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We advocate facial image compression technique in the scope of distributed source coding framework. The novelty of the proposed
approach is twofold: image compression is considered from the position of source coding with side information and, contrarily
to the existing scenarios where the side information is given explicitly; the side information is created based on a deterministic
approximation of the local image features. We consider an image in the overcomplete transform domain as a realization of a
random source with a structured codebook of symbols where each symbol represents a particular edge shape. Due to the partial
availability of the side information at both encoder and decoder, we treat our problem as a modification of the Berger-Flynn-Gray
problem and investigate a possible gain over the solutions when side information is either unavailable or available at the decoder.
Finally, the paper presents a practical image compression algorithm for facial images based on our concept that demonstrates the

superior performance in the very-low-bit-rate regime.
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1. INTRODUCTION

The urgent demand of efficient image representation is rec-
ognized by the industry and research community. Its neces-
sity is highly increased due to the novel requirements of many
authentication documents such as passports, ID cards, and
visas as well as recent extended functionalities of wireless
communication devices. The document, ticket, or even en-
try pass personalization are often requested in many authen-
tication or identification protocols. In most cases, classical
compression techniques developed for generic applications
are not suitable for these purposes.

Wavelet-based [1, 2] lossy image compression techniques
[3-6] have proved to be the most efficient from the rate-
distortion point of view for the rate range of 0.2—1 bits per
pixel (bpp). The superior performance of this class of algo-
rithms is justified by both decorrelation and energy com-
paction properties of the wavelet transform and by the effi-
cient adaptive both interband (zero trees [5]) and intraband
(estimation quantization (EQ) [7, 8]) models that describe
the data in the wavelet subbands. Recent results in wavelet-
based image compression show that some modest perfor-
mance improvement (in terms of peak signal-to-noise ratio
(PSNR) up to 0.3dB) could be achieved either taking into
account the nonorthogonality of the transform [9] or using
more complex higher-order context models of wavelet coef-
ficients [10].

During years, a standard benchmark database of im-
ages for wavelet-based compression algorithm evaluation
was used. It includes several 512 X 512 grayscale test images
(like Lena, Barbara, Goldhill) and the verification was per-
formed for the rates 0.2—1 bpp. In some applications, which
include person authentication data like photo images or fin-
gerprint images, the operational conditions might be differ-
ent. In this case, especially for strong compression (below
0.15bpp), the resulting image quality of the state-of-the-art
algorithms is not satisfactory enough (Figure 1). Therefore,
for this kind of applications more advanced techniques are
needed to satisfy the fidelity constrains.

In this paper, we address the problem of classical wavelet-
based image compression enhancement by using side infor-
mation within a framework of distributed coding of corre-
lated sources. Recently, it was practically shown that it is
possible to achieve a significant performance gain when the
side information is available at the decoder, while the encoder
has no access to the side information [11]. Using the side in-
formation from an auxiliary analog additive white Gaussian
noise (AWGN) channel in the form of a noisy copy of the
input image at the decoder, it was reported a PSNR enhance-
ment in the range of 1-2 dB depending on the test image
and the compression rate. It could be noted that the perfor-
mance of this scheme strongly depends on the state of the
auxiliary channel, which should be known in advance at the
encoding stage. Moreover, it is assumed that the noisy copy
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FIGURE 1: (a) 256 X 256 8-bit test image Slava. Results of compres-
sion with rate 0.071 bits per pixel (bpp) using (b) JPEG2000 stan-
dard software (PSNR is 25.09 dB) and (c) state-of-the-art EQ coder
(PSNR is 26.36 dB).
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FIGURE 2: Slepian-Wolf coding.

of the original image should be directly available at the de-
coder. This situation is typical for the distributed coding in
the remote sensing applications or can be simulated as in
the case of analog and digital television simulcast [11]. In
the case of single-source compression, the side information
is not directly available at the decoder.

The main goal of this paper consists in the develop-
ment of a concept of single-source compression within a
distributed coding framework using virtually created side in-
formation. This concept is based on the accurate approxi-
mation of a source data using a structured codebook, which
is shared by the encoder and decoder, and the communica-
tion of the residual approximation term within the classical
wavelet-based compression paradigm.

The paper is organized as follows. In Section 2, funda-
mentals of source coding with side information are pre-
sented. In Section 3, an approach for single-source dis-
tributed lossy coding is introduced. A practical algorithm for
a very-low-bit-rate compression of passport photo images is
developed in Section 4. Section 5 contains the experimental
results and Section 6 concludes the paper.

Notation 1. Scalar random variables are denoted by capital
letters X, bold capital letters X denote vector random variables,
letters x and x are reserved to denote the realization of scalar
and vector random variables, respectively. The superscript N is
used to denote N-length vectors xN = x = {x1,%2,..., x5},
where the ith element is denoted as x;. X ~ px(x) or X ~ p(x)
indicates that a random variable X is distributed according to
px(x). The mathematical expectation of a random variable
X ~ px(x) is denoted by E, [X] or E[X]. H(X), HX,Y),
H(X | Y) denote the entropy of the random variable X, the
joint entropy of the random variables X and Y, and the condi-
tional entropy of the random variable X given Y, respectively.
By I(X;Y)and 1(X;Y | Z), we denote the mutual information

ief{l,2...,2Nk}

X —>

Decoder —>X
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FIGURE 3: Lossy source coding system without side information.

between the random variables X and Y, and the conditional
mutual information between the random variables X and Y
given the random variable Z, respectively. Rx denotes the rate of
communications for the random variable X. Calligraphic font
X is used to indicate sets X € X, and |X| indicates the car-
dinality of a set. R™ is used to represent the set of positive real
numbers.

2. DISTRIBUTED CODING OF CORRELATED SOURCES
2.1. Slepian-Wolf encoding

Assume that it is necessary to encode two discrete-alphabet
pair wisely independent and identically distributed (i.i.d.)
random variables X and Y with joint distribution pxy(x,y) =
Hszlekyk (xk> yx). A Slepian-Wolf [12, 13] code allows per-
forming lossless encoding of X and Y individually using two
separate encoders, and the decoding is performed jointly as
presented in Figure 2. Using a random binning argument, it
was shown that the efficiency of such a code is the same as in
the case when joint encoding is used. It means that the en-
coder bit rates pair (Rx, Ry) is achievable when the following
relationships hold:

Rx > HX|Y),
Ry = H(Y | X), (1)
Rx + Ry = H(X,Y).

2.2. Lossy compression with side information

In the lossy compression setup, it is necessary to achieve the
minimal possible distortions for a given target coding rate.
Depending on the availability of side information, several
possible scenarios exist [14].

No side information is available

Imagine that it is needed to represent an i.i.d. source se-
quence X ~ px(x), X € XN using the encoding mapping
fe: XN — {1,2,...,2N’} and the decoding mapping fp :
{1,2,..., 2Nk} — XN with the minimum average bit rate R
bits per element. The fidelity of representation is evaluated
using the average distortion D = (l/N)ZZI:]:IE[d(xk,fck)],
where the distortion measure d(x, x) is determined in general
as a mapping XN x XN — R*. Due to Shannon [12, 15], it
is well known that the optimal performance of such a com-
pression system (Figure 3) (the minimal achievable rate for
certain distortion level) is determined by the rate-distortion
function,

Rx(D) = min

1(X;X). 2)
p(x|x):25 p(XIx)d(X,x)<D
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FIGURE 4: Wyner-Ziv coding.

Side information is available only at the encoder

In this case, the performance limits coincide with the pre-
vious case and the rate-distortion function could be deter-
mined using (2) [16].

Side information is available only at the decoder
(Wyner-Ziv coding)

Fundamental performance limits of source coding systems
with side information available only at the decoder (Figure 4)
were established by Wyner and Ziv [12, 17]. The Wyner-Ziv
problem could be formulated in the following way: given the
side information only at the decoder, what will be the mini-
mum rate Rx necessary to reconstruct the source X with av-
erage distortion less than or equal to a given distortion value
D? By other words, assume that we have a sequence of in-
dependent drawings of pairs {X, Yi} of dependent random
variables, {X,Y} ~ p(x,y), (X,Y) € XN x YN. Our goal
is to construct an Rx-bits-per-element encoder fr : XN —
{1,2,...,2N%} and joint decoder fp : {1,2,...,2NRx} x
YN . XN such that the average distortion satisfies the fi-
delity constraint:

=S py)pRI%y) <D. (3)

05

E[d(X, fo(Y, fe(X)))]

Using the asymptotic properties of random codes, it was
shown [17] that the set of achievable rate-distortion pairs of
such a coding system will be bounded by the Wyner-Ziv rate-
distortion function:

[1(U;X)

Rx(D)Y¥ = min -1(U;Y)], (4)

plulx)p(Rlx,y)

where the minimization is performed over all p(u | x)p(x |
x, y) and all decoder functions fp satistying the fidelity con-
straint (3). U is an auxiliary random variable such that | U| <
|X|+1and Y — X — U forms a Markov chain. Hence, (4)
could be rewritten as follows:

Rx(D){4 = min I(U;X|Y), (5)
pulx)p(xlx,y)

where the minimization is performed over all p(u | x)p(x |
X, y) subject to the fidelity constraint (3).

It is worth to note that for the case of zero distortions, the
Wyner-Ziv problem corresponds to the Slepian-Wolf prob-
lem, that is, RX(O)X‘Y =HX|Y).

X NRx
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F1GURE 5: Berger-Flynn-Gray coding.

Lossy compression of correlated sources
(Berger-Flynn-Gray coding)

This problem was investigated by Berger [18] and Flynn and
Gray [19], and the general scheme is presented in Figure 5.

As in the previous case, Berger-Flynn-Gray coding refers
to the sequence of pairs {X, Y} ~ p(x,y), (X,Y) € XN x YN,
where now Y is available at both encoder and decoder, while
in the Wyner-Ziv problem it was available only at the de-
coder. It is necessary to construct an Rx-bits-per-element
joint coder fg : XN x YN — {1,2,...,2N%} and a joint de-
coder fp : {1,2,...,2NRx} x YN — XN such that the aver-
age distortion satisfies E[d(X, fp(Y, fz(X,Y)))] < D. In this
case, the performance limits are determined by the condi-
tional rate-distortion function,

Rx(D)'¢ = min I(X;X | Y), (6)
p(Xlx,y)

where the minimization is performed over all p(X | x, y) sub-
ject to the fidelity constraint (3). The Berger-Flynn-Gray rate
in (6) is, in general, smaller than the Wyner-Ziv rate (5) since
the availability of the correlated source Y at both encoder and
decoder makes possible to reduce the ambiguity about X.
Comparing the rate-distortion performance of different
coding scenarios with the side information, it should be
noted that, in general, the following inequalities hold [20]:

Rx(D) = Rx(D)}[§ = Rx(D)¥I¥. (7)

The last inequality becomes equality, that is, RX(D)}(V‘{, =
Rx(D)}¥, only for the case of Gaussian distribution of the
source X and mean square error (MSE) distortion measure.
For any other pdf, performance loss exists in the Wyner-Ziv
coding. It was shown in [20] that this loss is upper bounded
by 0.5 bit,

Rx(D){¥ — Rx(D)}}Y = 0.5. (8)

Therefore, due to the fact that natural images have highly
non-Gaussian statistics [8, 21, 22], compression of this data
using the Wyner-Ziv strategy will always lead to the perfor-
mance loss. The main goal of subsequent sections consists in
the extension of the classical distributed coding setup to the
case of a single-source coding scenario in the very-low-bit-
rate regime.
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FiGure 6: Block diagram of single-source distributed coding with
side information.
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FIGURE 7: (a) Test image Slava and its fragment (marked by square):
two-region modeling of the fragment, (b) in the coordinate domain,
and (c) in the nondecimated wavelet transform domain.

3. PRACTICAL APPROACH: DISTRIBUTED SOURCE
CODING OF A SINGLE SOURCE

3.1. Coding block diagram

The block diagram of a practical single-source distributed
coding system with side information is presented in Figure 6.
The system consists of two main functional parts. The first
part includes the main encoder that is working as a classical
quantization-based lossy coder with varying rates. The sec-
ond part includes the block of transition detection that ap-
proximates the image edges and creates some auxiliary image
Y, as a close approximation to X. The index encoder com-
municates the parameters of approximation model to the de-
coder. The shape codebook is shared by both transition de-
tection block and decoder.

The intuition behind our approach is based on the as-
sumption that natural images in the coordinate domain can
be represented as a union of several stationary regions of dif-
ferent intensity levels or in the nondecimated wavelet trans-
form domain [23] using edge process (EP) model. This as-
sumption and the EP model have been used in our previous
work in image denoising where promising results have been
reported [24].

Under the EP model, an image in the coordinate domain
(Figure 7(a)) is composed of a number of nonoverlapping
smooth regions (Figure 7(b)). Accordingly, in the critically
sampled or nondecimated wavelet transform domain, it is
represented as a union of two types of subsets: the first one
contains all samples from flat image areas, while the second

Shape index j
YY) Y1) YOy @ ... Y@y M) yEM) .y (M)
\ ) ¢ J \ J
Shape coset 1 Shape coset i Shape coset M

F1GURE 8: Shape cosets from the shape codebook Y.

one represents edges and textures. It is supposed that the
samples from the latter subset propagate along the transition
direction (Figure 7(c)). Accurate tracking of the region sep-
aration boundary in the coordinate domain setup or transi-
tion profile propagation in the transform domain setup al-
lowed to achieve image denoising results that are among the
state-of-the-art for the case of AWGN [24].

3.2. Codebook construction

Contrarily to the image denoising setup, in the case of lossy
wavelet-based image compression we are interested in con-
sidering not the behavior of edge profile along the direction
of edge propagation, but the different edge profiles. Due to
the high variability of edge shapes in real images and the
corresponding complexity of the approximation problem, we
will exploit a structured codebook for shape representation.
It means that several types of shapes will be used to con-
struct a codebook where each codeword represents one edge
of some magnitude. A schematic example of such a code-
book is given in Figure 8, where several different edge profiles
are exploited for image approximation. This structured code-
book has a coset-based structure, where each coset contains
the selected triple of edge profiles of a certain amplitude.
More formally, the structured codebook Y = {y(i)},
where i = 1,2,..., M, and a coset (9) can be represented as

in Figure 9:
yi@) yiG) - yh()
yi() y3() - yR(i)
y(i) =1 . —_— e 9)
yiG) yh) - Yl

Here, y/ (i) represents the shape j from the shape coset i. All
shape cosets i consist of the same shape profiles, that is, j €
{1,2,...,J},andi € {1,2,..., M} for the example presented
in Figure 8.

Important points about the codebook are as follows: (a)
it is image independent, (b) the considered shapes are unidi-
mensional, (c) the codewords shape could be expressed ana-
lytically, for instance, using apparatus of splines, and (d) the
codebook dimensionality is determined by the type of trans-
form used and the compression regime. Therefore, a concept
of successive construction refinement [25] of the codebook
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FIGURE 9: Structured codebook: shape coset index i (or magnitude)
is communicated explicitly by the main encoder as transition lo-
cation and magnitude of quantized coefficients, and shape index j
(j € {1,2,...,]}) is encoded by index encoder.

might be used. The intuition behind this approach could be
explained using the coarse-fine quantization framework pre-
sented in Figure 10.

It means that for the case of high compression ratios,
when there is not much rate to code the shape index, a single
shape profile will be used (like a coarse quantizer). In other
regimes (at medium or at high rates), it is possible to improve
the fidelity of approximation adding more edge shapes to the
codebook. In this case, we could assume that the high-rate
quantization assumption becomes valid.

The task of real edge approximation according to the
shape codebook can be formulated, for instance, like a clas-
sical £2 norm approximation problem,

¥ (i) = argmin IIx -y ], (10)

{yl()}, 1=i<M, 1<j<]

where the minimization is performed over the whole code-
book in each image point.

3.3. Practical implementation: high-, medium-,
and low-bit-rate regimes

Itis clear that in the presented setup, the computational com-
plexity of image approximation in each point will be signif-
icant, and can be unacceptable in some realtime application
scenarios. To simplify the situation, searching space dimen-
sionality might be significantly reduced using techniques that
simplify the edge localization. Canny edge detector [26] can
be used for this purpose.

The edge of a real image could be considered as a
noisy or distorted version of the corresponding codeword
{y{(i),yé(i),...,ylj\,(i)} (edge shape) with respect to the
codebook Y, that is, some correlation between an original

proximation.

The coding strategy can be performed in a distributed
manner. In general, the main encoder performs the quanti-
zation of the edge and communicates the corresponding in-
dices of reconstruction levels to the decoder. This informa-
tion is sufficient to determine the shape coset index i at the
decoder for different compression regimes, including even
very-low-bit-rate regime (besides the case when quantiza-
tion to zero is performed). The index j of edge shape within
a coset is communicated by the index encoder to the de-
coder. Having the coset index and the shape index, the de-
coder looks in the coset bin i for y/ (i) and generates the re-
production sequence X = fp(X'(i),y/(i)), where X' (i) is the
data reproduced at the decoder based only on the index i.

In the case of high rates, the main encoder performs a
high-rate (high-accuracy) approximation of the image edges.
It means that the index encoder does not produce any output,
that is, both edge magnitude and edge shape could be recon-
structed directly from the information contained in the main
decoder bit stream. Therefore, the role of side information
represented by the fine codebook consists in the compensa-
tion of quantization noise influence.

For middle rates, the edge magnitude prediction is still
possible using the main encoder bitstream. However, the
edge shape approximation accuracy for this regime is not
high enough to estimate the edge shape and its index should
be communicated to the decoder by the index encoder. One
can note that in such a way we end up with vector-like edge
quantization using the off-line designed edge codebook. The
role of the side information remains similar to the previ-
ous case and targets the compensation of quantization er-
ror.

At low rates, a single codeword (optimal in the mean
square error sense) should be chosen to represent all shapes
within the given image (coarse codebook in Figure 10). In
more general case, one can choose a single shape codeword
that is the same for all images. This is a valid assumption for
the compression of image databases with the same type of
images. Contrarily to the above case of middle rates, the de-
coder operates with a single edge codeword that can be ap-
plied to all cases where the edge coefficients are partially pre-
served in the corresponding subbands. Moreover, the edge
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reconstruction is possible even when the edge coefficients
in some subbands are completely discarded by the deadzone
quantization.

The practical aspects of implementation of the presented
single source coding system with side information are out
of the scope of the paper. In the following section, we will
present an application of the proposed framework to the
very-low-bit-rate compression of passport photo images.

4. DISTRIBUTED CODING OF IMAGES WITH
SYMMETRIC SIDE INFORMATION:
COMPRESSION OF PASSPORT PHOTOS
AT VERY LOW BIT RATES

In this section, the case of single source distributed coding
system with side information is discussed for the case of
very-low-bit-rate (less than 0.1 bpp) compression of passport
photo images. The importance of this task is justified by the
urgent necessity to store personal information on the capac-
ity restricted media authentication documents that include
passports, visas, ID cards, driver licenses, and credit cards us-
ing digital watermarks, barcodes, or magnetic strips. In this
paper, we assume that the images of interest are 8-bit gray
scale images of 256 X 256 size. As it was shown in Figure 1,
existing compression tools are unable to provide the satisfac-
tory quality solution to this task.

The scheme presented in Figure 6 is used as a basic setup
for this application. As it was discussed earlier, for the case
of very-low-bit-rate regime, only one shape profile (simple
step edge) is exploited. Therefore, index encoder is not used
in this particular case since only one index is possible as its
output and, therefore, it is known a priory by the decoder.
Certainly, better performance can be expected if one approxi-
mates transitions using complete image codeword (Figure 6).
The price to pay for that is additional log, J bits of side in-
formation per shape, where J is the number of edge shapes
within each coset.

In the next subsections, we discuss in details the particu-
larities of encoding and decoding at the very-low-bit rates.

4.1. Transition detection

Encoding

Due to the fact that high-contrast edges consume a signifi-
cant amount of the allocated bit budget for the complete im-
age storage, it would be beneficial from the reconstructed im-
age quality perspective to reduce the ambiguity about these
image features.

On the first step, the position of the principal edges (the
edges with the highest contrast) is detected using the Canny
edge detector. Due to the fact that the detection result is
not always precise (some position deviation is possible), ac-
tual transition location is detected using the zero-crossing
concept.

Zero-crossing concept is based on the fact that in the non-
decimated wavelet transform domain (algorithm a trois [23]

14
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FIGURE 11: Zero-crossing concept: 4-level decomposition of the step
edge in the nondecimated domain.

is used for its implementation) all the representations of an
ideal step edge from different decomposition levels in the
same spatial orientation cross the horizontal axis in the same
point referred to as the zero-crossing point (Figure 11). This
point coincides with a spatial position of the transition in
the coordinate domain. Besides, the magnitudes of princi-
ple peaks (maximum and minimum values of the data in
the vicinity of transition in the nondecimated domain) of
the components are related pairwise from high to low fre-
quencies with certain fixed ratios which are known in ad-
vance. Therefore, when the position of the zero-crossing point
is given and, at least, one of the component peak magnitudes
is known from original step edge, it is possible to predict and
to reconstruct the missing data components with no error.

Consequently, if it is known at the decoder that an ideal
step edge with a given amplitude is presented in a given image
location, it is possible to assign zero rate to the predictable
coefficients at the encoder, allowing higher quality recon-
struction of unpredictable information.

Decoding

For this mode, it is assumed that the low-resolution version
of the original data obtained using main encoder bitstream
is already available. Detection of the coarse positions of main
edges is performed on the interpolated image analogically to
the encoder case. To adjust detection results, a new concept
of zero-crossing detection is used.

In the targeted very-low-bit-rate compression scenario,
the data are severely degraded by quantization. To make zero-
crossing detection more reliable in this case, more levels of
the nondecimated wavelet transform can be used. The ad-
ditional reliability is coming from the fact that the data at
the very low-frequency subbands almost do not suffer from
quantization. The gain in this case is limited by the informa-
tion that is still presented at these low frequencies: only the
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FIGURE 12: Zero-crossing concept: decoding stage.

edges propagating in all the subbands could be detected in
such a way.

In order to reconstruct high-frequency subbands, both
edge position and edge magnitude are predicted using
low-frequency subbands. In Figure 12, the position of the
zero-crossing point is estimated based on the data from the
3rd and 4th subbands. Having their maximum magnitude
values, the reconstruction of high frequency subbands can
be performed accurately based on the fixed magnitude rela-
tionships (Figure 11).

4.2. Main encoder

To justify the main encoder structure, we would like to point
out that the main gain achieved recently in wavelet-based
lossy transform image coding is due to the accuracy of the
underlying stochastic image model.

One of the most efficient and accurate stochastic im-
age models that represent images in the wavelet transform
domain is based on the parallel splitting of the Laplacian
source firstly introduced by Hjorungnes et al. [28]. The main
underlying assumption here is that global i.i.d. zero-mean
Laplacian data can be represented, without loss according to
the Kullback-Leibler divergence, using an infinite mixture of
Gaussian pdfs with zero-mean and exponentially distributed
variances,

A Joo 1 27942 2
(=Alx]) — (x2/20%) ) (=A%) 7,2

e = e e do-, 11

2 0 V2ma? (11)

where A is the parameter of the Laplacian distribution. The
Laplacian distribution is often used to model the global
statistics of the high-frequency wavelet coefficients [8, 21,
22].

Hjorungnes et al. [28] were the first who demonstrated
that, if the side information (the local variances) are available

at both encoder and decoder, the gain in the rate-distortion
sense of coding the Gaussian mixture instead of the global
Laplacian source is given by

R1(D) — Rye(D) = 0.312 bit/sample, (12)

where R; (D) and Ry;g(D) denote the rate-distortion func-
tions for the global i.i.d. Laplacian source and the Gaussian
mixture, respectively.

The practical problem of the side information commu-
nication to the decoder was elegantly solved in [7, 8]. The
developed EQ coder is based on the assumption of the slow
varying nature of the local variances of the high-frequency
subband image samples. As a consequence, this variance can
be accurately estimated (predicted) given its quantized causal
neighborhood.

According to the EQ coding strategy, the local variances
of the samples in the high-frequency wavelet subbands are es-
timated based on the causal neighborhood using maximum
likelihood strategy. When it is available, the data from the
parent subband are also included to enhance the estimation
accuracy.

At the end of the estimation step, the coefficients are
quantized using a uniform threshold quantizer selected ac-
cordingly to the results of the rate-distortion optimization.
In particular, the Lagrange functional should be minimized,
that on the sample level is given by

yi = ri +Ad;, (13)

where 7; is the rate corresponding to the entropy of the quan-
tizer output applied to the ith sample, d; is the corresponding
distortion, and A is the Lagrange multiplier. The encoding of
the quantized data is performed using the bin probabilities
of the quantizers, where the samples fall, by an arithmetic
coder.

While at the high-rate regime the approximation of the
local variance field by its quantized version is valid, in the
case of low rates it fails. The reason for that is the quantiza-
tion to zero most of the data samples that makes local vari-
ance estimation extremely inaccurate.

The simple solution proposed in [7, 8] consists in the
placement of all the coefficients that fall into the quantizer
deadzone in the so-called unpredictable class, and the rest in
the so-called predictable class. The samples of the first one
are considered to be distributed globally as an i.i.d. general-
ized Gaussian distribution, while the infinite Gaussian mix-
ture model is used to capture the statistics of the samples in
the second one. This separation is performed using a sim-
ple rate-dependent thresholding operation. The parameters
of the unpredictable class are exploited in the rate-distortion
optimization and are sent to the decoder as side informa-
tion.

The experimental results presented in [7, 8] allow to con-
clude about the state-of-the-art performance of this tech-
nique in the image compression application.
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TasLE 1: Benchmarking of the developed compression method versus existing lossy encoding techniques.
Slava (PSNR, dB) Julien (PSNR, dB) Jose (PSNR, dB)
ROI ROI ROI
Bytes ROI ROI ROI
(bpp) JPEG  opryT EQ DSSC JPEG  opryT EQ DSSC JPEG  opryT EQ DSSC
2000 2000 2000
(03(());)7) 21.04 25.27 10.33 25.93 19.87 22.82 9.76 23.35 20.76 26.11 10.39 27.29
(04(())29) 22.77 26.08 18.56 26.81 21.47 23.43 17.94 23.89 23.21 27.30 19.86 28.27
(05(())21) 24.92 26.85 22.36 27.41 23.07 23.81 21.86 24.15 25.50 28.20 25.09 28.81
(06(());)3) 25.78 27.41 25.96 27.85 23.78 24.17 22.81 24.28 26.39 28.74 27.09 29.10
(078;)5) 26.66 27.96 27.12 28.09 24.53 24.44 23.61 24.50 28.08 29.31 28.37 29.35
(08(());)9) 27.39 28.56 27.71 28.16 25.04 24.68 24.24 24.56 28.72 29.89 29.31 29.46

(a) (b)
FIGURE 13: Test image Slava: (a) region of interest and (b) back-
ground four-quadrant splitting.

Motivated by the EQ coder performance, we designed
our main encoder using the same principles with several
modifications as follows:

(i) at the very-low-bit-rate regime, most of the informa-
tion at the first and the second wavelet decomposition
levels is quantized to zero. We assume that all the data
about strong edges could be reconstructed with some
precision using the side information and do not allo-
cate any rate to these subbands;

(ii) high-frequency subbands of the third decomposition
level are compressed using a region of interest strategy
(Figure 13(a)), where the region of interest is indicated
using three extra bytes. The image regions outside of
the region of interest will be reconstructed using low-
frequency information, and four extra bytes for the
mean brightness of the background of the photo im-
age in four quadrants (Figure 13(b));

(iii) a 3 X 3 causal window is applied for local variance es-
timation;

(iv) no parent dependencies are taken into account on the
stochastic image model, and only samples from the
given subband are used [29].

The actual bitstream from the encoder is constituted by
the data from the EQ encoder, three bytes determining the

position of the rectangular region-of-interest, and four bytes
characterizing the background brightness.

4.3. Index encoder

As it was mentioned in the previous subsection, only one
edge profile (the step edge) is used at the very-low-rate
regime. Thus, index encoder does not produce any output.

4.4. Decoder

The decoder performs the reconstruction of the compressed
data using the main encoder output and the available side
information. The bitstream of the main encoder is decom-
pressed by the EQ decoder. The fourth wavelet transform de-
composition level is decompressed using classical algorithm
version, and the third level is reconstructed using region of
interest EQ decoding.

Having two lowpass levels of decomposition, the low-
resolution reconstruction (with two high-frequency decom-
position levels equal to zero) of the original photo using
wavelet transform is obtained. Final reconstruction of high-
quality data is performed based on the interpolated image,
and the transition detection block information in the non-
decimated wavelet transform domain.

5. EXPERIMENTAL RESULTS

In this section, we present the experimental results of very-
low-bit-rate passport photo compression based on the pro-
posed framework of distributed single source coding with
symmetrical side information (DSSC). A set of 11 images
were used in our experiments. The results for three of them
are presented in Table 1, Figures 14 and 15 versus those pro-
vided by the standard EQ algorithm as well as JPEG2000 with
region of interest coding (ROI-JPEG2000) [30] and set parti-
tioning in hierarchical trees algorithm with region of interest
coding (ROI-SPIHT) [31].
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FIGURE 14: Benchmarking of the developed compression method versus existing lossy encoding techniques: (a) Slava, (b) Julien, and (c) Jose

test images.
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FiGure 15: Experimental results. The first column: the original test

images; the second column: ROI-JPEG2000 compression results for the

rate 400 bytes; the third column: ROI-SPTHT compression results for the rate 400 bytes; the fourth column: EQ compression results for the
rate 400 bytes; the fifth column: DSSC compression results for the rate 400 bytes; the sixth column: ROI-JPEG2000 compression results for
the rate 700 bytes; the seventh column: ROI-SPIHT compression results for the rate 700 bytes; the eighth column: EQ compression results
for the rate 700 bytes; and the ninth column: DSSC compression results for the rate 700 bytes.

The performance is evaluated in terms of the peak signal-
to-noise ratio PSNR = 10log,,(255%/[Ix — X[|?).

The obtained results allow to conclude about the pro-
posed method advantages over the selected competitors for
compression rates below 0.09 bpp in terms of both visual
quality and PSNR. Performance loss at higher rate in our case
in comparison with ROI-SPIHT and ROI-JPEG2000 is ex-
plained by the necessity of algorithm performance optimiza-
tion for this rate regime that includes a modification of the
unpredictable class definition.

6. CONCLUSIONS

In this paper, the problem of distributed source coding of a
single source with side information was considered. It was
shown that the compression system optimal performance
for non-Gaussian sources can be achieved using the Berger-
Flynn-Gray coding setup. A practical very-low-bit-rate com-
pression algorithm based on this setup was proposed for cod-
ing of passport photo images. Experimental validation of this
algorithm performed on a set of passport photos allows to
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conclude its superiority over a number of existing encod-
ing techniques at rates below 0.09 bpp in terms of both vi-
sual quality and PSNR. The realized performance loss of the
developed algorithm at rates higher than 0.09 bpp is justi-
fied by the necessity of its parameters optimization for this
rate range. This extension is a subject of our ongoing re-
search.

DISCLAIMER

The information in this document reflects only the authors’
views, is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.
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