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According to recent advances in digital image processing techniques, interest in high-quality images has been increased. This
paper presents a resolution enhancement (RE) algorithm based on the pyramid structure, in which Laplacian histogram matching
is utilized for high-frequency image prediction. The conventional RE algorithms yield blurring near-edge boundaries, degrading
image details. In order to overcome this drawback, we estimate an HF image that is needed for RE by utilizing the characteristics
of the Laplacian images, in which the normalized histogram of the Laplacian image is fitted to the Laplacian probability density
function (pdf), and the parameter of the Laplacian pdf is estimated based on the Laplacian image pyramid. Also, we employ a
control function to remove overshoot artifacts in reconstructed images. Experiments with several test images show the effectiveness

of the proposed algorithm.
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1. INTRODUCTION

In most electronic imaging applications, resolution enhance-
ment (RE) of images containing high-density pixels with
high detail is desired and often required [1]. Most of all,
fast advance in multimedia technology requires RE more
and more. One application is to reconstruct a higher-quality
digital image from a low-resolution (LR) image that is ob-
tained with an inexpensive camera/camcorder for printing
or frame-freeze purpose. Another application is conversion
from a National Television System Committee (NTSC) video
signal to a high-definition television (HDTV) signal to dis-
play a standard video signal on HDTV with less visual arti-
facts. Also, synthetic zooming of the region of interest (ROI)
is another important application in TV home shopping.
Generally, there are several issues to be considered in RE:
unavoidable blurring artifacts, reconstruction of HF details
with annoying artifacts, and high computational cost. When
a portion of a digital image acquired once is enlarged for
display, RE or enlargement is an indispensable digital image
processing technique. RE of digital images corresponds to re-
duction of the spatial sampling interval, in which HF com-
ponents of the resolution-enhanced images become larger.
Therefore, for effective RE of digital images, it is necessary
to estimate by some means the HF components that are lost
in image data acquisition.

Conventional linear interpolation schemes (e.g., bilinear
and bicubic) based on space-invariant models produce in-
terpolated images with blurred edges and annoying artifacts
[2, 3]. Linear interpolation is generally preferred for the com-
putational simplicity, not for the performance.

Many algorithms [4-7] have been proposed to improve
the subjective quality of the interpolated images by imposing
more accurate image models. Li and Orchard proposed an
edge-directed interpolation method that is based on the geo-
metric duality between covariances of LR and HR images [4].
The edge-directed property of covariance-based adaptation
gives the capability of tuning the interpolation coefficients to
match an arbitrarily oriented step edge. This method demon-
strates significant improvements on visual quality over lin-
ear interpolation methods, but a computational cost is high.
Biancardi et al. proposed an image magnification method
[5]. The idea underlying this work is to estimate the phases
and frequencies of lost waveforms from the original LR im-
age and then to synthesize them in the HR image. Their tech-
nique takes advantage of subpixel edge estimation from the
LR image to direct the subsequent polynomial interpolation
step. Also, Leu presented an approach that can maintain both
the continuity and sharpness of edges when enlarging an im-
age based on a ramp edge model [6]. This method first lo-
cates all the edge pixels in a given image, extracts five param-
eters, uses them to generate the edges, and finally employs



EURASIP Journal on Applied Signal Processing

Gy

\\\]\EXPAND (G2)

REDUCE (Gy)

REDUCE (Gy)
Go

+

"~ _EXPAND (G;)

@D

FIGURE 1: Gaussian/Laplacian image pyramid (N = 3).

bilinear interpolation to enlarge nonedge areas. Recently,
Wang and Ward proposed an orientation-guided interpo-
lation method, in which image contours are divided into
edges and ridges, and employed directional interpolation
based on the estimated orientation of edges and ridges [7].
In Greenspan et al’s method [8], RE of images is treated as a
prediction problem of unknown HF Laplacian components
within the framework of the Laplacian-pyramid-layered rep-
resentation, in which an HR image is predicted from the LR
image by implicitly using the following characteristics: strong
edges and details of images are confirmed as zero crossings
at the same location in several adjacent layers of the Lapla-
cian pyramid. Also, Takahashi and Taguchi proposed an RE
method [9] that is based on Greenspan et al’s method [8], in
which the enlargement ratio is arbitrary with two constant
parameters. Carey et al. proposed a wavelet-based interpo-
lation method that imposes no continuity constraints [10].
This algorithm estimates the regularity of edges by measur-
ing the decay of wavelet transform coefficients across scales
and preserves the underlying regularity by extrapolating a
new subband that is to be used in image synthesis. In addi-
tion, super-resolution methods based on a set of training im-
ages were proposed by Freeman et al. [11] and Sun et al. [12].
These methods estimate missing HR detail that is not present
in the LR image and cannot be made visible by simple sharp-
ening. Their results maintain sharpness of edges and lines as
well as texture details.

In this paper, an RE method is proposed by predicting
an HR Laplacian image from an LR image. It predicts the HF
image based on the Gaussian/Laplacian pyramid structure, as
in Greenspan et al.’s method. Utilizing characteristics of the
Laplacian images, we estimate an HF image that is needed
for RE. In addition, we employ a control function to remove
overshoot artifacts in reconstructed images.

The rest of the paper is organized as follows. In Section
2, Gaussian/Laplacian pyramid construction is briefly re-
viewed. Also parameter estimation and control function

design for prediction of an HF image are presented. Exper-
imental results and discussions are shown in Section 3. Fi-
nally, conclusions are given in Section 4.

2. PROPOSED RE ALGORITHM BASED
ON THE LAPLACIAN PYRAMID

The proposed RE algorithm predicts an HF image based on
the Laplacian pyramid structure, where the Laplacian pyra-
mid represents a set of images with HF components. We pre-
dict the HF image by utilizing statistical characteristics of the
Laplacian images, in which the normalized histogram of the
Laplacian image data is fitted to the Laplacian probability
density function (pdf) and the parameter of the Laplacian
pdf is estimated based on the Laplacian pyramid images. In
addition, we employ a control function to remove overshoot
artifacts in reconstructed images. Generally, high-frequency
components of natural images can be modeled as generalized
Gaussian distribution (GGD). Note that the Laplacian dis-
tribution has a single parameter, whereas the GGD has two
parameters to determine. So, we prefer the Laplacian distri-
bution in fitting the distribution of the high-frequency image
(see [13]).

2.1. Gaussian/Laplacian image pyramid
The Gaussian pyramid is a set of LR images obtained by
lowpass filtering and then decimation. The Laplacian pyra-
mid is defined by the difference image between two Gaussian
images at adjacent levels, containing HF image components
such as edge details in an image. Figure 1 shows construction
of Gaussian/Laplacian pyramids, in which lowpass filtering
is applied to a given resolution image and then decimation
follows to get a lower-resolution image [13].

Gaussian pyramid construction can be described as fol-
lows. Let G, be the nth Gaussian image of the input image
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FIGURE 2: Block diagram of the proposed RE algorithm.

Gy, then G411 is constructed by a REDUCE (-) operator:

Gne1 = REDUCE (G,), 0<n<N-1, (1)

where N signifies the total number of levels in the pyramid
structure, with Gy denoting the highest resolution. Let G, be
the image expanded from G,+1 by an EXPAND (-) operator:

G, = EXPAND (G,41), 0<n<N-1. (2)

The Laplacian pyramid is generated by

L, =G, — EXPAND (G1), 0=<n<N-1, (3)

where L, denotes the nth Laplacian pyramid image of Gy.
The interesting reader is referred to [13] for details of the
construction of the Gaussian/Laplacian pyramid.

In this paper, we make use of the statistical property of
the Laplacian image in predicting the HF image, noting that
the variance increases as the pyramid level n increases. For
example, the variance of L; image is larger than that of L
image.

2.2. Overview of the proposed RE algorithm

Conventional RE algorithms show blurring near-edge
boundaries, and thus cannot effectively restore HF compo-
nents lost in digitization of the image. To overcome this
drawback, our objective is to acquire an HR image by pre-
dicting the HF image from the Laplacian pyramid.

The Laplacian pyramid represents a set of band-
pass/highpass images, from which we can estimate the HF
image needed for RE by utilizing statistical characteristics of
the Laplacian pyramid images, in which the normalized his-
togram of the Laplacian image data is fitted to the Laplacian
pdfand the parameter of the Laplacian pdf is estimated based
on the Laplacian pyramid images. Figure 2 shows the block
diagram of the proposed algorithm, in which Gy(i, j) denotes
a given LR input image and G_1(x, y) represents an HR out-
put image to be constructed. Prediction of the HF image
f_l(x, ) requires three inputs: L_;(x, y) obtained by initial
(cubic-spline) interpolation of Ly(i, j), an estimated scaling
constant f3, and the control function C(x, y).

The output G_, (x, y) is obtained by adding the predicted
HF image ]t,l(x, y) to the initially (cubic-spline) interpo-
lated image G_; (x, y):

G-1(x,y) = G_1(x%, ) + Loy (x, ), (4)
where f,l (x, y) is predicted by

Lo1(x, ) = Clx, y)BL-1(x, ). (5)

Generating the new output image G_1(x, y) entails predict-
ing Li(x, y) image as the HF image by pyramid representa-
tion (see (3)). Because we do not know G_; image, there is no
choice but to generate L_; (x, y) image by initial guess. In this
paper, we employ cubic-spline interpolation method for its
performance and computational load to construct L_(x, y)
image.

2.3. Prediction of the HF image

This section describes estimation of the scaling parameter f3
that is a global constant needed for prediction of the HF im-
age. The constant f3 is estimated by least-squares line fitting
of parameter pairs of Laplacian pdf fitting, in which Lapla-
cian pdf fitting is based on statistical characteristics of the
Laplacian image: the normalized histogram of the Laplacian
image data is assumed to follow the Laplacian pdf. Note that
the variance increases as the pyramid level n increases.

2.3.1. Laplacian fitting

The Laplacian pdf fp(p) is expressed as

folp) = Je7e#, (6)

where p denotes the pixel value of the Laplacian image with
zero mean and variance 0% = 2/a?. Fitting the given Lapla-
cian image data to the Laplacian pdf yields the parameter «a,,
as follows:

I=+00
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FiGuURk 3: Laplacian pdf fitting (512 x 768 L, image, oy = 0.266, yy = 0.147).

where # signifies the level of the pyramid and h(I) signifies
the normalized histogram for pixel value [ with mean y,, and
variance 2.

Figure 3 shows an example of Laplacian pdf fitting of L
image, giving ®y=0.266 and p(=0.147, where the 512 X 768
Woman image with n = 0 is used. The Laplacian image is
approximately fitted to the Laplacian pdf. Similarly, a,,, 1 <
n < 4, are computed.

Such computed «, are used to explain the statistical rela-
tionship between the LR and HR images. Using a histogram-
matching method, we can write this relationship between
two pdfs of Laplacian images at adjacent pyramid levels as

1 P, 1 70,1
— + Loty — — +J’ Zn—1 “®n-1V ] ) 8
3 . 2 e u 3 . 2 e v (8)
which leads to
oy
. i 9
1 “n—lp ©)

where p and g denote LR and HR pixel values, respectively.
Applying (9) to the HF image prediction gives

Loi(xy) = C(x,y)%ifl(x,y) = C(x, y)BL-1(x, ), (10)

where f is a scaling constant and L_; denotes the initially in-
terpolated image of Ly. Here, a_; is an unknown constant
that we want to estimate. If @_; is estimated, we use (10) to
predict HF image, which is then added to the initially inter-
polated image (G-) of Gy to yield G_1.

2.3.2.  Estimation of the scaling constant /3

The scaling constant § = ag/a_,; is used for prediction of
HF image L_1, where &_; is estimated by least-squares line
fitting, using (N — 1) sets of (ay, @p—1), 1 <n < N — 1, com-
puted from the Laplacian pyramid images. Least-squares line
fitting is expressed as

H = (ATA) ' (ATV), (11)

where Y, A, and X are given by

a
., H- [b] (12)

with a and b denoting a slope and an intersection at the ver-
tical axis of the fitted line, respectively. Then, a_; is estimated
by linear regression:

aN-2 ay-1 1

&_1 =auy+b. (13)

Figure 4 shows an example of least-squares line fitting,
giving a = 0.898 and b = 0.054 for the 512 X 768 Woman
image with N = 5. Finally, using the estimated scaling con-
stant f3, we can predict HF image L_; for RE.

2.4. Control function design

We explained how to estimate the scaling constant f based on
the Laplacian pyramid, which will be used for prediction of
HF image L_,. The scaling constant f3 is applied to all pixels
in L_,, that is, B can be regarded as the global constant that
determines the final image quality and does not reflect local
characteristic of the image.

As shown in Figure 2, G_1(x, y) is used to formulate a
control function C(x, y). If 5 alone is applied to prediction
of HF image, we observe two types of artifacts in G_1: noise
amplification over smooth regions and overshoots near-edge
regions. The former can be explained from the fact that the
RE method based on HF image prediction puts an emphasis
on even small variations. On the contrary, abrupt luminance
changes in the input image can produce overshoots, which
is explained by the human visual system through the Mach
band effect [2]. In Takahashi and Taguchi’s method [9], the
HF components used in Greenspan et al.’s method [8] are ex-
tracted from a half-band filter and the resulting image L.y is
used for RE. We design the control function to reduce dis-
tortions, or equivalently to define the local scaling function



Bo-Won Jeon et al.

0.4

0.3

0 0.1

0.2 0.3

Edge
region

I
I
I
I
|
— I
= I
2 |
O 1
I
I
|
Smooth |
Co region |
:

0 My

M(x, y)

FiGure 5: Control function C(x, y) as a function of the local activity M(x, y).

B(x, ), which reflects the local activity of an input image,
rather than the global constant §, that is, (5) is modified as

Loi(x,y) = Blx, )L (x, y), (14)

where f(x, y) = BC(x, y) denotes the scaling function that
reflects the local activity.

Figure 5 shows the control function as a function of
the local activity M(x, y), with M, and ¢y denoting param-
eters that adjust the control function. As a local activity
M(x, y), we use the magnitude of the Sobel operator that re-
flects the intensity variations on the local region. Observa-
tion shows that overshoot artifacts are introduced near-edge
points, where the magnitude of the Sobel operator is large.
So, if we use the magnitude of the Sobel operator as a lo-
cal activity, overshoot artifacts near-edge regions can be re-
duced. Two constant parameters are employed in C(x, y): My
signifies a decision boundary value that classifies each pixel
into the pixel in smooth or edge regions and ¢y represents a
value of the control function C(x, y) when M(x, y) is 0. The
constant M is employed to reduce overshoots near-edge re-
gions, whereas ¢y is used to reduce the noise amplification
over smooth regions. Note that the control function C(x, y)

satisfies

lim C(x,y) = c, lim C(x,y)=0. 15
yim (x,y) = co wim (x, ) (15)

Ramponi and Polesel proposed rational filters for un-
sharp masking [14], where the filter output depends on the
local activity. Also, Cheikh and Gabbouj [15] proposed a ra-
tional unsharp masking filter that limits the overshoots near
sharp edges and attenuates noise in flat areas. The charac-
teristics of the control function used in the proposed algo-
rithm are similar to those of the rational filter by Ramponi
and Polesel [14]. The rational function C(x, y) used in our
study to reflect the local activity of the image is defined as

M(x,y)+b

Clxy) = ———"5—, (16)
’ k(M(x, )" +h
where b, h, and k are given by
. CoMQ . MO _ L
b_Z(l—co)’ h_2(1—c0)’ k= U7

which are easily checked with the fact that the maximum
value of C(x, y) is equal to 1. Employing such a function,
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FIGURE 6: Test images: (a) Gate image (512 x 512), (b) Mart image (640 x 480), and (c) Woman image (512 X 768).

selected details having low and medium sharpness are en-
hanced, whereas amplification of small variations is very lim-
ited. Steep edges, which do not need further emphasis, re-
main almost unaffected.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present experimental results. As explained
previously, the predicted HF image using the global constant
B and the control function C(x, y) considering the local ac-
tivity is added to the interpolated input image, in which three
parameters (3, My, and cy) are used. The scaling constant f3
is estimated by least-squares fitting of pdfs embedded in the
Laplacian pyramid structure. The constant ¢, is related to
suppression of amplification of small variations (e.g., noise
components) in smooth regions. Thus, ¢, must be small: in
all experiments, ¢y is set to zero, which gives the control func-
tion in (16) as a function of a single parameter M, yielding
by = 0, h = My/2, and k = 1/(2M,). With ¢, =0, smooth
components of G_; are directly transferred to G_;. The per-
formance of four RE methods (cubic-spline interpolation, Li
and Orchard’s method, Greenspan et al’s method, and the
proposed method) is compared. In practical cases of interpo-
lation, the original HR image is not given, thus image quality
of interpolated images is subjectively compared. The signifi-
cant point for performance comparison based on subjective
image quality is sharpness and connectivity of edges. Note
that the proposed RE algorithm adds the predicted HF image
L., to the initially interpolated image G_; by cubic-spline,
yielding a visually enhanced output G _;.

Test images used in experiments are RGB color images.
We convert RGB color format to YUV format. Then, only Y
(luminance) component is processed by the RE algorithms,
and U and V components are magnified by bilinear in-
terpolation. Since the human visual system is sensitive to
luminance components and relatively insensitive to color

components, magnifying U and V components by a simple
bilinear interpolation method has not influence on image
quality much. Thus, gray scale images (Y components) are
shown to show the performance of the proposed RE algo-
rithm. In all experiments, test images are magnified by a fac-
tor of two horizontally and vertically.

The proposed algorithm has been tested using a number
of different images and three examples are shown in this sec-
tion. First, we explain characteristics of test images and de-
termination of parameter values. Then, we compare the per-
formance of four RE algorithms. Finally, we present the com-
putational cost and the peak signal-to-noise ratio (PSNR) of
the interpolation algorithms.

3.1. Testimages

In experiments, we show three test images: Gate, Mart, and
Woman images, as shown in Figure 6. The 512x512 Gate im-
age in Figure 6(a) has strong edge components as well as flat
regions. In the first experiments with the Gate image, three
different M, values are used to show the effect of parame-
ter My on the final performance of interpolation. As claimed
previously, the values of two parameters (¢y and M) are not
critical. In experiments with three test images, ¢ is fixed.
The 640 x 480 Mart image in Figure 6(b) contains relatively
smooth regions as well as regions with abrupt changes. This
image contains the character region. In the second experi-
ment, we show the enlarged character region to show the ef-
fectiveness of the proposed algorithm, where M, is set to 40.
The 512 x 768 Woman image in Figure 6(c) has strong step
edges, thus in the third experiment, Mj is set to 50. Note that
the Woman image contains abrupt luminance changes.

3.2. Experimental results

As claimed previously, in experiments we select parameter
M) that gives good results (to reduce overshoot artifacts near
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FiGure 7: Comparison of RE results (1024 x 1024 Gate image, 200% zoomed part: 340 x 340): (a) cubic-spline interpolation, (b) Li and
Orchard’s method, (c) Greenspan et al’s method, (d) proposed algorithm (M, = 35, ¢, = 0.0), (e) proposed algorithm (M, = 55, ¢; = 0.0),

and (f) proposed algorithm (M, = 80, ¢y = 0.0).

edge regions). If an image contains strong edge regions, we
set My value to a large value (e.g., 50), otherwise to a small
value. Figures 7, 8, and 9 show portions of images, indicated
by boxes on the original test image in Figures 6(a), 6(b), and
6(c), respectively, which are zoomed by a factor two horizon-
tally and vertically.

Figures 7(a)—7(c) show 340 340 zoomed images that are
portions of the image in Figure 6(a), interpolated by cubic-
spline interpolation, Li and Orchard’s method, Greenspan et
al’s method, respectively. Figures 7(d)-7(f) show those inter-
polated by the proposed algorithm with three different values
of My: 35, 55, and 80, respectively. The Gate image has strong
edges near boundaries of the wall and gate. Figures 7(d)-
7(f) show the effect of My value, in which Figure 7(e) shows
the optimal result (M, = 55). If My is small (large), over-
shoot artifacts become unnoticeable (remarkable), for exam-
ple, if My is larger than 55, overshoot artifacts are visible as
shown in Figure 7(f). The result of Greenspan et al.’s method
shows unnecessary changes in smooth regions, whereas that
of Li and Orchard’s method shows blurring while edge con-
nectivity is good. The result of the proposed method with
M, = 55 preserves edge connectivity well, as in Li and Or-
chard’s method. Faithful edge preservation based on edge

connectivity requires edge direction as well as edge magni-
tude, which is beyond the scope of this paper. Ensuring edge
connectivity is to be investigated as future work.

Figures 8(a)-8(d) show 400280 zoomed images that are
portions of the image in Figure 6(b), interpolated by cubic-
spline interpolation, Li and Orchard’s method, Greenspan et
al’s method, and the proposed method, respectively. In case
of Li and Orchard’s method, smoothness of edges is good,
whereas sharpness is not satisfactory. In Greenspan et al’s
method, resolution is improved around the character region
and building boundary, whereas unnecessary changes appear
in smooth background regions, thus the reconstructed image
looks like a noisy image. Also, overshoots appear near edges,
thus the reconstructed image is not visually satisfactory. Sim-
ilar to Li and Orchard’s method, the proposed method gives
good edge connectivity than cubic-spline interpolation. Also,
the proposed algorithm yields sharper edges than Li and Or-
chard’s method.

Figures 9(a)-9(d) show 340300 zoomed images that are
portions of the images in Figure 6(c), interpolated by cubic-
spline interpolation, Li and Orchard’s method, Greenspan
et al’s method, and the proposed method, respectively. A
woman in Figure 6(c) is a model who sells cosmetics, and
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FiGgure 8: Comparison of RE results (1280 x 960 Mart image, 200% zoomed part: 400 x 280): (a) cubic-spline interpolation, (b) Li and
Orchard’s method, (c) Greenspan et al’s method, and (d) proposed algorithm (M, = 40, ¢, = 0.0).

her face can be the region of interest at home shopping. So,
RE of the face region in an image is important. As in the
results of the Gate and Mart images, the proposed method
shows better results than the conventional methods. Also,
Figure 9(e) shows the comparison of interpolated edge pro-
files along the bold black lines that are superimposed in Fig-
ures 9(a)-9(d). Figure 9(e) illustrates that the proposed al-
gorithm yields sharp edge and reduced overshoot artifacts,
whereas the other methods show large overshoots or blur-
ring artifacts near edges.

3.3. Computational load and PSNR comparison

Table 1 shows performance comparison of each method for
the RGB Woman image in terms of the computation time, in
which a PC with 2.0 GHz Pentium IV (1 GB RAM) is used.
Note that the computation time represents the time taken
to interpolate an input image by a factor of two horizon-
tally and vertically. Cubic-spline interpolation cannot effec-
tively produce high-quality images with the smallest amount
of computation because of the simplicity of the algorithm.
In contrast, Li and Orchard’s method produces high-quality
images with the highest computational load. In the proposed
algorithm, once Gaussian/Laplacian pyramid is generated
(most of the time is taken in this processing), final results

are generated with the estimated scale constant 3. In the pro-
posed algorithm, the computational cost is reasonable with
respect to quality requirement. Also, if we can preestimate
an optimal constant 3 using a set of training images, only a
single pyramid level (N = 1) is required.

Table 2 shows performance comparison of each method
for each test image in terms of the PSNR. We acquire down-
sampled image for each test image using the REDUCE (-)
operator (see (1)). Downsampled images are interpolated
by four interpolation methods: cubic-spline interpolation
method, Greenspan et al’s method, Li and Orchard’s
method, and the proposed method. The proposed algorithm
is somewhat superior to the three conventional methods in
terms of the PSNR, though the PSNR is not an absolute mea-
sure for performance comparison of the resolution enhance-
ment region.

4. CONCLUSIONS

In this paper, a new RE method for still images is proposed,
in which lost HF components are estimated based on the
Laplacian pyramid. In predicting the HF image, statistical
characteristics of the Laplacian images are utilized, where the
normalized histogram of the Laplacian image data is fitted
to the Laplacian pdf and the scaling constant f3 is estimated.
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FiGUure 9: Comparison of RE results (1024 X 1536 Woman image, 200% zoomed part: 340 X 300): (a) cubic-spline interpolation, (b) Li and
Orchard’s method, (c) Greenspan et al.’s method, (d) proposed algorithm (M, = 50, ¢; = 0.0), and (e) comparison of interpolated edge

profiles.

A control function as a postprocessing step is employed to
suppress small variations in smooth regions and to remove
overshoot artifacts in edge regions.

In experiments, three test images are used to show the ef-
fectiveness of the proposed algorithm. Comparison of sub-
jective quality of the reconstructed images shows that the

proposed method shows better results than the conventional
RE methods in terms of connectivity and sharpness in edge
regions and smoothness in uniform regions. Further research
will focus on automatic estimation of two parameters (M,
and ¢o) of the control function and on extension of the algo-
rithm for video.
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TasLE 1: Computation time of each RE method.

Cubic-spline interpolation Li and Orchard’s method

Greenspan et al.’s method Proposed method

0.48s 21.33s

3.62s 5.23s

512 X 768 image — 1024 X 1536 image
Gaussian/Laplacian pyramid generation: 3.01s

TaBLE 2: PSNR comparison (dB).

Figure 7 (Gate image)

Figure 8 (Mart image) Figure 9 (Woman image)

Cubic-spline interpolation 25.20 28.12 27.80
Greenspan et al’s method 25.07 28.72 26.23
Li and Orchard’s method 27.01 29.76 31.02
Proposed method 27.89 30.55 30.98
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