless, the recognition
rates are very close between H, versus H, and H3 versus Hs.

Figure 17 illustrates some results of various static pos-
tures recognition. The SRBB, the SPAB, the FRBB, and the
D, distance are drawn in white on the segmented frame.

7. CONCLUSION, DISCUSSION, AND PERSPECTIVES
7.1. Conclusion

We have presented in this paper a real-time system for multi-
ple persons body analysis and behaviour interpretation. The
processing rate of the whole system, obtained on a PC run-
ning at 3.2 GHz is ~ 26 fps for 640 x 480 resolution (~ 65 fps
for 320 x 240). Compared with other similar systems like W*
[1] and Pfinder [2], that surely meet the requirements to per-
form a similar task, our system proposes relatively different
approaches for dealing with the various processing steps and
their inherent problems. It is generic enough to be used for

Standing

Sitting or squatting

F1Gure 17: Examples of static posture recognition.

several types of applications in either indoor or outdoor envi-
ronment. For outdoor environments, some of the algorithms
would need to be improved, with regard to the problems that
can arise when acquisition conditions greatly vary. As long as
the people are not too numerous and remain the main ob-
jects, the results should be fairly reliable.

This system can be used for mixed reality applications
with perceptual human-computer interfaces. In front of a
single static camera, in an indoor environment, a single per-
son or several persons can interact with a virtual environ-
ment and control it by their movements. The proposed sys-
tem for mixing real and virtual worlds by image processing
without invasive systems as markers and so forth yields re-
sults with a suitable precision. It is fast enough for a respon-
sive system that includes human-computer interaction and is
relatively user-friendly. The other possible application is the
monitoring of elderly people at home or in hospital rooms.
One could detect for instance that someone has fallen down
or has been sitting for too long. Considering elderly people,
their postures should be similar to the training set ones of the
static posture recognition step. In these conditions, the sys-
tem should be reliable enough to succeed in this monitoring
as the training recognition rates are very good. Nevertheless,
tests must still be performed and implemented source code
improved.

7.2. Discussion and perspectives

The main advantages of the 2D segmentation step is that it
yields smooth and regular segmentation masks and that the
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reference frame can be built even if the scene is not empty
at the beginning. For indoor applications, a reference frame
can be easily acquired when there is nobody present in the
scene. No particular shadow processing is performed but
some shadow models based on colour with invariant tech-
niques could be used [58].

The tracking step, composed of the basic temporal track-
ing and of the Kalman filtering-based tracking, is very
fast and handles partial or even complete occlusion prob-
lems. The tracking should still be efficient if people were
occluded by fixed objects, as long as their global mo-
tion remains coherent with their face motion. If the peo-
ple change direction or speed during the occlusion, the
tracking results depend on the duration of the occlusion
and on the other people’s motion. In Figure 14, the two
persons are turning one around the other and the track-
ing succeeds for this nonconstant moving directions and
speeds.

Using an adaptive thresholding in the YCbCr colour
space, the skin detection process is robust enough to pro-
vide very good results even on complex or skin colour-
like backgrounds. Hence localisation is generally accurate.
It is fast and distinguishes the right versus left hand. Skin
models are generally sensitive to the acquisition system
and lighting conditions (output colour space, white bal-
ance and noise of the camera, etc.). The presented thresh-
olds have been tested in different indoor environments
and performed reliably. Nevertheless, tuning them with
respect to another given system (other camera, outdoor
environment, etc.) can yield better results. Results accu-
racy can be degraded when worn clothes are close to skin
colours.

The higher-level interpretation step, static posture recog-
nition, has also shown good recognition results. The ap-
proach we use is similar to a method based on shapes, be-
cause we consider the elongation and the compactness of
the person’s shape. Nevertheless, no explicit comparison has
been performed. The main limitation is that, if the distance
to the camera changes significantly, the person may have to
perform again the reference posture. Using a stereo camera
could solve this problem and avoid assuming the hypothesis
of not being occluded.

Among the perspectives of this work, there is the dy-
namic posture recognition. We plan to enhance the method
by adding a dynamic analysis of the measurements tempo-
ral evolution. Concerning the analysis of the human body
parts, the feet positions could be computed after the seg-
mentation using geodesic distance maps [59]. Currently
under development, there is an avatar control application
with the real-time animation of a skeleton using the face
and hands positions and the recognised posture. Work on
the gaze direction and the facial expressions analysis is
also under development [53, 60]. A long-term perspective
is the fusion of the multiple media with several cameras
and microphones. This could lead to advanced perceptual
human-computer interfaces and a lot of subsequent appli-
cations.
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