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Fourier Transforms of Finite Chirps
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Chirps arise in many signal processing applications. While chirps have been extensively studied as functions over both the real
line and the integers, less attention has been paid to the study of chirps over finite groups. We study the existence and properties
of chirps over finite cyclic groups of integers. In particular, we introduce a new definition of a finite chirp which is slightly more
general than those that have been previously used. We explicitly compute the discrete Fourier transforms of these chirps, yielding
results that are number-theoretic in nature. As a consequence of these results, we determine the degree to which the elements of
certain finite tight frames are well distributed.
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1. INTRODUCTION

A linear chirp is a function whose frequency changes linearly
with time. For example, while a wave function of the form
exp(2πixt) has constant frequency x, the chirp exp(2πi(xt +
yt2/2)) has frequency x+ yt at time t ∈ R. Chirps often arise
in nature as a consequence of the Doppler effect, the phe-
nomenon by which the perceived frequency of a wave is al-
tered whenever the wave is emanating from or reflecting off a
moving body. As such, chirps have historically been of great
interest in applications such as radar and sonar.

However, the study of chirps has mostly been confined to
the real line and the integers, in the context of integral trans-
forms and the chirpZ-transform, respectively. Less attention
has been paid to the study of chirps over finite cyclic groups,
that is, to chirps over Za ≡ Z/aZ = {0, . . . , a − 1}, where
a is a positive integer. This is in contrast to wave functions
which, in the context of Fourier transforms, have been stud-
ied for many decades on arbitrary locally compact abelian
groups.

At the same time, the concept of a finite chirp is by no
means new. An excellent discussion of a modern application
of finite chirps is given in [1], in which a discrete chirp-Fourier
transform is introduced. Chirplets have been used in image
processing for over a decade [2]. For that matter, discrete
chirps, under a different name, were investigated by Gauss in
his study of quadratic reciprocity. Indeed, the computation
ofGauss sums [3] is equivalent to finding the discrete Fourier
transform (DFT) of a finite chirp, and was a subject of great
interest in the mid-nineteenth century. This connection be-
tween modern signal processing and classical number theory

is emphasized in [4], in which the trace of the DFT matrix,

Tr
(
Fa
) = 1√

a

a−1∑

t=0
e2πit

2/a, (1)

is noted to be the canonical example of a Gauss sum. An in-
dependent derivation of this trace is given in [5], giving an
interesting example of when the concepts of applied signal
processing may be used to prove results in pure mathemat-
ics.

Section 2 provides a brief introduction to the mathemat-
ics of finite signal processing, with an emphasis upon the fi-
nite form of the Poisson summation formula. In Section 3,
we introduce our definition of finite chirps and discuss their
elementary properties. In Section 4, we begin the task of
computing the Fourier transforms of our chirps. In par-
ticular, we compute the magnitudes of the Fourier coeffi-
cients and discuss their significance with respect to finite
tight frames. Finally, in Section 5, we complete our deriva-
tion of the Fourier transforms of these chirps.

2. PRELIMINARIES

Let Z+ be the set of all positive integers. For any a ∈ Z+, let
Za ≡ Z/aZ be the finite group of integers in which addition
is performed modulo a. Consider the space of all complex-
valued functions over Za,

�
(
Za
) = { f : Za −→ C

}
, (2)

in which function addition, scalar multiplication, and the
inner product are defined in the usual fashion. We will
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equivalently regard elements of �(Za) as a-periodic, complex-
valued sequences over Z so as to consider f (t) for any t ∈
Z. The Dirac basis for �(Za) consists of the delta functions
{δxa}x∈Za ,

δxa(t) =
⎧
⎨

⎩
1, t = x

0, t �= x
mod a, (3)

and is an orthonormal basis for �(Za). Meanwhile, the
Fourier basis for �(Za) consists of the wave functions
{mx

a}x∈Za ,

mx
a(t) = e2πixt/a = wxt

a , (4)

where wa ≡ e2πi/a is the “first” ath root of unity. When suit-
ably scaled by a factor of

√
a, the Fourier basis is also an or-

thonormal basis for �(Za).
For x ∈ Z, the corresponding translation andmodulation

operators are Tx
a, M

x
a : �(Za)→ �(Za), respectively, where,

(
Tx
a f
)
(t) = f (t − x),

(
Mx

a f
)
(t) = mx

a(t) f (t).
(5)

Next, the Fourier transform on Za is Fa : �(Za)→ �(Za),

(
Fa f

)
(x) = 1√

a

∑

t∈Za

f (t)w−xta . (6)

Finally, the product and convolution of any two elements
f , g ∈ �(Za) are f g, f ∗ g ∈ �(Za), respectively, where

( f g)(t) = f (t)g(t),

( f ∗ g)(t) =
∑

s∈Za

f (t − s)g(s). (7)

Several well-known properties of these operations are sum-
marized in the following result. Due to their ubiquity,
these properties are stated without proof, and will be used
throughout our work without explicit reference.

Proposition 1. For any f , g ∈ �(Za) and any x, y ∈ Z,

(1) Mx
aT

y
a = m

y
a(x)T

y
aMx

a,

(2) FaTx
a =M−x

a Fa,

(3) FaMx
a = Tx

aFa,

(4) Fa( f g) = (1/
√
a)(Fa f )∗ (Fag),

(5) Fa( f ∗ g) = √a(Fa f )(Fag).

We will also make use of a finite version of the Poisson
summation formula. Though not nearly as well known as its
infinite-dimensional cousins, this version is easily proved us-
ing finite geometric series. Here and throughout, we write
x | y to denote integers x and y such that x divides y.

Proposition 2. Let a, b ∈ Z+. Then, for all f ∈ �(Zab),

√
a
∑

f (t)
{t∈Zab ,a|t}

=
√
b
∑(

Fab f
)
(x)

{x∈Zab ,b|x}
. (8)

3. FINITE CHIRPS

Perhaps the most difficult aspect of finite chirps is finding
their “proper” definition. In [1], the lowest-order nontrivial
finite chirp is defined to be f ∈ �(Za),

f (t) = wt2
a = e2πit

2/a. (9)

We note that this chirp is well defined over Za, that is,

f (t + a) = e2πi(t+a)
2/a

= e2πit
2/ae2πi(2t+a)

= e2πit
2/a1

= f (t).

(10)

However, in the case of continuous chirps, we note that the
squared term in the exponent is usually accompanied by an
additional factor of 1/2. This is done to compensate for the
fact that the frequency of a wave is obtained by looking at the
derivative of the wave function. From this perspective, the
finite chirp should instead be defined as

g(t) = wt2/2
a = eπit

2/a. (11)

Indeed, much of the original work on Gauss sums [3] takes
g(t) as the “canonical” chirp rather than f (t). However, un-
der this definition,

g(t + a) = eπi(t+a)
2/a

= eπit
2/aeπi(2t+a)

= eπit
2/a(−1)a

= (−1)ag(t),

(12)

and thus g is not well defined over Za when a is odd. When
dealing with Gauss sums, this problem is usually avoided by
simply summing over {0, . . . , a− 1} rather than an arbitrary
collection of coset representatives. This approach is inade-
quate from the point of view of harmonic analysis and sig-
nal processing as one often needs to make translation-based
changes of variables in various sums.

We remedy the problem with g(t) in another way: by re-
placing the quadratic t2 with t(t − a). That is, we consider
ca ∈ �(Za),

ca(t) = wt(t−a)/2
a = eπit(t−a)/a. (13)

This definition was originally proposed by Kaiblinger [6], as
was presented publicly at the conference “Harmonic Anal-
ysis and Applications” in honor of John J. Benedetto’s 60th
birthday. As Kaiblinger noted, this chirp is well defined since

ca(t + a) = eπi(t+a)t/a

= eπit
2/a(−1)t

= eπit
2/a(−1)−t

= eπit(t−a)/a

= ca(t).

(14)
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A similar technique may be used to produce discrete ver-
sions of e2πit

n/n for any n ∈ Z+. For example, when n = 3 the
function e2πit(t−a)(t−2a)/3a is well defined over Za.

Returning to the quadratic, we have that for any x ∈ Z,
we may raise ca to the xth power in a pointwise fashion in
order to obtain a well defined xth-order chirp on Za,

cxa(t) = wxt(t−a)/2
a = (−1)xtwxt2/2

a , (15)

and with it, a chirp-modulation operator Cx
a : �(Za)→ �(Za),

(
Cx
a f
)
(t) = cxa(t) f (t). (16)

We note that for even integers x, cxa reduces to a power of the
finite chirp given in (9), and thus our definition is in fact an
extension of that given in [1]. We now state and prove some
elementary properties of these chirps.

Proposition 3. For a ∈ Z+ and any t, x, y ∈ Z,

(1) cxa = c−xa ,

(2) cx+aa = cxa when a is odd,

(3) cx+aa = ma/2
a cxa when a is even,

(4) cxa(yt) = c
xy2
a (t),

(5) cxa(−t) = cxa(t),

(6) c
y
a(t − x) = c

y
a(t)m

−xy
a (t)c

y
a(x),

(7) Tx
aC

y
a = c

y
a(x)M

−xy
a C

y
aTx

a,

(8) Mx
aC

y
a = C

y
aMx

a.

Proof. (1) This follows immediately from the fact that wa =
w−1a .

(2)-(3) Since t ∈ Z is even if and only if t2 is even,

wat2/2
a = eπiat

2/a = (−1)t2 = (−1)t . (17)

Therefore, for any a ∈ Z, we have

cx+aa (t) = (−1)(x+a)tw(x+a)t2/2
a

= (−1)xtwxt2/2
a (−1)atwat2/2

a

= cxa(t)(−1)at(−1)t
= (−1)(a+1)tcxa(t).

(18)

Thus, when a is odd, cx+aa (t) = cxa(t). If, on the other hand, a
is even, then a/2 ∈ Z and

cx+aa (t) = (−1)tcxa(t) = e2πi(a/2)t/acxa(t) = ma/2
a cxa. (19)

(4) As before, note that (−1)y = (−1)y2 . Thus,

cxa(yt) = (−1)xytwx(yt)2/2
a = (−1)xy2twxy2t2/2

a = c
xy2
a (t).

(20)
(5) Apply the previous result to y = −1.
(6) Simply note that

c
y
a(t − x) = (−1)y(t+x)wy(t−x)2/2

a

= (−1)yt(−1)yxwyt2/2
a w

−yxt
a w

yx2/2
a

= c
y
a(t)m

−xy
a (t)c

y
a(x).

(21)

(7) This follows immediately from the previous result.
(8) This follows immediately from the fact that both Mx

a

and C
y
a are multiplicative operators.

We next discuss a simple way in which our finite chirps
may be used to provide overcomplete decompositions of ele-
ments of �(Za). In particular, we consider the collection of a2

functions obtained by taking every modulation of {cya}a−1y=0.
That is, we consider the collection

{
mx

ac
y
a
}a−1
y=0, x∈Za

. (22)

Note that by the previous result, this collection is “complete,”
namely, it contains every possible modulation of every pos-
sible chirp. Furthermore, this collection is effectively trans-
lation invariant, as the translation of any element is a unit-
scalar multiple of another element.

The next result shows that this collection is a finite tight
frame for �(Za), and thus possesses an exceptionally efficient
means by which any f ∈ �(Za) may be decomposed into
a linear combination of the collection’s elements. The argu-
ment used is essentially the same idea used to show that any
union of orthonormal bases is a tight frame.

Proposition 4. For any a ∈ Z+,

f = 1
a2

a−1∑

y=0

∑

x∈Za

〈
f ,mx

ac
y
a
〉
mx

ac
y
a (23)

for all f ∈ �(Za).

Proof. We begin by recalling that the normalized Fourier ba-
sis {(1/√a)mx

a}x∈Za is an orthonormal basis for �(Za). For
any y ∈ Z, the fact that |cya(t)| = 1 for all t ∈ Za automat-
ically implies that {(1/√a)mx

ac
y
a}x∈Za is also an orthonormal

basis for �(Za). Thus, for any y ∈ Z, Parseval’s identity gives

a f =
∑

x∈Za

〈
fmx

ac
y
a
〉
mx

ac
y
a (24)

for all f ∈ �(Za). Summing these orthonormal basis decom-
positions over all y = 0, . . . , a− 1 gives

a2 f =
a−1∑

y=0

∑

x∈Za

〈
f ,mx

ac
y
a
〉
mx

ac
y
a (25)

for all f ∈ �(Za).

We conclude this section by noting that not all tight
frames are equally useful. As discussed in detail in [7], tight
frames tend to perform better in applications when the frame
elements are designed to be as uncorrelated as possible. In our
context, the degree to which our frame elements are uncor-
related is measured by the quantity

max
(x1,y1) �=(x2,y2)

∣∣〈mx1
a c

y1
a ,mx2

a c
y2
a
〉∣∣. (26)

As demonstrated below, this quantity may be explicitly com-
puted by first finding the magnitudes of the discrete Fourier
transforms of an arbitrary finite chirp.
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4. INNER PRODUCTS OFMODULATED CHIRPS

The remainder of this paper is dedicated to the computation
of the Fourier transforms of our finite chirps. The following
result, though simple, demonstrates the advantage of having
an extra “1/2” term present in the definition of our chirps,
as it allows us to easily complete a square that arises in the
exponents.

Lemma 1. For any a ∈ Z+ and any b, x, y ∈ Z,

(
Facba

)
(x + by) = mx

a(y)cba(y)
(
Facba

)
(x). (27)

Proof. We first note that

(
Facba

)
(x + by) = 1√

a

∑

t∈Za

cba(t)w
−(x+by)t
a

= 1√
a

∑

t∈Za

(−1)btwbt2/2
a w−xta w

−byt
a .

(28)

Next, we complete the square in the exponents, that is, we
observe that bt2 − 2byt = b[(t − y)2 − y2], and therefore

(
Facba

)
(x + by)

= 1√
a

∑

t∈Za

(−1)btwb[(t−y)2−y2]/2
a w−xta

= (−1)byw−by2/2a
1√
a

∑

t∈Za

(−1)b(t−y)wb(t−y)2/2
a w−xta

= cba(y)
1√
a

∑

t∈Za

(−1)btwbt2/2
a w

−x(t+y)
a

= cba(y)
1√
a

∑

t∈Za

cba(t)w
−x(t+y)
a .

(29)

To conclude, note that since cba is well defined over Za, we
may legitimately make a change of variables by translation:

(
Facba

)
(x + by) = w

−yx
a cba(y)

1√
a

∑

t∈Za

cba(t)w
−xt
a

= mx
a(y)cba(y)

(
Facba

)
(x).

(30)

The next result concerns the magnitudes of the Fourier
transforms of our chirps. Here and throughout, we write
(a, b) to denote the greatest common divisor of a, b ∈ Z. This
result also requires us to make the following definition: two
integers a and b have a common power of two if there exist odd
integers α and β such that a = 2mα and b = 2mβ for some
positive integerm. That is, a and b have a common power of
two if the exponents of two in their respective prime factor-
izations are equal.

Proposition 5. Let a ∈ Z+, b ∈ Z have the greatest common
divisor (a, b). If a and b do not have a common power of two,

∣
∣(Facba

)
(x)
∣
∣2 =

⎧
⎨

⎩
(a, b), x ∈ (a, b)Z,

0, x /∈ (a, b)Z.
(31)

Alternatively, if a and b do have a common power of two,

∣
∣(Facba

)
(x)
∣
∣2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a, b), x ∈ (a, b)
(
Z +

1
2

)
,

0, x /∈ (a, b)
(
Z +

1
2

)
.

(32)

Proof. To begin, we fix x ∈ Z and sum the statement of
Lemma 1 over all y ∈ Za, rescaled by a factor of

√
a:

1√
a

∑

y∈Za

(
Facba

)
(x + by) = 1√

a

∑

y∈Za

mx
a(y)cba(y)

(
Facba

)
(x)

= (Facba
)
(x)

1√
a

∑

y∈Za

cba(y)w
xy
a

= (Facba
)
(x)
(
Facba

)
(−x).

(33)

Next, we note that Proposition 3 gives that cba is an even func-
tion on Za, namely, cba(−t) = cba(t) for all t ∈ Za. As with any
locally compact abelian group, the Fourier transform of an
even function is even, and so (Facba)(−x) = (Facba)(x). Sim-
plifying, we obtain

∣
∣(Facba

)
(x)
∣
∣2 = 1√

a

∑

y∈Za

(
Facba

)
(x + by). (34)

To continue, we use the easily proven fact that
∑

t∈Za

f (bt) = (a, b)
∑

f (x)
{x∈Za , (a,b)|x}

(35)

for any f ∈ �(Za) and for any b ∈ Z. Applying this fact when
f = FaM−x

a cba gives

∣
∣(Facba

)
(x)
∣
∣2 = 1√

a

∑

y∈Za

(
T−xa Facba

)
(by)

= 1√
a

∑

y∈Za

(
FaM−x

a cba
)
(by)

= (a, b)√
a

∑(
FaM−x

a cba
)
(z)

{z∈Za , (a,b)|z}

.

(36)

Next, we apply the Poisson summation formula. Specifically,
in terms of Proposition 2, taking “a,” “b,” and “ f ” to be
a/(a, b), (a, b), and FaM−x

a cba, respectively, yields

∣
∣(Facba

)
(x)
∣
∣2 = (a, b)√

a

√
a/(a, b)
√
(a, b)

∑(
M−x

a cba
)
(t)

{t∈Za , [a/(a,b)]|t}

=
(a,b)−1∑

u=0

(
M−x

a cba
)( au

(a, b)

)

=
(a,b)−1∑

u=0
w−xau/(a,b)a (−1)bau/(a,b)wba2u2/2(a,b)2

a .

(37)

To simplify this expression, we note that

w−xau/(a,b)a = e−2πixau/a(a,b) = e−2πixu/(a,b). (38)
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Furthermore, since (−1)u2 = (−1)u for all u ∈ Z, then

wba2u2/2(a,b)2
a = eπiba

2u2/a(a,b)2 = (−1)uab/(a,b)2 . (39)

Thus,

∣∣(Facba
)
(x)
∣∣2 =

(a,b)−1∑

u=0
e−2πixu/(a,b)(−1)uab[(a,b)+1]/(a,b)2 . (40)

To conclude, note that if a and b do not have a common
power of two, then either a/(a, b), b/(a, b) or (a, b)+1 is even.
Our expression for |(Facba)(x)|2 is a geometric series:

∣
∣(Facba

)
(x)
∣
∣2 =

(a,b)−1∑

u=0
e−2πixu/(a,b)

=

⎧
⎪⎪⎨

⎪⎪⎩

(a, b),
x

(a, b)
∈ Z,

0,
x

(a, b)
/∈ Z,

=
⎧
⎨

⎩
(a, b), x ∈ (a, b)Z,

0, x /∈ (a, b)Z.

(41)

If, on the other hand, a and b have a common power of two,
then a/(a, b), b/(a, b), and (a, b) + 1 are all odd. In this case,
we obtain a slightly different geometric series:

∣∣(Facba
)
(x)
∣∣2 =

(a,b)−1∑

u=0
(−1)ue−2πixu/(a,b)

=
(a,b)−1∑

u=0
e−2πi[x/(a,b)−1/2]u

=

⎧
⎪⎪⎨

⎪⎪⎩

(a, b),
x

(a, b)
− 1/2 ∈ Z,

0,
x

(a, b)
− 1/2 /∈ Z,

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a, b), x ∈ (a, b)
(
Z +

1
2

)
,

0, x /∈ (a, b)
(
Z +

1
2

)
.

(42)

We also have the following near-immediate corollary.

Corollary 1. For any a ∈ Z+ and any x1, x2, y1, y2 ∈ Z, we
have |〈mx1

a c
y1
a ,mx2

a c
y2
a 〉|2 = a(a, y1 − y2) when either

(i) a and y1− y2 do not have a common power of two and
x1 − x2 is an integer multiple of (a, y1 − y2), or
(ii) a and y1−y2 have a common power of two and x1−x2
is a half-integer multiple of (a, y1 − y2),

and 〈mx1
a c

y1
a ,mx2

a c
y2
a 〉 = 0, otherwise. In particular, when a =

p is prime,

∣
∣〈mx1

p c
y1
p ,mx2

p c
y2
p
〉∣∣2 =

⎧
⎪⎪⎨

⎪⎪⎩

p2, if y1 = y2, x1 = x2,

p, if y1 �= y2,

0, if y1 = y2, x1 �= x2,

(43)

where all equivalences between either x1 and x2, or y1 and y2,
are takenmod p.

Proof. For any x1, x2, y1, y2 ∈ Z,
∣
∣〈mx1

a c
y1
a ,mx2

a c
y2
a
〉∣∣2 = ∣∣〈cy1−y2a ,mx2−x1

a

〉∣∣2

= a
∣∣(Fac

y1−y2
a

)(
x2 − x1

)∣∣2.
(44)

Returning to the issue brought up at the end of the pre-
vious section, the level of “uncorrelation” in our tight frames
is

max
(x1,y1) �=(x2,y2)

∣∣〈mx1
a c

y1
a ,mx2

a c
y2
a
〉∣∣ =

√
ab, (45)

where b is the largest proper divisor of a. As such, the “best-”
modulated chirp frames are obtained when a is prime, a fact
which was originally noted in [1].

5. FOURIER TRANSFORMSOF FINITE CHIRPS

In our final results, we compute the actual values of the
Fourier transforms of our finite chirps. Remarkably, we see
that the Fourier transform of one chirp is a decimated ver-
sion of another chirp.

Theorem 1. If a ∈ Z+, b ∈ Z do not have a common power of
two, then

(
Facba

)
(x)

(
Facba

)
(0)

=
⎧
⎪⎨

⎪⎩

c−bd2a

(
x

(a, b)

)
, x ∈ (a, b)Z,

0, x /∈ (a, b)Z,
(46)

where d ∈ Z, bd = (a, b)mod a.

Proof. Take any x ∈ Z. If (a, b) does not divide x, then
Proposition 5 implies (Facba)(x) = 0. If (a, b) does divide x,
take t ∈ Z such that x = (a, b)t, and take c,d ∈ Z such that
ac + bd = (a, b). Since Facba is well defined over Za,

(
Facba

)
(x) = (Facba

)(
(a, b)t

)

= (Facba
)
(act + bdt)

= (Facba
)
(bdt).

(47)

Applying Lemma 1, with “x” and “y” taken to be 0 and dt,
respectively, we have

(
Facba

)
(x) = m0

a(dt)cba(dt)
(
Facba

)
(0). (48)

Next, note that Proposition 5 implies (Facba)(0) �= 0. Also,
m0

a(dt) = 1. Thus, by Proposition 3,
(
Facba

)
(x)

(
Facba

)
(0)

= cba(dt) = c−bd
2

a (t) = c−bd
2

a

(
x

(a, b)

)
. (49)

Theorem 2. Let a ∈ Z+, b ∈ Z have a common power of two,
that is, let a = 2mα and b = 2mβ with α and β odd. Then,

1
2m/2

(
Facba

)
(x)

(
Fαc

β
α
)
(0)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
−βδ2
α

(
(x − a/2)
(a, b)

)
, x ∈ (a, b)

(
Z +

1
2

)
,

0, x /∈ (a, b)
(
Z +

1
2

)
,

(50)

where δ ∈ Z, βδ = (α,β)modα.
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Proof. Take any x ∈ Z. If x is not a half-integer multiple of
(a, b), then Proposition 5 implies (Facba)(x) = 0. If x is a half-
integer multiple of (a, b), let t = (x − a/2)/(a, b), so that x =
(a, b)t + a/2. Note that since a and b have a common factor
of two, then a/2(a, b) ∈ Z + 1/2. Since x/(a, b) ∈ Z + 1/2 as
well, then t ∈ Z.

Take c,d ∈ Z such that ac + bd = (a, b). Since a = 2mα
and b = 2mβ with α and β odd, we have

2m(αc + βd) = (a, b) = (2mα, 2mβ) = 2m(α,β), (51)

and thus αc + βd = (α,β). Letting δ = d, we therefore have
βδ = (α,β)modα.

Continuing, note that since Facba is well defined over Za,

(
Facba

)
(x) = (Facba

)(
(a, b)t +

a

2

)

= (Facba
)(

act + bδt +
a

2

)

= (Facba
)
(
bδt +

a

2

)
.

(52)

Applying Lemma 1, with “x” and “y” taken to be a/2 and δt,
respectively, we have

(
Facba

)
(x) = ma/2

a (δt)cba(δt)
(
Facba

)(a

2

)
. (53)

To continue, note that for any u ∈ Z,

ma/2
a (u) = w(a/2)u

a = e2πi(a/2)u/a = (−1)u = (−1)βu, (54)

since β is odd. Similarly, since b is even,

cba(u) = (−1)buwbu2/2
a

= eπibu
2/a

= eπi2
mβu2/(2mα)

= eπiβu
2/α.

(55)

Taken together, we have that

ma/2
a (u)cba(u) = (−1)βueπiβu2/α = c

β
α(u), (56)

and consequently,

(
Facba

)
(x) = c

β
α(δt)

(
Facba

)
(
a

2

)
. (57)

Similarly,

(
Facba

)(a

2

)
= 1√

a

∑

u∈Za

cba(u)m
−a/2
a (u)

= 1√
a

∑

u∈Za

c
β
α(u)

= 2m√
2mα

∑

u∈Zα

c
β
α(u)

= 2m/2Fαc
β
α(0),

(58)

and therefore,

(
Facba

)
(x) = c

β
α (δt)2m/2Fαc

β
α(0). (59)

Finally, as Proposition 5 implies that Fαc
β
α(0) �= 0, then

1
2m/2

(
Facba

)
(x)

Fαc
β
α (0)

= c
β
α (δt) = c

−βδ2
α

(
(x − a/2)
(a, b)

)

, (60)

by Proposition 3.

As a final remark, we note that in each of these results, we
have only determined the Fourier transforms of our chirps
up to a scalar multiple. To resolve the matter further, one
must explicitly determine the values cba(0) for all a and b that
do not share a common power of two. In fact, cba may be
shown to be always

√
(a, b) times an eighth root of unity. This

problemwas classically solved using sophisticated techniques
of number theory involving special functions and complex
analysis. However, the techniques presented in this paper
may also be further developed to provide independent, el-
ementary proofs of these same results [8].
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