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Stochastic Bernstein (SB) approximation can tackle the problem of baseline drift correction of instrumentation data. This is
demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) data.
Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the
MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal
is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a
numerically straightforward baseline shift removal method as it includes a free parameter σ(x) that can be optimized for different
baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit
from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can
be manually tuned (for constant σ) or tuned with evolutionary computation (for σ(x)).
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1. INTRODUCTION

Each measurement analysis tool for determining the pres-
ence and concentration of biomolecules has its particular sig-
nal processing challenge. Consider some of these challenges
for two of the most powerful tools: microarray analysis and
spectral analysis. For example, the proximity of dots in a mi-
croarray can cause a degree of correlation between neighbor-
ing dots that must be removed with signal processing. With
spectral analysis, typical signal processing challenges are (a)
baseline drift correction; (b) denoising by smoothing and av-
eraging of signals; (c) peak alignment; and (d) peak identifi-
cation.

This paper tackles baseline drift correction with algo-
rithms that are based on a recent method of signal process-
ing, stochastic Bernstein (SB) approximation [1]. Although
baseline drift correction is illustrated with respect to matrix-
assisted laser desorption/ionization time-of-flight (MALDI-
TOF) [2] data, our approach has much wider application.
Other types of spectral data suffer from baseline drift and,
potentially, this technique can also assist with a variety of
instrumentation (not necessarily in the bioinformatics do-
main) that suffers from baseline drift (e.g., [3]).

Consider MALDI-TOF and baseline drift. For instru-
mental reasons that are not easy to control, multiple
MALDI-TOF measurements on the same biological sample

can result in curves at different heights. The drifted base-
lines must be corrected before comparing peak intensities.
Section 2 discusses concepts that are specific to baseline drift
in MALDI-TOF.

Bernstein functions are the natural extension of the Bern-
stein polynomials, and they have remarkable monotonicity
and convergence properties [4]. Unlike the Bernstein polyno-
mials, the Bernstein functions are more readily computable
for large data sets (for large n), and most significantly for the
purposes of computing the baseline, they produce infinitely
smooth approximations which introduce no spurious false
extrema. This results in a robust and efficient algorithm for
computing the baseline correction of spectral curves, includ-
ing the MALDI-TOF spectra. The algorithm is adjustable to
user requirements pertaining to the underlying shape of the
baseline curve, and is suitable for automatically processing a
large number of spectra.

The use of Bernstein functions, in contrast to the more
traditional Bernstein polynomials, for approximation offers
a free parameter that can be adjusted to provide domain-
specific levels of smoothing, and hence of baseline correc-
tion. The method is global, but can also be implemented
as a windowing method on the data if this should be re-
quired. Finally, as explained in Section 4, the method en-
joys three implementations: approximation; interpolation;
and quasi-interpolation, in regard to generating smooth
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representations of data. This alone offers enormous gener-
ality and flexibility; however perhaps the most compelling
reason for using this approach is that it does not intro-
duce any spurious extrema, unlike higher-order-polynomial-
based methods, and thus it does not corrupt the signal.

Classification and comparison of parts of the spectra or
the extraction of quantitative information are important to
bioinformatics research. Therefore, the removal of the base-
line from spectral data should not remove or alter peak infor-
mation from the spectrum, and it should produce a smooth
baseline curve which best represents the average, or mean
of the noisy data. An approach to baseline correction us-
ing a windowed polynomial interpolation method was in-
troduced and validated in [5]. The algorithm subdivides the
data into bins or windows in which the mean of the data is
computed. These means are joined through the process of
polynomial interpolation to yield a curve which is then ad-
justed to account for various difficulties which could cause
the loss of peak quality, including adaptively resetting the
window widths. Finally, the data that is produced is fit us-
ing least squares to an exponential curve so as to provide a
smooth baseline curve to the spectral data. While the basic
concept is simple, there is some algorithmic complexity to
this approach, and analytically it is unclear what the baseline
curve which is obtained represents.

Traditional approximation by least-squares fit, Fourier
analysis, and wavelets are popular choices for the character-
ization of signals. While these classical techniques can and
have been applied to the problem of baseline correction,
along with attempts to characterize the baseline using tradi-
tional polynomial approximation techniques, an alternative
approach, using stochastic approximation methods based on
suitable mollifiers built from Bernstein functions, appears to
provide a flexible, easily adaptable approach to characteriz-
ing the mean behavior of a signal, and hence the complex
errors that affect baseline drift.

2. BASELINE DRIFT ANDMALDI-TOF

There is little information available in the literature about
the origin of the noise and the baseline shift in MALDI spec-
tra. However, baseline drift appears to be related to noise.
All of the noise signals in MALDI spectra represent chemical
noise (real ions arriving at the detector), while all other noise
sources, for example, electronic noise, are at least one order
of magnitude less.

Most of these ions seem to (nominally) come from either
nonzero position (axially), or are created at nonzero time
(relative to the origin of the time scale of the TOF). Thus,
these ions arrive in an axial extraction TOF at random times.
This causes single-ion signals to merge into each other re-
sulting in an overall rise of the baseline. The baseline shift in
printed spectra often actually represents only a lack of resolu-
tion that is caused by the binning of the sample pixels. If these
spectra are displayed with the maximum time resolution,
then many, if not most of the signals in the low-mass range,
show significant modulation, sometimes even baseline reso-
lution. In TOF instruments with orthogonal extraction with

one-to-three transfer quads preceding the TOF, all such pro-
cesses are finished before the ions enter the TOF, and accord-
ingly all signals which can be characterized as noise have in-
teger mass differences.

Strong noise and baseline shifts in the low-mass range
undoubtedly represent mostly matrix ions, their clusters, and
fragments. They increase strongly with the laser fluence (en-
ergy per unit area). The background of matrix ions can even
be completely suppressed for clean samples with not too low
an analyte concentration, for example, at a concentration of
10−6 M. The higher fluence required when the cleanliness of
the sample and its analyte concentration are low will result in
a much stronger background and baseline shift for the low-
mass range.

It is a common observation that many analyte signals
even in the higher-mass range ride on a type of hump in the
baseline. This elevated baseline contains mostly ions of clus-
ters of analyte and matrix. This has been demonstrated in
an elegant MS/MS experiment in an ion trap by Krutchinsky
and Chait [6] that sheds light on the nature of the chemical
noise background. Some of these ions must, obviously, have
energy deficit to account for the part of the hump below the
analyte mass.

All signals are seen in the spectra and the baseline shift is
also included. It represents ions generated in theMALDI pro-
cess. This limits the possibility for a chemical filtering proce-
dure. This has motivated us to develop a simple signal pro-
cessing method which can be adapted by the user to correct
for the baseline shift in MALDI-TOF spectra.

3. MATHEMATICAL PRESENTATION

In this section, signal processing using stochastic methods
built from Bernstein functions [1] is developed further into
an iterative method to correct MALDI-TOF baseline drift.
Additionally, the novel scheme has a tunable parameter σ(x)
that can be set to a constant for all x; can be set to different
values for different masses of the spectra; or it can be discov-
ered as a continuous function of x using supervised learning
from examples of known analyte concentrations in MALDI-
TOF spectra or in any other instrumentation domain.

Section 5 illustrates the straightforward application of
the new method to both a proteomics and a genomics
MALDI-TOF data set. In these cases, however, optimiza-
tion of σ became unnecessary because the baseline correc-
tion provided equivalently acceptable results for constant
smoothing.

3.1. Stochastic approximation using
Bernstein functions

Consider the function f (x) sampled at points xk ∈ [0.1], that
is, at f (xk) = yk. We denote the natural continuum extension
of the Bernstein polynomials on the set of data {(xk, yk)},
k = 1, . . . ,n, by Kn(x), expressible as the sum

Kn(x) =
n∑

k=0

yk
2

[
erf
(
zk+1 − x√

σ(x)

)
+ erf

(
x − zk√
σ(x)

)]
, (1)
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where f is assumed to be piecewise constant in (zk−1, zk)
with value yk and where z0 = −∞, zk = (xk+1 + xk)/2
for k = 1, 2, . . . ,n − 1, and zn = ∞. The smoothing in
this case is directly related to the magnitude of the term
σ(x) = (2/n)x(1 − x) in the argument of the error function
in (1). When n is large, the smoothing, which is related to the
magnitude of the second moment of the Gaussian probabil-
ity distribution function, is small, and when n is small, the
smoothing is large. A more robust model allows for variable
smoothing, where σ(x) > 0. In most cases, it is convenient to
take σ(x) to be constant throughout the interval. Note that
there is no requirement that the data be uniformly spaced.

For simplicity, the constant smoothing model is used to
construct the baseline curves in this paper. Also, because we
are not interested in creating a finer approximation to the
spectral data, the points x at which Kn(x) are evaluated are
the same as the input data coordinate values, that is, Kn(xj),
j = 1, 2, . . . ,n. For very large data sets, the sums in (1) can
also be truncated when the value of erf(u) is sufficiently small
yielding significant reduction in the work required to com-
pute the value of Kn.

The approximation provided by Kn intrinsically consists
of a matrix-vector multiply, where Ann = (ajk) is the n × n
matrix containing the coefficients

ajk = 1
2

[
erf
(
zk+1 − xj√

σ(x)

)
+ erf

(
xj − zk√
σ(x)

)]
. (2)

Thus, Kn(xk) = Amny, where y = (y1, y2, . . . , yn) and where
Amn is a row-stochastic matrix in which the kth row is gen-
erated using (2) for each point xk, k = 1, . . . ,m, at which
the function is evaluated. Intrinsically, this amounts to a
Gaussian mollifier applied to the data; the advantages of the
stochastic formulation become apparent when it is realized
that A−1nn is a deconvolution operator on the data, and thus
AmnA−1nn y provides an elegant solution to the interpolation of
the data. Choosing σ to be different inAmn,Ann yields a range
of data representational forms, ranging from pure smooth-
ing through interpolation to deconvolution. Constructing an
approximate inverse to Ann has computational advantages,
however most significantly, there are known approximate
inverses which allow for interpolation of smooth data, but
which become increasingly smoother as the data becomes
noisy. This is referred to as the pseudoinverse method.

Increases in computational efficiency can be achieved
by restricting the size of the data set over which the sums
are taken. This effectively creates a multiblock algorithm.
By overlapping, the blocks differentiability across blocks is
still maintained, although smoothness (being able to con-
struct an infinitely differentiable baseline curve) is lost. In
any event, these are structural components of the algorithm
which can be selectively implemented in tradeoffs between
efficiency measured in terms of CPU cycles and accuracy.

Experience has shown that implementing any of these de-
vices for improving efficiency can dramatically impact the
computation time without substantial effect on the accuracy
of smoothness of the resulting approximation. Of greater sig-
nificance than any of these in regard to the quality of the
results is the value of σ(x). Choosing the smoothing allows

the approximation to be more or less sensitive to the low-
frequency oscillations intrinsic to the data curve. Choosing
it too small causes the resulting approximation to be sensi-
tive to even the high-frequency oscillations associated with
the noise, and while it may seem that this choice is quite dif-
ficult, in practice it is very easy to implement effective and
usable choices without much concern.

3.2. Constructing smoothing bounding
curves to spectral data

The algorithm we propose to construct the baseline curve is
based on the approximating property of Kn which results in
a family of curves which uniformly approximate the data set,
thereby providing an envelope of width ε such that the er-
ror in the approximation and the data is always less in mag-
nitude than ε at any point in the domain. This provides a
convenient method for averaging. Also importantly, it can be
shown that using (1) to approximate the data yields approxi-
mation curves that have almost the same area as the piecewise

constant data f̂ [1], providing an area-weighted mean to the
data.

Denote by B0 the initial approximation to the data set
D0 = {(xk, yk)}, k = 1, . . . ,n, by constructing Kn applied to
D0. This initial baseline curve at x has the values B0(x). Then
construct a succession of smooth baseline curves, denoted
by Bp, l = 1, . . . , which successively approximate the data,

Dp = {(xk, y(l)k )}nk=1, on each iteration. At each iteration, the
data to be approximated lies below the previous iteration’s
approximation curve. Thus, we introduce the following al-
gorithm for generating a sequence of baseline curves Bp.

(1) Construct the curve B0 by constructing the Bernstein

approximation Kn to the data set D0 = {(xi, y(0)i )}, i =
1, 2, . . . ,n, where y(0)i = yi.

(2) Obtain the data D1 = {(xi, y(1)i )}, i = 1, 2, . . . ,n, where

y(1) = min(y(0)i ,B0(xi)).
(3) Continue iterating, that is, obtain the data Dp = {(xi,

y
(p)
i )}, i = 1, 2, . . . ,n, where y(t) = min(y

(p−1)
i ,

Bp−1(xi)).
(4) Stop the iteration when most of the points in Dp are

bounded below by Bp.

While there is no criterion for establishing when most of
the data lie above the baseline, a cutoff of 98% work well.
Stopping the iteration when a specified tolerance is reached,
when ‖Dp − Dp−1‖ < ε, for some ε > 0, has been seen to
produce oversmoothing of the baselines in some cases, and
thus is more difficult to apply. Note that because of the nature
of the Bernstein approximation, the limiting baseline curve
Bp as p gets large is not the minimum of the data D0, but
instead is the low-frequency curve which best fits, based on
the parameter σ(x), the lower bound to the data. If there is
interest in determining limiting upper-bound curves, these
can also be constructed using the same approach.

The dependence of the baseline on the value of σ is il-
lustrated in Figure 1 for some “sample” data generated from
the model function consisting of a Gaussian peak at x = 400
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Figure 1: Construction of the corrected spectra using a signal, s(x) = 180 exp(−0.01(400 − x)2) with underlying harmonic components
h0 = 60.0, h1(x) = 10 sin(x/2), h2(x) = 10 cos(x/40), h3(x) = 25 sin(x/200), so that f (x) = s(x) + h1(x) + h2(x) + h3(x). The spectra are
labelled S and the corrected spectra with baseline removal are labelled B; (a) σ = 10, (b) σ = 100, (c) σ = 1000.

which is perturbed by sinusoidally oscillating data sampled
from three characteristic frequencies, sin(x/2), cos(x/40),
and sin(x/200). All of the baseline curves are produced with a
cutoff of 98%. The baselines are generated at values of sigma
ranging from 10, 100, and 1000 in Figures 1(a), 1(b), and
1(c), respectively. It is obvious that when σ is small, all of
the harmonics, except the highest frequency associated with
sin(x/2), are well approximated by the baseline curve. As σ
increases, the ability of the curve to respond to the high fre-
quencies is diminished, such that when σ = 1000, only the
lowest harmonic at sin(x/200) is revealed in the trace of the
baseline.

The algorithm produces a succession of baseline curves
B0,B1, . . . ,Bm which appear to approach a lower-bound

curve B for each value of σ . This curve has the property that
it is a baseline curve (it is a Bernstein approximation and
thus is infinitely smooth) and it lies below all other baseline
curves with p < m. It is not strictly a lower bound to the
data, since at some xk the values of yk will exceed the value
of the baseline Bp(xk). This can be seen in all three plots in
Figure 1 where there are a few places where the spectral data
undershoot the baseline curve by a small amount. Equally,
it is not the greatest lower bound to the data, although it
approaches this when σ is very small, as seen in the graph
in Figure 1(a).

Clearly, using stochastic Bernstein approximation pro-
vides a convenientmechanism for computing a set of lowpass
filters for the data, but it does more than that, since it can be
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combined easily to produce interpolation and deconvolution
of the same data, and to do all of these locally through mod-
ifications of the structural form of the smoothing by work-
ing with σ(x). Since the baseline curves are uniformly ap-
proximating, they are well behaved.Moreover, under suitable
circumstance, it is possible to construct the baseline curve
in one iteration, that is, by constructing only one approxi-
mant Kn to the data, and we discuss this in greater detail in
Section 6.

4. ENGINEERING PRESENTATION

The new method of baseline drift removal is an iterative ap-
proach that repeatedly applies the SB approximation. The in-
put signal for the next iteration stage becomes the minimum
of the input signal for the current iteration stage and its SB
approximation.

An engineering or computer science presentation of the
stochastic Bernstein function method is complementary to
the mathematical treatment of Section 3. It offers an appre-
ciation for the generality and flexibility of the SB approxi-
mation method. The stochastic Bernstein function method
(embedded in the iterative process) can be described by pseu-
docode as follows.

(1) Read the MALDI-TOF data {(xi, yi)}, i = 0,n − 1 (xi
are the m/z spectral bins and yi are the spectral inten-
sities).

(2) Convert data coordinates to lie on the unit interval.
(3) Construct the convolution matrix Ann, which depends

on the data coordinates xi and on the value of the
smoothing parameter σ . The generator of the row
space of Ann is a Bernstein function.

(4) Construct the deconvolution matrix, A−1nn .
(5) Construct the augmented matrix Ãmn, where m > n,

using the same generator of the row space.
(6) Evaluate ÃmnA−1nn z, to obtain output data {zi}, i =

0,m− 1.
(7) Convert the output data to the world coordinate sys-

tem to obtain the Bernstein function values at the lo-
cations of the output data.

These matrices correspond to the mathematical terms al-
ready presented. Note also that both the input and the output
data points can be nonuniformly distributed in x, and that
they can be unrelated to one another, and are of different size
(different number of points).

The pseudocode is for the “interpolation” version of the
stochastic Bernstein function method. In this version, the
Bernstein function passes exactly through the input data
points. The “pseudointerpolation” version of the SB method
retains all steps but obtains A−1nn as an approximate inverse
and causes the Bernstein function to pass very closely but
not exactly through the input data points; with the deviation
being larger, the more the data deviates from being locally
smooth.

The method applied in this paper is the SB “approxima-
tion” version of the method. The Bernstein function does not

pass through the input data points. The approximation ver-
sion of SB does not require steps 3 and 4 of the pseudocode
and also replaces A−1nn in step 6 by the identity matrix.

5. RESULTS OF APPLICATION AND ILLUSTRATIONS

The process of finding a baseline curve to the proteomics
MALDI spectral data as provided through [5] is illustrated
in Figure 2. In this case, the spectral data (labelled S) along
with the corrected spectral data (labelled C) is shown for
two different values of σ(x). Choosing small σ = 100 re-
sults in a limiting baseline curve which still preserves the un-
derlying low-frequency oscillation apparent in the spectral
data around the spectral peaks at x = 5000 and x = 8500.
Choosing σ = 10000, however, results in a significantly
smoother limiting baseline curve which yields a corrected
spectral curve which is significantly flatter and which is lack-
ing in any of the low-frequency response which characterizes
the data in Figure 2(a). Note also that the limiting baseline
curve was attained in about 20 iterations, and that there are
still a few points, particularly in the range from 3000 to 7000,
where corrected data still have negative values. Clearly, it may
be desirable to iterate further to eliminate these negative de-
viations, which can be done, however this exceeds the pur-
poses of this demonstration.

A more detailed examination of Figure 2 is shown in
Figure 3 and it shows that there is no loss in the peak spectral
information. The baseline curve does not reduce the magni-
tude of the spectral peaks. The use of maximal smoothing,
for example, can be seen to provide a spectral curve which is
shifted down by 4000 units at the peak at x = 5000, however
the magnitude of the peaks remains unchanged before and
after the baseline correction. This is because the SB approxi-
mation for σ � 1 does not respond to high-frequency oscil-
lations and thus is acting as a lowpass filter only. Note that us-
ing a smaller value of the parameter σ (using strong smooth-
ing) causes even the lower-frequency hump from x = 4000
to x = 6000 to be ignored in the generation of the baseline
curve, and thus causes the hump to be incorporated into the
spectral data. In comparison, using a larger value for σ allows
the SB approximation to pick up the low-frequency values
along the hump, yielding a baseline curve which contains this
low-frequency oscillation, thus resulting in a spectral curve
which is flatter as shown in Figure 3(a).

Although MALDI-TOF is found principally in pro-
teomics, it is also used in genomics. Figure 4 gives an overall
appreciation for the baseline correction for a spectra of ge-
nomics origin. Figure 5 illustrates the sensitivity to the value
of σ(x) on this particular data. In these experiments, the sen-
sitivity is not great but in other cases of baseline correction it
would be necessary to optimize σ(x).

5.1. Remarks

In assessing the design of any algorithm for removal of base-
line drift from spectra, such as the SB approximation for
MALDI-TOF data, it is important to examine the possible
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Figure 2: Convergence of SB approximation to 15 000 data point spectra applying min-mean baseline algorithm. (a) The approximations
are computed using minimal smoothing as this removes the baseline hump at x = 5000 and x = 8500. (b) The approximations are computed
using strong smoothing as this preserves the baseline hump at x = 5000 and x = 8500.
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Figure 3: Detail from x = 4500 to 6000 for the min-mean baseline corrected spectra shown in Figure 2. The approximations in Figure 3(a)
are computed using minimal smoothing and in Figure 3(b) are computed using strong smoothing.

distortion of the signal by the method. Inevitably, every
numerical method affects the signal in somemanner. A com-
pelling reason for choosing the SB approximation in de-
veloping this method, aside from the algorithmic simplic-
ity of the approach, is that it does not introduce any false

extrema into the signal. Thus, the SB approximation to a
function sampled at a discrete set has the property that
the approximant lies between the nodal values at which the
function is sampled. With the exception of piecewise lin-
ear and piecewise quadratic interpolation by polynomials,
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Figure 4: Original and baseline corrected MALDI-TOF spectra us-
ing the method with σ = 150.

this property cannot be attained without the introduction
of limiters to prevent overshooting and undershooting be-
tween interpolation points. Furthermore, unlike other poly-
nomial approximation methods, the SB approximation can
be constructed for even a large number of points in the
computational stencil, and unlike the Bernstein polynomials
to which the Bernstein functions are related, the properties
can be tuned to increase or decrease the smoothing through
the choice of the parameter σ and if required to determine
this choice with evolutionary computation, for example, ge-
netic programming. This provides control and efficiency.

The efficiency of the algorithm can be increased signifi-
cantly by computing a baseline correction over sets of data:
by restricting the range of the summation in the computa-
tional stencil for each output point. Since for baseline cor-
rection, each output data point xk is located at the same x-
coordinate as the input value, the sum in the SB approxima-
tion can be taken over the range k − n to k + n, where n is
sufficiently large to ensure that the tail of the sum is insignif-
icant. For σ on the order of about 100, this means including
only several hundred values on either side of the output point
into the sum. Clearly, this saves significantly with data sets as
large as in the example being considered. In these examples,
the sums were computed using a truncated sum. In addition,
the costly computation of erf(u) for each value of u in the
sum was done only once, and saved to an array, so that for
all subsequent computations of Kn, the values were reused.
In computing the baseline curves Bj , j > 0, the operation
consisted of a short-matrix-vector multiply, which is O(n2).

6. FINDING THE BASELINE DIRECTLY

The approach described thus far for finding the baseline is
an iterative method, requiring the computation of successive
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Figure 5: Detail from x = 2700 to 2751 for the baseline corrected
spectra shown in Figure 4, showing SB approximation baseline cor-
rected MALDI-TOF using two different values of the parameter
σ(x). One of the curves uses σ = 150 and the other uses σ = 1500.
Note in this case that both methods perform similarly.

approximations to the data sets Dk as described in Section 3.
The convergence rate to a usable baseline depends on the
spectral content of the data, as well as whether σ is large or
small. Typically, it requires anywhere from 10 to up to 100
iterations to find the baseline, and this does not include the
effort required to evaluate the baseline using different val-
ues of σ . Clearly, the fundamental approach we have de-
scribed is usable, however in implementing this approach
with themore sophisticated functional representational tech-
niques, including pseudointerpolation and windowing com-
bined with adaptive, intelligent algorithms, would require
that many baselines be iteratively constructed.

In many cases, it is possible to construct the baseline di-
rectly. The reason is that in most cases, the midline approx-
imation provided by the first iteration B0 is nearly a shifted
copy of the baseline curve. Evidently, this is not always the
case, and it is possible to devise spectral data which would
cause this approach to break down; however for many of the
spectral data examined, this approach provides a quick es-
timate, and thus can be used in these cases to more rapidly
characterize the baseline.

The alternative consists of finding the midline curve, and
subtracting this from the data. This removes all of the long-
wave oscillations, if we add back the minimum value of this
curve, we would get a spectrum which has been straight-
ened out, more or less, depending on the value of sigma.
The resulting baseline curve is not computed. The values of
σ at which we get the same results as computing the baseline
curve iteratively would be different, since in the iterative case,
smoothing is applied to a partially smoothed data set at each
step.

To illustrate the workability of the approach, consider the
results of using the mid-mean algorithm to obtain the cor-
rected spectra shown in Figure 6 and compare this to the
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Figure 6: Convergence of the min-mean baseline algorithm (a) using minimal smoothing, σ = 0.1, and (b) using strong smoothing,
σ = 100.0. The spectra are taken from the same data set as shown in Figure 2.
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Figure 7: Construction of the corrected spectra using the midline removal (a) using minimal smoothing, σ = 10.0, and (b) using strong
smoothing, that is, σ = 10000.0. The spectra are taken from the same data set as shown in Figure 2. Note that the baseline curve is not
constructed, however the corrected spectra compare well with the results obtained from using the mid-mean algorithm shown in Figure 6.
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results shown in Figure 7 for the corrected spectra obtained
by using a direct approach. For either case of weak or strong
smoothing, the corrected spectra appear very similar, and in-
deed overlaying these on the same graph would show only
negligible differences.

7. CONCLUSIONS AND FUTUREWORK

The application of stochastic Bernstein function approxima-
tion can be seen to produce usable families of baseline curves
for correcting spectral data bias shift due to low-frequency
errors. There are several advantages to this approach, most
notably its algorithmic simplicity and robustness. Unlike
methods based on interpolation of various means, there is no
possibility of any instabilities arising due to the interpolation
process, and thus no possibility of generating any spurious
oscillations which may affect the signal.

Perhaps the most useful feature of this approach is that
the computations can be incorporated into many adaptive
algorithms in which the value of σ is optimized with regard
to several selection criteria. For constant σ , tuning is simple.
More sophisticated analysis may use genetic programming
[7] to evolve polynomial terms for the function σ(x).

This offers further research opportunities. Is it worth-
while revisiting research that obtains candidate biomarkers
and a sample classification fromMALDI-TOF data (e.g., [8])
to investigate the sensitivity of results to different amounts
of baseline drift removal? Can tuning clarify the nature of
chemical noise in different conditions (Section 2)? Finally, by
means of supervised-learning, it should be possible to fine
tune baseline drift removal for different instrumentation.

The SB method [1] was recently combined with genetic
programming [9] and this opportunity is immediately avail-
able for problems of baseline drift.

In attempting to optimize the baseline, the use of the di-
rect method for computing the baseline has obvious advan-
tages, and it should be tried before anything else. At worst, it
may be necessary to construct it iteratively.
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