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1. INTRODUCTION

In sound-reproduction systems an equalization filter is often
used to modify the frequency spectrum of the original source
before feeding it to the loudspeaker. The purpose is to make
the impulse response of the equalized sound-reproduction
chain as close as possible to the desired one [1]. In princi-
ple the direct inversion of mixed-phase (or non-minimum-
phase) measured impulse responses of the systems is not pos-
sible since it leads to unstable equalization filter realizations.
Since any mixed-phase impulse response can be represented
mathematically by the convolution of a minimum-phase se-
quence and a maximum-phase (or all-pass) sequence [2], it
is possible to derive and implement an approximate and sta-
ble inverse filter for such systems [3]. This is because a causal
and stable sequence can invert the minimum-phase compo-
nent of any mixed-phase sequence and an infinite acausal
(anticipatory) and stable sequence can similarly invert the
maximum-phase component of such sequences [3]. For the
reason of the implementation complexity of such combined
equalization filters as it will be discussed in Section 2, the
work presented in this paper focuses on the equalization of
the minimum-phase component of the system and its par-
tial equalization importance. One method to design such a
minimum-phase equalization filter is the homomorphic one
based on the measured impulse response of the system. This

method known as standard used for the case of single-point
equalization is described in Section 2. In Section 3, a mod-
ified version of the standard homomorphic method is pro-
posed. It takes into account that the listener is able to de-
tect gradual response variations of less than 0.5dB [4, 5] and
hence is able to control the sound quality more accurately.
Section 4 shows the magnitude equalization performance re-
sults for an impulse response measured in a car interior using
both objective and subjective measurements.

2. STANDARD HOMOMORPHIC METHOD

A non-minimum-phase discrete impulse response, h(n), of a
system can be described as [2]

h(n) = hmp(”) ® hap(”)> (1)

where ® denotes the discrete convolution. This can be shown
in the frequency domain as

H(k) = Hmp(k)Hap(k)) (2)

where hyp(n) is a minimum-phase sequence, such that its
DFT, Hup(k), satisfies the relation

| Hup(k) | = |H(K) |, (3)
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where H (k) is the DFT of h(n) given by

N-1
H(k) = > h(n)e 1), (4)

n=0

where N is the length of h(n) and h.p(n) is an all-pass se-
quence of |Hyp(k)| = 1, fork = 0,1,...,N — 1.

The convolution operation of hyp(n) and hap(n) can
be expressed as the algebraic addition of their correspond-
ing complex cepstra ﬁmp(n) and ﬁap(n) by the homomor-
phic transformation [6]. This leads to a decomposition of a
non-minimum-phase impulse response into its minimum-
phase and all-pass components. The standard homomorphic
method algorithm is outlined as follows [4, 7, 8].

(1) Compute the DFT of h(n).
(2) Compute

H(k) = log [H(K)|. (5)
(3) Compute the real part of the complex cepstrum of
h(n),

N-1
ﬁ(n) = % Z 10g |H(k)|ej(2ﬂkn/N)) (6)
k=0

forn=0,1,...,N — 1.
(4) Compute the corresponding real cepstrum of the
minimum-phase Ay (1),

(b N
bl n - 0) 2 b
hp(n) = 2000y N (7)
L 2
~0, % <n<N-1,
where L is a positive real parameter [8].
(5) Compute the DFT of hpp(n),
Hmp(k) = Z hmp(”)e_](Zﬂkn/N)~ (8)
n=0
(6) Compute the minimum-phase part Hyp(k),
Hup (k) = exp (Himp (k). ©)
(7) Compute the equalized response, Heq(k),
Heq(k) = H(k)Gmp(k), (10)
where G (k) represents the inverse of Hyyp (k),
1
Gmp(k) = (11)

Hpp (k)

In the time domain, this is equivalent to a deconvolution,
heq(”) = h(n) ®gmp(n)’ (12)

with gmp (1), being the inverse DFT of Gmp (k).

In the case of L = 1, the algorithm corresponds to a mag-
nitude equalization. If a sufficiently large number N is used
for DFT computation, the effect of magnitude distortion
caused by the system can be perfectly removed in practice
by convolving h(n) with the inverse minimum-phase impulse
response gmp (1) [3, 7]. The effect of phase distortion can also
be solved by convolving the all-pass sequence, h,,(n), (ob-
tained after deconvolution of h(n) with gmp (1)) with its time
reversed version, hap(—1), [4, 9]. As a result, implementation
of such combined equalization (complete equalization) re-
quires very long FIR filters. But this is not always required in
practice. For this reason, the equalization of the all-pass com-
ponent (phase equalization) will not be considered in this
work.

In the case of L > 1, the algorithm corresponds to a par-
tial magnitude equalization. This requires a shorter FIR filter
to keep the phase distortion below the threshold of audibility
[4].

Sometimes, the frequency response of the system, H(k),
and hence its minimum-phase part, Hpp(k), can be repre-
sented by a low number of isolated dominant zeros. In such
a case, increasing the parameter L by a significant value dur-
ing the control process may shorten the length of the equal-
ization filter too, resulting in an unsatisfactory equalization
performance. This is because an increase in L results in a de-
crease of all the radii of the complex poles of G, (k) together
according to the relation derived from (3), (7), and (9) (see
the appendix),

log |Gy (k)| =~ log | H(K)|. (13)

This means that the complex poles of Gip(k) appear to
be pushed together towards the origin of the unit circle.

In the next section, we propose an alternative approach
in which, instead of pushing all the poles of Gy, (k), we push
the most dominant of them selectively and slightly towards
the origin of the unit circle by decreasing the corresponding
high values of the Q factors (values of the steady-state reso-
nances). This allows controlling the magnitude equalization
performance more precisely—especially applicable in prac-
tice. The reason is that the listener is able to detect gradual
response variations of less than 0.5dB [4, 5]. Furthermore,
the proposed technique is advantageous when the parame-
ter L cannot be calculated theoretically, for example, for the
case of the direct inverse filtering (no cepstral analysis, i.e.,
no steps 2 to 6) of a small reverberant room where the dom-
inant poles can be identified even if they are closely spaced
(10, 11].

3. MODIFIED VERSION

A replacing method of some dominant poles of the inverse
minimum-phase function Gpp(k) is described in this sec-
tion. They are identified using the standard method (L = 1)
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and then replaced before doing the inverse DFT in order to
calculate the corresponding discrete time sequence gmp (1)
representing the impulse response of the new equalization
filter.

The z transform function of a complex pole pair is ex-
pressed as [10, 12]

1
(1—lale’fz=1)(1 — |ale /9z-1)’
or (14)

1
1 —2lal cos0z~1 + |a|?z=2’

Hp(z) =

Hp(z) =

where |a is the pole radius in the z plane and 0 = 27(f,/ f.)
is its phase angle with f, being the sampling frequency and
f» the frequency of the complex pole.

Taking the inverse z transform of H,(z) the correspond-
ing impulse response is [10, 12]

_ lal"sin(n0 + 0)
hp(n) = @) u(n), (15)
where u(n) is a unit step function.

The transfer function of the selective filter for a complex
pole pair is

(16)

where the transfer function H »(z) contains a new complex
pole pair at the same frequency of the old pair but at a de-
sired smaller radius, |d|. This technique allows us to decrease
selectively the Q factors values of a low order of isolated
pole pairs in the frequency response Gmp (k). The new inverse
minimum-phase function becomes

Gup(2) = Gump(2)HV (2) - - - HP)(2), (17)
and its discrete version
Gup(k) = Grp(K)HI (k) - - - HP (k), (18)

where P is the number of identified and replaced dominant
pole pairs from Gp,p(k), and HS(P)(k), p = 1,...,P, are the
sampled frequency responses of selective filters equal to the
number of replaced pole pairs, P.

This function is then inverted using the inverse DFT in
order to obtain its discrete time domain equivalent gNmp(n),
shorter than gmp(#) calculated by standard method for L = 1
and longer than g, (n) obtained for L > 1.

One method to identify frequencies of the isolated poles
is to iteratively search for the increased magnitude response
level of Gmp(k) caused by poles (peaks) residing within the
frequency range of interest (in our case below 4 kHz). In each
iteration a maximum magnitude level Gip(f,) correspond-
ing to the highest pole frequency f,, is found. This technique
was found robust even in the case of very closely spaced poles

[10, 11]. After determining the frequency f, of the high-
est pole, the corresponding pole radius must be determined
based on the Q factor value according to the following rela-
tion, since our work here is restricted to a low order of iso-
lated poles [10, 13-15],

1

= 1= lal’ (19)

Q = Gmp(fp)

The replacing method means that the dominant poles of
Gmp (k) are identified one by one and then replaced iteratively
by new ones, where each corresponds to a desired Q factor,
6 = 1/(1 — |al), starting from the most dominant one.

The implementation algorithm of the proposed modified
method (useful for partial magnitude equalization) is as fol-
lows.

(1) Compute the steps 1 to 6 as in the standard method for
L=1.
(2) Compute the inverse minimum-phase

1

i (6 .

Gmp(k) =

using Gump(k) = Gy (k).

(3) Setpto 1.

(4) Estimate the most dominant pole from 5mp(k) as de-
scribed above, (determine f, and |al).

(5) Design its selective filter using (16).

(6) Replace the estimated pole from Gmp(k) using (18).

(7) Increment p = p + 1 and repeat the steps 4, 5, and 6
until p = P.

(8) Compute gnp(n) as inverse DFT of @mp(k).

(9) Compute the equalized response Heq(k),

Heq(k) = H (k) Gpnp (k). (21)
In the time domain, this is equivalent to a deconvolution
heq(”) = h(n) ® §mp(”)- (22)

In the next section we present the performance evalua-
tion of the magnitude equalization performed by the pro-
posed version as compared to that from standard method,
using both objective measures based on an error criterion
and subjective tests of speech quality.

4. RESULTS

In order to assess the performance of our algorithms, we used
a frequency domain error criterion, which estimates the stan-
dard deviation of the magnitude response from a constant
level [4]. The error criterion A(dB) is given as follows:

1 N-1 1/2
A=|= > (10log, |Hq(k)| —Hn)*| »  (23)
N k=0
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FiGure 1: Complex z plane of six known zeros (poles after inversion
of the minimum-phase part): (o) pole pairs and (x) replacing pole
pairs.

where
1 N-1
Hy = — > 10log,, | Heq(k)|. (24)
N k=0

Two examples of non-minimum-phase impulse respons-
es were used to compare both algorithms. The first one was
synthetic, used just to enlighten the replacing approach of
a low order of isolated poles, and the second one used real
measurements taken in a car interior. We also introduced in
the proposed version a real parameter / (/ > 1), in order to
selectively decrease the highest Q factors of dominant poles.
This means that the new replacement poles correspond to
desired Q factors, Q = Q/I.

4.1. Synthetic impulse response

We first considered a simple synthetic impulse response. This
was obtained by successive convolution of six known ze-
ros sequences somewhat isolated in the complex z plane
(Figure 1) and with at least one placed outside the unit circle,
which make the impulse response a non-minimum-phase
one. These are defined as ( f. = 8 kHz):

lal =0.99 at f, = 200Hz,
lal =0.99 at f, = 1000 Hz,
la| =0.85 at f, = 1500 Hz,
(25)
lal = 0.70 at fp = 2000 Hz,
la| = 1.5 at f, = 2500 Hz,
lal =0.95 at f, = 3000Hz.

Figure 2 shows the inverse frequency response Gpp(k)
from which the two (P = 2) most dominant poles are es-

30 F

20f

Magnitude (dB)

—20 F

730 -

1 1 1 1 L L 1 |

0 0.5 1 1.5 2 2.5 3 3.5 4
Frequency (kHz)

,,,,,, Standard, L = 1
—-—- Modified, = 2
—— Standard, L =2

F1GURE 2: Inverse frequency response Gy (k) calculated using dif-

ferent methods.

timated and corresponding to

lai| = 0.9947
laz| = 0.9915

at fi = 200 Hz,

(26)
at f, = 1000 Hz.

These two (P = 2) poles are selectively replaced by two
new poles of smaller radius corresponding to Q;/I and Q,/I
factors, respectively, with a significant value of [, (I = 2)
(Figure 1). In Figure 2, even with some error in the estima-
tion of poles, we still can observe a decrease in the Q fac-
tors depending on the position of the new poles. This cor-
responds to a reduction of gn,(n) length when compared to
gmp(n). When using the standard method and considering
the same significant value of L (L = | = 2), we can see in
Figure 2 that all the poles have been pushed together towards
the origin of the unit circle too, resulting also in the reduc-
tion of the gip () length, but this is considerably shorter than
that of gnp(1).

The evaluation of the objective error criterion for this ex-
ample is not considered because of its little practical interest.

4.2. Practical impulse response

A real impulse response was measured for the car interior
at a sampling frequency of 8 kHz. A record of 1024 samples
was zero padded up to N = 2048. This impulse response is
shown in Figure 3. In Figure 4 an unstable direct inverse im-
pulse response is shown, demonstrating its non-minimum-
phase character.

Figure 5 shows the inverse minimum-phase frequency re-
sponse Gup (k). It was calculated using the standard method
(L = 1). The most dominant pole can be clearly seen there.
The search was limited to a single pole, that is, P = 1, such
that |a;| = 0.9993 at fi = 70.38 Hz that caused the inverse
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FIGURE 3: Impulse response measured in the car interior.

minimum-phase impulse response gyp(n) to be of a very
long duration (Figure 7).

When using the standard version for a significant value
of L, (L = 2), (Figure 6) we observed that all the poles of
Gmp (k) were pushed together towards the origin of the unit
circle too, resulting in an inverse minimum-phase impulse
response gmp (1) (Figure 7) to be reduced in time too.

When using a modified version, in order to gradually re-
duce the length of the inverse minimum-phase impulse re-
sponse gmp(7), only the most dominant pole needed to be
replaced by a new pole with smaller radius. This pole corre-
sponded to a Q/I factor with the same value of [, (I = L = 2),
but at the same frequency. In Figure 5 we can see the inverse
minimum-phase frequency response of émp(k), where only
the most dominant pole appears to be pushed towards the
origin, with [ = 2.

Figure 7 also shows the corresponding inverse mini-
mum-phase impulse response of g (). Interestingly, its du-
ration is not reduced here too. This may correspond to a
desired magnitude equalization (Figure 8), if the system im-
pulse response was minimum phase (no phase distortion ef-
fects). This is because the magnitude spectrum of the second
case (modified method, [ = 2, A(dB) = 0.7) is flatter than
that of the first case (standard method, L = 2, A(dB) = 2.4).
This means less magnitude distortion of the system.

4.3. Performance testing

The experiment was performed by developing models in
Matlab and Simulink and carrying out listening tests using
headphones. A reproduced speech signal of few seconds in
duration was generated by filtering a clean speech (male and
female measured in anechoic chamber) by the measured im-
pulse response of the car interior (Figure 3). In order to avoid
undesirable convolution effects, we considered a sufficient
large number N = 8192 for DFT computations. The repro-
duced speech signal was then filtered using equalizing filters
calculated by the standard method with L = 1 and L = 2

Amplitude

0 50 100 150 200 250 300

Time (ms)
FIGURE 4: Direct inverse impulse response.
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F1GURE 5: Inverse minimum-phase frequency response Gy, (k) cal-
culated by the different methods.

(Figure 7) and the modified version (P = 1), respectively. For
the latter case, the inverse impulse responses corresponded to
each error criterion, function of the parameter / such as that
of Figure 7 with [ = 2, for example. Test signals were played to
ten untrained listeners with normal hearing at a comfortable
listening level. The qualitative assessment of the test signals
was based on subjective judgment of three listening sessions
per each recording scheduled on six consecutive days.

The first signal was always chosen to be clean speech,
while the reproduced unequalized and partially equalized
speech signals were played in random order. The reproduced
speech signals corresponded to the objective error criteria of
5dB (unequalized signal for [ = 0), 0 dB (magnitude equal-
ized signal for /=1), and 0.3 < A(dB) < 3 (partially equalized
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FIGURE 6: Inverse minimum-phase frequency response G, (k) cal-

culated by the different methods.
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FIGURE 7: Inverse minimum-phase impulse responses gm, (1) calcu-
lated by the different methods.

signals for I > 1), respectively. The quantification of sub-
jective judgments was performed according to the following
scale [4]:
(i) 7, 8: good;
(ii) 5, 6: fair;
(iii) 3, 4: poor;
(iv) 1, 2: bad.

Number 8 denotes a sound quality equivalent to the clean

Magnitude (dB)

-25
-30 |
735 ) 1 1 1 1 1 1 1 ]
0 0.5 1 1.5 2 2.5 3 3.5 4
Frequency (kHz)
»»»»»» Original response
—— Equalized response (standard method, L = 2)
—--- Equalized response (modified method, I = 2)
FiGURrE 8: Magnitude response equalization.
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8 - ~
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6 4
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- and corresponding to objective |
error of 2.4 (dB)

Subjective score
I

0 ; ; ; ; ; ; ; ; ; ;
0 05 1 1.5 2 25 3 35 4 45 5 55

Parameter [

FI1GURE 9: Subjective scores of the sound quality as a function of the
parameter . Each circle represents the average of 180 observations:
18 for each 10 listeners.

speech. The final result was calculated as a mean of the indi-
vidual listening results (18 each) for each of 10 subjects. The
results are shown in Figure 9 as a function of parameter /,
ranging from [ = 0 (unequalized signal) to | = 5 (partially
equalized signal).

The results confirmed those reported in [4] with higher
accuracy. The highest score corresponds to the optimal qual-
ity of speech. That means no perception of phase distortion
(like a bell chime sounded at the background, when I < 3),
no echo and less magnitude distortion caused by the system.

The results also show the sensitivity of the listener’s ear
to small gradual response variations (a variation of less than
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0.5 dB of objective error corresponds to a significant varia-
tion of subjective score of the sound quality); although the
participants in the experiment were nonexpert listeners.

5. CONCLUSIONS

In this paper a modified version of the standard homomor-
phic method for minimum-phase inverse filter design for
non-minimum-phase impulse responses equalization is pre-
sented. This version is useful in cases of partial magnitude
equalization, where the dominant zeros density of the sys-
tem is not very high. Although it is used in this work as
an additional optimizing tool for the psychoacoustic qual-
ity measurement of speech, this alternative approach is ad-
vantageous in case of the direct inverse filtering (minimum-
phase system) when perfect equalization of a small reverber-
ant room is not desired.

APPENDIX

Proof for the relation (13).
The real part of the complex cepstrum of h(n) in (6) is
defined as the inverse DFT of the function
H(k) =log |H(k)|. (A.1)
Applying the direct DFT on the real cepstrum of the

minimum-phase hyp(n) in the relation (7) for L = 1 leads
to

Hup(k) = log | Hmp(K) |. (A.2)
For L # 1, the relation (A.2) becomes
~ 1
Fmp(k) = | log | Hinp(k)|. (A3)

Using the relation (3), the minimum-phase part Hp, (k) of
the relation (9) can be expressed as follows:

Hpp(k) = exp (%log |Hmp(k)|) = exp (%log |H(k)|).

(A4)
Therefore, the inverse of Hyp(k), Gmp (k) is given by
Gunp(k) = exp ( - %log |H(K)| ) (A5)
or
10g | Gup(K) | = —% log [H(K)|. (A.6)
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