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In pulse-based radar systems, the knowledge of certain parameters of the received radar pulse is of great importance. We introduce
a complex-valued parametric pulse model by extending a real-valued pulse signal into the complex plane. A modulation angle
parameter unique to the complex representation gives an additional degree of freedom and can be used to model the basic shape
of the pulse, thus lifting the conventional restriction to fixed pulse shapes in real-valued correlation techniques. As physical signals
are real valued, the imaginary part of the complex signal is calculated by using the Hilbert transformation. Parameter estimation is
based on the complex-valued continuous wavelet transform. The main advantages of this concept are demonstrated on synthetic
data and verified on ultrawideband pulse radar measurements.
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1. INTRODUCTION

For the detection and characterization of a pulse covered in
noise, conventional correlation methods like matched filter-
ing with real-valued signal shapes suffer one major drawback
in analyzing the sampled signal: the requirement of the ex-
act knowledge of the pulse shape. Since this information is
generally not available in pulse-based radar systems, the em-
ployed signal analysis method must provide enough flexibil-
ity to deal with this uncertainty. The wavelet transform (WT)
that is based on correlation with translated and dilated ver-
sions of a basic template waveform, or wavelet, is a means of
overcoming some of the restrictions of the matched filtering
approach, yet the analysis wavelet has to be chosen properly
to match the specific shape of the searched pulse.

In this contribution, we discuss the concept of complex-
valued parametric pulse (CVPP) models in combination
with the WT that gives us the ability to deal with different
pulse shapes with a priori knowledge of only the approxi-
mate characteristic of the pulse. Since signals in nature are
always real valued, the imaginary part of a CVPP has to be
estimated from its real part.

This paper is organized as follows. Section 2 describes
the basic idea of complex-valued pulse models. Section 3
discusses the basic ideas of CVPPs, Section 4 explains how
parameter estimation is accomplished, Section 5 deals with
the main advantages of CVPPs on synthetic signals, and

Section 6 verifies the potential of CVPPs on measured data.
A summary of the paper is given in Section 7.

2. COMPLEX EXTENSION

The concept of CVPPs uses the Hilbert transform to estimate
the imaginary part of the pulse based on its real part. The
Hilbert transform, defined by

H
{
fh
(
t
)} = 1

π

∫∞

−∞
fh
(
t
)

t − τ
dτ, (1)

is a linear transform and rotates the phase of all spectral com-
ponents of the original signal by π/2 rad. In time domain,
the real-valued signals, fh(t) and H{ fh(t)}, are orthogonal.
The complex-valued signal f +h (t) whose imaginary part is the
Hilbert transform of its real part fh(t),

f +h (t) = fh(t) + jH
{
fh(t)

}
, (2)

is called the analytic signal. The Fourier spectrum of the an-
alytic signal is double that of the original signal at positive
frequencies and zero at negative frequencies. Furthermore,
the energies of the original signal and its Hilbert transform
are identical. The energy conservation of the Hilbert trans-
form is especially of importance in regard to scaling and
pulse modeling. For additional information concerning the
Hilbert transform, we refer to [1].
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Figure 1: Geometrical interpretation for the pulse-shape forming
of the modulation angle ϕc and the Hilbert transform H{·} for the
real and imaginary parts of a complex-valued pulse fc(t).

We define a modulated complex pulse fc(t), consisting of
a real part fr(t) and an imaginary part fi(t) related to one an-
other by the Hilbert transform as well as a modulation term
e− jϕc by

fc(t) =
(
fr(t) + j fi(t)

)
e− jϕc = f +r (t)e

− jϕc . (3)

The real and imaginary parts of the complex pulse fc(t) of
(3) are given by
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(4)

The complex-valued modulation term e− jϕc rotates the
complex-valued pulse fc(t) in the complex plane by themod-
ulation angle ϕc, which can be interpreted as the phasing of
the pulse. Transforming the real part Re{ fc(t)} of the com-
plex pulse fc(t) leads to
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(5)

Therefore, the Hilbert transform is suitable for the estima-
tion of the imaginary part of the complex pulse Im{ fc(t)} by
transforming its real part Re{ fc(t)} without making any sys-
tematical error even for an unknown modulation angle ϕc.
Since measured time-domain pulses are always real valued,
this property is of enormous importance. A geometrical in-
terpretation for the pulse-shape forming of (3) for an arbi-
trary pulse is shown in Figure 1.

3. PARAMETRIC PULSEMODEL

Beside the complex extension, the basic idea of a CVPP relies
on the WT. The WT represents a time function on the time-
scale plane. The modern concept of wavelets was founded
in the early 90’s by Grossman and Morlet in the field of

analyzing seismic data [2]. The WT of a possibly complex-
valued function fw(t) to the possibly complex-valuedmother
wavelet ψ(t) is defined by

Wfw (τ, a) =
∫∞

−∞
fw(t)

1√
a
ψ∗
(
t − τ

a

)
dt, (6)

with a as the dilatation factor and τ as the translation factor.
Based on the normalized mother wavelet ψ(t), theWT corre-
lates the signal fw(t) with a scaled, shifted, and stretched ver-
sion of this wavelet ψ(t). The dilatation factor a of a wavelet
defines its active width and is therefore a quantum for its res-
olution. The scaling factor a−1/2 normalizes the energy of the
wavelet,
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The Euclidian norm is defined by

∥
∥ψ(t)

∥
∥
2 =

√∫∞

−∞
ψ(t) ψ∗(t) dt, (8)

with ψ∗(t) denoting the conjugate complex of ψ(t). The
translation factor τ indicates the point in time at which the
wavelet is localized. Furthermore, the WT is linear as well as
time invariant, and the energy contained in the signal is pre-
served. For further information concerning the WT, we refer
to [3, 4].

The CVPP fc(t) we propose is based on a scaled, shifted,
stretched, and modulated version of the complex-valued an-
alytic mother wavelet ψc(t) = ψ+

r (t),

fc(t) = f +r (t) e
− jϕc = 1√

ac
kcψ

+
r

(
t − τc
ac

)
e− jϕc , (9)

and is described by four parameters: (1) the intensity coef-
ficient kc, (2) translation τc, (3) dilatation ac of the mother
wavelet, and (4) the modulation angle ϕc. The mother
wavelet itself can be both parametric or nonparametric.
Without the modulation angle parameter ϕc, the basic shape
of the mother wavelet would determine the basic shape of the
radar pulse to be searched. A typical nonparametric wavelet
is a measured and smoothed reference signal. Very common
parametric wavelets to model, for example, ultrawideband
(UWB) radar pulses, directly are the Gauss wavelets ψg(t) de-
fined by the pth derivative of the normalized Gaussian bell-
shape curve [5] that is given by

ψg(t) = Cg
(
e−t

2)(p)
, (10)

where the factor Cg normalizes the energy of these wavelets.
Gauss wavelets ψg(t) are also a proper choice for the real part
of the complex-valued analytic mother wavelet ψ+

r (t) form-
ing a CVPP. The first two representatives of this wavelet class
for p=1 and p=2 are called Gaussian monocycle and Ricker
wavelet.

The real part Re{ fc(t)} of a CVPP formed by the Ricker
wavelet for kc = 1, τc = 0, and ac = 1 is shown in Figure 2
for ϕc = 0◦, 30◦, 60◦, and 90◦. Obviously for ϕc = 0◦, the real
part Re{ fc(t)} of the CVPP is identical to the Ricker wavelet,
and for ϕc = 90◦, it is identical to the Hilbert transform of
the Ricker wavelet.
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Figure 2: Real part Re{ fc(t)} of a CVPP formed by the Ricker
wavelet for kc = 1, τc = 0, ac = 1, and ϕc = 0◦, 30◦, 60◦, and
90◦.

4. PARAMETER ESTIMATION

When using a wavelet of Gauss type for pulse analysis, the
wavelet order should comply with the number of extrema of
the searched pulse minus one. In the real-valued case, the or-
der of the Gauss wavelet has to be chosen very carefully be-
cause it is the only parameter to model the basic shape of the
wavelet. Unfortunately, the Gauss-type wavelets allow only
the modeling of even or odd functions, hybrid forms are not
included in this class. Furthermore, if the basic order (even
or odd) of the pulse is mismatched, the results degrade dra-
matically as will be discussed in Section 5.

In the complex-valued case, the choice of the order is
relatively uncritical. In this case, the order of the wavelet is
mostly important for modeling the pre- and postoscillations
of the pulse. Owing to the modulation angle ϕc, the CVPPs
also include hybrid forms even though the real part of the
basic wavelet for pulse modeling is only an even or an odd
function.

The measured signal can be interpreted as the real part
Re{ fc(t)} of the analytical function fc(t). The best correla-
tion between the scaled, shifted, and stretched wavelet ψc(t)
and the complex-valued signal fc(t) is achieved if the wavelet
matches with the pulse in the signal. Hence, the translation
factor τc and the dilatation factor ac can be computed by

(
τc, ac

) = argmax
(τ,a)

∣
∣Wfc(τ, a)

∣
∣ . (11)

The optimization problem of (11) can be solved by a
numerical gradient method. Unfortunately, for real-valued
pulses, as will be shown in Section 6, the absolute value
of the wavelet transform even for one single pulse shows
several undesired side maxima. Therefore, several starting
points have to be chosen. The calculation complexity of
the complex-valued wavelet transform is slightly increased

compared to the real-valued case. Advantageously, a sin-
gle complex-valued pulse shows no undesired side maxima,
whereby only one starting point for a gradient method is suf-
ficient. Therefore, the overall calculation time in the complex
case is even reduced.

For UWB pulse applications, as discussed in [6–8], the
very large bandwidth of the pulse results in an extremely
short duration of the pulses in time domain. The sampling
of such short pulses requires high-speed sampling oscillo-
scopes; from a signal processing point of view, the absolute
time base is of no significance.

If the dilatation factor of the mother wavelet is known,
the WT has to be performed only for one single scale. For
a complex-valued wavelet and/or a complex-valued signal,
the limitation of the WT to a single scale corresponds to a
complex-valued matched filter.

The WT at time τc and at scale ac is calculated to
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As we can see, the WT for scale ac and translation factor τc
indicates directly the intensity factor kc as well as the modu-
lation angle ϕc of the complex pulse model. Hence, a priori
knowledge of the modulation angle ϕc is unnecessary for a
perfect correlation in time domain.

Like in any correlation-based method, the parameter es-
timation for the CVPPs is very immune to white Gaussian
noise covering the signal. Compared to real-valued correla-
tion methods, the impact of noise on the CVPP is very simi-
lar. There is no additional information and therefore also no
reduction in the noise behavior, because the imaginary part
is calculated from the real-valued signal and not measured
separately.

5. SIMULATIONS

The basic properties of a complex-valued correlation on a
CVPP compared to a real-valued correlation on a real-valued
function are demonstrated on synthetic data without noise.
For a better clarity, it is assumed that the dilatation factor of
the pulse is known, hence the WT has to be computed only
on a single scale. As discussed above, restraining the WT to a
single scale is similar to the matched filter concept.

The absolute value of the normalized cross-correlation
function (CCF) between the real-valued Ricker wavelet and
the real part Re{ fc(t)} of a CVPP formed by the Ricker
wavelet for kc = 1, τc = 0, ac = 1, and ϕc = 0◦ as well
as 90◦ is shown in Figure 3. For ϕc = 0◦, the maximum of
the absolute value of the normalized CCF is achieved at the
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Figure 3: Absolute value of the normalized CCF between the Ricker
wavelet and the real part Re{ fc(t)} of a CVPP formed by the Ricker
wavelet for kc = 1, τc = 0, ac = 1, and ϕc = 0◦ as well as 90◦.

pulse position. As ϕc diverges from the value of 0◦, the peak
maximum decreases in amplitude and deviates from the true
position, until for ϕc = 90◦, the CCF at the pulse position is
equal to zero; while simultaneously two relatively large side
maxima appear to the left and to the right of the correct loca-
tion, thus inhibiting unambiguous position estimation. This
behavior is explained by the fact that the CCF is the correla-
tion of two even functions for ϕc = 0◦, and that of an odd
and an even functions for ϕc = 90◦. In any case, the abso-
lute value of the normalized CCF shows several side maxima
that are not located at the pulse position. This example illus-
trates the need of the knowledge of the exact pulse shape for
a real-valued correlation.

The absolute value of the normalized CCF between the
analytic Ricker wavelet and the analytical signal fc(t) of a
CVPP formed by the Ricker wavelet for kc = 1, τc = 0, ac = 1,
and ϕc = 0◦ as well as 90◦ is shown in Figure 4 The modula-
tion angle has completely no influence on the absolute value
of the CCF. Furthermore, the plot shows no undesired side
maxima beside the main peak because the complex correla-
tion between an analytic signal and an analytic wavelet is still
analytic. Hence, the absolute value of this CCF can be inter-
preted as the envelope of the pulse.

6. MEASUREMENTS

The precise pulse analysis for a wide field of applications is
still a challenge. The basic use of a complex-valued corre-
lation method for signal analysis is, for example, discussed
in [9]. Another field of pulse-based radar applications is the
detection of low metal content antipersonnel mines buried
in lossy ground. The dispersion behavior of natural ground
material results in a change of duration and shape of the
transmission pulse. In [10], a pulse reconstruction method
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Figure 4: Absolute value of the normalized CCF between the an-
alytic Ricker wavelet and the analytical real part Re{ fc(t)}+ of a
CVPP formed by the Ricker wavelet for kc = 1, τc = 0, ac = 1,
and ϕc = 0◦ as well as 90◦.

Figure 5: Photo of the UWB pulse radar measurement test setup.

based on the real-valued WT is used for this purpose. The
application of a CVPP is demonstrated on UWB pulse mea-
surements. For this purpose, a pulse radar test setup was built
to generate real radar reflection data. The test setup consists
of a pulse generator, a pulse forming network, two broad-
band horn antennas for transmission, and reception, as well
as a sampling oscilloscope for data acquisition. A photo of
the test setup is shown in Figure 5.

For UWB radar systems, it is very important to obtain a
large bandwidth to achieve a high-resolution capability. One
way to obtain a large bandwidth, and at the same time keep-
ing the centre frequency low, is to let the lower band edge
approach zero. This type of pulse is called a baseband pulse,
and systems employing such pulses are called impulse radars.
To occupy a large bandwidth, the pulse must be extremely
short, typically nanoseconds or below. Therefore, in pulse-
based UWB systems, Gaussian monocycle pulse generators
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are mainly used at the transmitter stage [11]. These trans-
mitted pulses will be affected by the illuminated material, the
reflection behavior of the target, as well as the used anten-
nas, producing a derivative of the driving Gaussian monocy-
cle pulse resulting in a shape of Ricker wavelet.

To show the performance of the proposed CVPP model,
a measured UWB pulse, which was reflected on the chest of
a human body, was used, shown in Figure 6. Furthermore,
this figure depicts the signal as reconstructed using the Ricker
wavelet, the Hilbert transform of the Ricker wavelet, as well
as a CVPP formed by the Ricker wavelet. The modulation
angle for the CVPP is calculated to ϕc = 53.2◦. It appears
that the best match with the measured signal is achieved with
the real part of the CVPP; whereas the Ricker wavelet or the
Hilbert transform of the Ricker wavelet shows significant de-
viations in parts of the signal.

In addition, the Hilbert transform of the measured sig-
nal and the imaginary part Im{ fc(t)} of the CVPP which
was used to reconstruct the measured pulse can be seen in
Figure 7. Furthermore, this figure includes the signal recon-
struction of the Hilbert transform of the measured UWB
radar signal using a Ricker wavelet as well as the Hilbert
transform of the Ricker wavelet. Again, the CVPP is a very
good approximation for the basic shape of the pulse; whereas
the real-valued wavelets show large differences between the
signal and the reconstruction in particular in the pre- and
postoscillations.

This example illustrates that for pulse reconstruction
from measured signals, the use of hybrid pulse forms is es-
sential, since pre- and postoscillations in the reconstruction
contain important information about object characteristics
such as shape and dimension [12].

A contour plot of the absolute value of the WT of the
measured signal using a Ricker wavelet for analysis is shown
in Figure 8. The WT shows several major side maxima, even
if the pulse shape is identical with the basic shape of the
mother wavelet. The characteristic using the Hilbert trans-
form of the Ricker wavelet for signal analysis would be very
similar.

A contour plot of the absolute value of the WT of the
analytic measured signal using an analytic Ricker wavelet for
analysis is shown in Figure 9. As we can see, the WT shows
almost no undesired side maxima. Due to a bad localization
of the Ricker wavelet in frequency domain, the maxima of
the WT extends over a wide range of scales.

7. CONCLUSION

For pulse analysis, classic correlation-based methods like the
real-valued matched filter concept require the exact knowl-
edge of the basic pulse shape to determine position or in-
tensity. The real-valued WT can handle shifted and stretched
versions of a mother wavelet, but still the basic shape of the
pulse is required.

The concept of CVPP gives us the ability to directly
model the basic shape of a pulse by using the modulation
angle parameter. Furthermore, this concept enables a highly
advanced pulse reconstruction especially for applications
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Figure 6: Measurement of a UWB pulse which was reflected on the
chest of a human as well as the real-valued reconstructed pulse by
using a CVPP, the Ricker wavelet, and the Hilbert transform of the
Ricker wavelet.
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Figure 7: Hilbert transform of measured UWB radar pulse as well
as the real-valued reconstructed pulse by using a CVPP, the Ricker
wavelet, and the Hilbert transform of the Ricker wavelet.

with little or no knowledge of the transmission behavior of
the propagation medium and the reflection behavior of the
target, because the influence of the basic shape of the ba-
sic wavelet is far less important compared to the real-valued
case. The results of the complex-valued pulse parameter es-
timation can be used in constructing a matched filter for
correlation-based receiver design. The proof of this concept
is demonstrated on synthetic data and also carried out on
UWB pulse measurement data.
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Figure 8: Contour plot of the absolute value of the WT of the mea-
sured signal using a Ricker wavelet for analysis.
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Figure 9: Contour plot of the absolute value of the WT of the ana-
lytic measured signal using an analytic Ricker wavelet for analysis.
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