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Supervised statistical learning has become a critical means to design and learn visual concepts (e.g., faces, foliage, buildings, etc.) in
content-based indexing systems. The drawback of this approach is the need of manual labeling of regions. While several automatic
image annotationmethods proposed recently are very promising, they usually rely on the availability and analysis of associated text
descriptions. In this paper, we propose a hybrid learning framework to discover local semantic regions and generate their samples
for training of local detectors with minimal human intervention. A multiscale segmentation-free framework is proposed to embed
the soft presence of discovered semantic regions and local class patterns in an image independently for indexing and matching.
Based on 2400 heterogeneous consumer images with 16 semantic queries, both similarity matching based on individual index and
integrated similarity matching have outperformed a feature fusion approach by 26% and 37% in average precisions, respectively.
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1. INTRODUCTION

Using supervised pattern classifiers to learn image semantics
and ensemble of pattern classifiers to enhance system perfor-
mance have become an active trend in content-based analysis
research [1–4]. One of the most notable efforts by the IBM
Research Group [4, 5] deployed numerous SVM classifiers
in multistage optimization for the learning and detection of
visual concepts in the TRECVID news video corpus. While
the semantics design process and the computation involved
to train and validate the SVM classifiers are certainly non-
trivial, they are relatively insignificant when compared to the
several months of manual annotation effort for the training,
validation, and test samples by the TREC participants, with
the comprehensive VideoAnnEx annotation tool [6] devel-
oped by the IBM Team.

In short, supervised learning requires labeled data. En-
semble learning with multiple classifiers demands more data
for feature and classifier selection. In particular, probabilistic
generative models usually require more data than discrim-
inative models to estimate parameters reliably [7]. Hence,
the bottleneck for a supervised learning approach to mul-
timedia semantic analysis is the manual effort of data label-
ing.

On the other hand, supervised learning of multimedia
semantics is primarily design-oriented. The designers must

possess knowledge about the content domain (e.g., sports,
news, medical, etc.) in order to design the ontology and rele-
vant features and classifiers for the domain before data anno-
tation can take place. While this design framework is useful
for many applications, there are situations (e.g., images from
planet Mars, unmanned robots and vehicles in unexplored
areas, unexpected behaviors in open surveillance applica-
tions) whereby limited prior knowledge is available about the
multimedia data source and a complete design approach is
infeasible or ineffective.

Hence, an alternative semantics discovery approach is de-
sired, for alleviating the manual annotation effort and for
dealing with exploratory content domains. In this paper, we
focus on image semantics discovery and use image indexing
and retrieval for evaluation. The framework proposed can be
extended to other modality in future.

We define the problem of image semantics discovery
(ISD) (Figure 1) as follows. Given a number of classes of
images, the task is to discover the local semantic regions
(e.g., faces and foliage in bounding boxes as shown in
Figure 1) that are recurrent within each class and discrimi-
native against other classes. The recurrent visual patterns de-
pend on a given image collection. For instance, while green-
ery image regions are recurrent in foliage images, the recur-
rent patterns for X-ray lung images would be very different.
However, the technique must be transferable (i.e., generic)
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Figure 1: The problem of image semantics discovery.

for various image domains to discover different recurrent vi-
sual patterns. Note that the only prior knowledge we have
here is the prior groupings of the image collection, that is,
some form of global knowledge about the images. The em-
phasis here is on local image semantics discovery based on
global image grouping information.

The problem of ISD is a relatively new one. However, we
can position ISD in the context of automatic image anno-
tation (AIA) and review existing works related to AIA. In
general, the several AIA approaches discussed here can be
placed on a two-dimensional grid (Figure 2). The x-axis de-
notes the extent of the exploitation of text information asso-
ciated with the images (if they are available) and the y-axis
indicates the extent of content-based analysis on the images.
Note that manual effort is required at some point in time
to produce the associated text information though the text
might be generated for other purpose and is treated as free
information source to aid image annotation.

On the x-axis of Figure 2, the coordinate (1, 0) repre-
sents an AIA approach that index an image based on the text
that describes a given image (e.g., filename, URL, web page,
etc.) and possibly other non-content-based information
(e.g., citation-based). This approach is exemplified by the
Google Image Search engine on theWeb (http://www.google.
com/imghp). Since it does not analyze the image content, it
is not surprising that the images returned by this approach
may have content irrelevant to the intended query. For in-
stance, a search with the keyword “Paris” to look for im-
ages of the French capital Paris may return portrait images
of people with the name “Paris.” On 25 March 2004, the
39th image returned by Google Image Search using keyword
“Paris” shows a man Jon Paris plays “Born to Be Wild” to
a crowd that understands (http://www.jsonline.com/general/
harley95/images/paris.jpg).

In the context of relevance feedback, unlabeled images
have also been used to boost the learning from very lim-
ited labeled examples (e.g., [8, 9]). In particular, the MiAl-
bum system uses relevance feedback [10] to automatically
produce annotation for consumer photos [11]. The text key-
words in a query are assigned to positive feedback exam-
ples (i.e., retrieved images that are considered relevant by the
user who issues the query). This would require constant user

Content analysis

(0, 1)
Fergus et al. [20] IMKA [12–14]

Li & Wang [18]

Barnard et al. [15, 16]

MiAlbum [10, 11]

Google Image Search

(0, 0)

(1, 1)

(1, 0)

Text analysis

Figure 2: Automatic image annotation approaches.

intervention (in the form of relevance feedback) and the key-
words issued in a query might not necessarily correspond to
what is considered relevant in the positive examples.

Moving upwards from the x-axis, the regions towards the
(1, 1) coordinate in Figure 2 cover AIA approaches that ex-
ploit both image content and text information. Several meth-
ods have emerged in the past few years.

The intelligent multimedia knowledge application
(IMKA) project proposes a framework for representing
and discovering knowledge from multimedia content to
enhance the classification, navigation, and retrieval of
multimedia [12]. The MediaNet knowledge representation
unifies both perceptual and semantic concepts and relation-
ships exemplified by media [13]. Using a collection of 3624
annotated nature and news images, perceptual and semantic
knowledge are automatically discovered by integrating both
the processing of images and text. Perceptual knowledge is
constructed by clustering the images based on both visual
and text feature descriptors, and by discovering statistical
and similarity relationships between the clusters. Using
WordNet and the image clusters, semantic knowledge is
further constructed by disambiguating the senses of words in
annotations, and by finding semantic relations between the
detected senses in WordNet. More recently, interdependence
among discovered concepts are used to construct Bayesian
networks for probabilistic inferencing in image classification
task with promising results [14].

Motivated from a machine-translation perspective, ob-
ject recognition is posed as a lexicon learning problem to
translate image regions to corresponding words [15]. More
generally, the joint distribution of meaningful text descrip-
tions and entire or local image contents are learned from im-
ages or categories of images labeled with a fewwords [16–18].
The lexicon learning metaphor offers a new way of looking
at object recognition [15] and a powerful means to anno-
tate entire images with concepts evoked by what is visible in
the image and specific words (e.g., fitness, holiday, Paris, etc.
[18]). While the results for the annotation problem on entire
images look promising [18], the correspondence problem
of associating words with segmented image regions remains
very challenging [16] as segmentation, feature selection, and
shape representation are critical and nontrivial choices [19].

http://www.google.com/imghp
http://www.google.com/imghp
http://www.jsonline.com/general/harley95/images/paris.jpg
http://www.jsonline.com/general/harley95/images/paris.jpg


J.-H. Lim and J. S. Jin 3

Without assuming the availability of associated text
information (i.e., represented by the (0, 1) coordinate in
Figure 2), researchers in the field of computer vision have
been pushing the limit of learning by developing object
recognition systems from unlabeled and unsegmented im-
ages [20–22]. For the purpose of image retrieval, unsu-
pervised models based on “generic” texture-like descriptors
without explicit object semantics can also be earned from im-
ages without manual extraction of objects or features [23].
As a representative of the state of the art, sophisticated gen-
erative and probabilistic model has been proposed to repre-
sent, learn, and detect object parts, locations, scales, and ap-
pearances from fairly cluttered scenes with promising results
[20].

In this paper, we address the issue of minimal supervision
differently. We do not assume availability of text descriptions
for image or image classes as in [12, 16, 18]. Neither do we
know the object classes to be recognized as in [20]. A novel
semisupervised framework is proposed to discover and asso-
ciate local unsegmented regions with semantics and generate
their samples so as to construct semantic models for content-
based image retrieval, all with minimal manual intervention.
The contribution of the paper is as follows:

(i) a hybrid learning framework to discover intraclass re-
current local semantics using interclass discriminative
class boundaries (Section 2);

(ii) a segmentation-free multiscale detection-based meth-
od for image indexing and retrieval (Section 3);

(iii) a similarity integration scheme to combine local and
global class patterns that outperforms individual in-
dexing scheme (Section 4);

(iv) an empirical evaluation using 16 semantic queries on
2400 unconstrained consumer images shows that im-
age indexing and matching based on the proposed dis-
covered image semantics with or without similarity in-
tegration with index based on local class patterns have
attained better average precisions than a feature-fusion
approach (Section 5).

2. DISCOVERING IMAGE SEMANTICS

The proposed generic framework of image semantics discov-
ery (ISD) consists of three learning steps:

(i) supervised learning of class discrimination;
(ii) unsupervised learning of recurrent patterns;
(iii) supervised learning of discovered semantics regions.

In this paper, support vector machines (SVMs) [24] and
fuzzy c-means clustering (FCM) [25] were used for the su-
pervised and unsupervised learning steps, respectively.

We first describe the key ideas of the ISD framework
(Figure 3) as follows before presenting the technical details.
We assume that a set of representative images, grouped into
K distinct classes, of a content domain is available. Each im-
age is tessellated into possibly overlapping small image blocks
with features appropriate for the domain extracted. That is,
each image class is now represented by the collective local im-
age blocks of the images from the same class.

Interdiscriminative

Intrarecurrent

Typical

Figure 3: Discovering typical local patterns.

In the first supervised learning step, the class boundaries
are computed based on the feature vectors of the tessellated
blocks. Using binary SVMs in this paper, this step is per-
formed K times, each time using one of the classes against
all the other classes. Figure 3 depicts an example of inter-
discriminative class boundaries separating two classes of lo-
cal patterns, denoted as diamonds and triangles, respectively.
The darken diamond and triangle shapes on the boundaries
represent the support vectors derived from support vector
learning [24].

While the support vectors are important parameters in
the classification decision function for discrimination [24],
they may not refer to local visual patterns unique to a class of
images. Conversely, input patterns that result in high SVM
classification outputs, denoted by diamond shapes further
away from the class decision boundary, may refer to local vi-
sual patterns that are typical in that image class, hence cap-
turing intraclass recurrent patterns. The second learning step
in the ISD framework identifies these typical training pat-
terns in each class by examing the SVMoutput for each train-
ing pattern. Unsupervised learning algorithm such as FCM
is applied to these identified typical patterns in each of the K
classes in turn to discover their multimode groupings shown
using different colors for two groups of diamond shapes in
Figure 3. The clusters of local patterns are called discovered
semantic regions (DSRs).

The last step of the ISD framework is to generate the
positive and negative training samples from the clusters in
the previous unsupervised step for the learning of DSRs. In
this paper, we also adopt binary SVM classifiers to model the
DSRs. That is, using Figure 3 as illustration, the task is to dis-
criminate the diamond shapes of the same color from dia-
mond shapes of different colors and from triangle shapes.
The local patterns that are nearest to the respective cluster
centers can be computed and their visual appearances in the
images can be extracted as a means to visualize the DSRs.

The flow of learning in the proposed ISD framework is
summarized in Figure 4. Note that while each learning tech-
nique such as SVM and FCM used in the steps is not new
by itself, the proposed integrated flow is novel and power-
ful for learning local semantics without region segmentation
and without the need for local region labeling. We now de-
scribe the steps in more detail.
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Figure 4: Flow of image semantics discovery.
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Figure 5: Proposed consumer image’s taxonomy.

In this paper, we have decided to use unconstrained con-
sumer images as the test data.We refer to consumer images as
family photographs taken by average home users as opposed
to professional photographs.

As a broad domain, unconstrained consumer images
pose great technical challenges for content-based image re-
trieval research. Unlike professional images, which are well
defined, carefully taken, and clearly layered, or domain-
specific images such as medical images, which have a clear
classification and are usually attached with semantic annota-
tion, consumer images vary significantly due to the sponta-
neous and casual nature during image capturing. More often
than not, the objects in the photos are ill-posed, occluded,
and cluttered with poor lighting, focus, and exposure.

Given an application domain, some typical classes Ck

with their image samples are identified. For consumer im-
ages used in our experiments, a taxonomy as shown in
Figure 5 has been designed. This hierarchy of 11 categories
is more comprehensive than the 8 categories addressed in
[26]. We trained 7 binary SVMs on the following categories
(leaf nodes of Figure 5 except miscellaneous): interior or ob-
jects indoor ( inob), people indoor ( inpp), mountain and
rocky area ( mtrk), parks or gardens ( park), swimming pool
( pool), street scene ( strt), and waterside ( wtsd). The train-
ing samples are tessellated image blocks z from the class sam-
ples. After learning, the class models would have captured the
local class semantics and a high SVMoutput (i.e.,Ck(z)� 0)

would suggest that the local region z is typical to the seman-
tics of class Ck.

In this paper, as our test data are heterogeneous con-
sumer images, we extract color and textures features for a
local image block and denote this feature vector as z. Hence,
a feature vector z has two parts, namely, a color feature vec-
tor zc and a texture feature vector zt . For the color feature, as
the image patch for training and detection is relatively small,
the mean and standard deviation of each color channel are
deemed sufficient (i.e., zc has 6 dimensions). In our exper-
iments, we use the YIQ color space over other color spaces
(e.g., RGB, HSV, LUV) as it performed better in our exper-
iments. For the texture feature, we adopted the Gabor coef-
ficients which have been shown to provide excellent pattern
retrieval results [27]. Similarly, the mean and standard devia-
tion of the Gabor coefficients (5 scales and 6 orientations) in
an image block are computed as zt which has 60 dimensions.
To normalize both the color and texture features, we use the
Gaussian (i.e., zero-mean) normalization.

The power of SVM lies in the kernel trick: the kernel
function K(y, z) represents the desired notion of similarity
between two data points y and z without actual computa-
tion of the inner product on the transformed feature space
Φ(y) ·Φ(z). The Mercer condition for the kernel ensures the
convergence of the SVM algorithm towards a unique opti-
mum because the SVM problem will be convex whenever a
Mercer kernel is used. The Mercer condition requires that if
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and only if, for any g(z) such that
∫
g(y)2dy is finite, then∫

K(y, z)g(y)g(z)dy dz ≥ 0.
Research on different kernel functions in different appli-

cation areas is very active, especially on defining new kernel
functions to deal with nontraditional data such as strings,
sets, trees, and so forth. However, defining or proving a ker-
nel that satisfies the Mercer condition is not an easy task (in
fact, the popular sigmoid kernel does not satisfy the Mercer
condition on all parameter values). This difficulty has not
stopped researchers from experimenting with non-Mercer
kernels with practical values (e.g., [28]).

For the experimental results reported in this paper, we
have adopted the polynomial kernels with a hybrid cosine
similarity measure that balances the influence from both
color and texture feature vectors and that performs better
than traditional dot product on concatenated feature vectors,

K(y, z) =
(
1
2

(
yc · zc
∣∣yc
∣∣∣∣zc

∣∣ +
yt · zt
∣∣yt
∣∣∣∣zt

∣∣

)

+ 1

)d

. (1)

With the help of the learned class models Ck, we can gen-
erate sets of local image regions that characterize the class se-
mantics (which in turn captures the semantic of the content
domain)Xk as

Xk =
{
z | Ck(z) > ρ

}
(ρ ≥ 0). (2)

However, the local semantics hidden in each Xk is opague
and possibly multimode. We would like to discover the mul-
tiple groupings in each class by unsupervised learning such
as Gaussian mixture modeling and fuzzy c-means clustering.
The result of the clustering is a collection of partitions mkj ,
j = 1, 2, . . . ,Nk, in the space of local semantics for each class,
where mkj are usually represented as cluster centers and Nk

are the numbers of partitions for each class.
Once we have obtained the typical semantic partitions for

each class, we can learn the models of discovered semantic
regions (DSRs) Si, i = 1, 2, . . . ,N , where N = ΣkNk (i.e., we
linearize the ordering of mkj as mi). We label a local image
block (x ∈ ∪kXk) as positive example for Si if it is the closest
tomi and as negative example for Sj , j �= i,

X+
i =

{
x|i = argmint

∣∣x −mt

∣∣},

X−i =
{
x|i �= argmint

∣
∣x −mt

∣
∣},

(3)

where | · | is some distance measure. Now we can perform
supervised learning again on X+

i and X−i using SVMs Si(x)
as DSR models.

To visualize a DSR Si, we can display the image block si
that is most typical among those assigned to cluster mi that
belongs to class Ck,

Ck
(
si
) = max

x∈X+
i

Ck(x). (4)

As mentioned, we trained the 7 SVMs with polynomial
kernels (degree 2, C = 100 [29]) for the leaf-node categories
(except miscellaneous) on color and texture features (1) of
60 × 60 image blocks (tessellated with 20 pixels in both di-
rections) from 105 sample images. Hence, each SVM Ck was
trained on 16, 800 image blocks z.

Table 1: Training statistics for ISD.

Class Size #trg. #SV #data #clus.

inob 134 15 1905 1429 4

inpp 840 20 2249 936 5

mtrk 67 10 1090 1550 2

park 304 15 955 728 4

pool 52 10 1138 1357 2

strt 645 20 2424 735 5

wtsd 150 15 2454 732 4

Figure 6: Training set of 105 images.

Table 1 lists the training statistics of the semantic classes
Ck for bootstrapping local semantics. The columns (from left
to right) list the class labels, the number of images of each
class in the 2400 collection, the number of training images,
the number of support vectors learned, the number of typical
image blocks subject to clustering (Ck(z) > 2), and the num-
ber of clusters assigned. The 105 training images are shown in
Figure 6. Their top-down, left-to-right order (and the num-
ber of images in each class) corresponds to the classes (and
#trg.) as listed in Table 1.

The number of training images is roughly proportional
to the class distribution. A minimum of 10 images is consid-
ered necessary for classes of size 100 or less and an addition
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Figure 7: Most typical image blocks of the DSRs.

Images Detect
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Reconcile Aggregate Indexes

Figure 8: Flow of segmentation-free image indexing.

of 5 images is allocated for each 400 increase in class size, that
is, 15 training images for class size 101 to 500 and 20 training
images for class size 501 to 900. After training, the samples
from each class are fed into classifier Ck to test their typi-
calities. Those samples with SVM output Ck(z) > 2 (2) are
subject to fuzzy c-means clustering. The number of clusters
assigned to each class is roughly proportional to the number
of training images in each class as shown in Table 1. Hence,
we have 26 DSRs in total.

To build the DSR models, we trained 26 binary SVMs
with polynomial kernels (degree 2, C = 100 [29]), each on
7467 positive and negative examples (3) (i.e., sum of column
5 of Table 1). To visualize the 26 DSRs that have been learned,
we compute the most typical image block for each cluster (4)
and concatenate their appearances in Figure 7 (from left to
right): china utensils and cupboard top (first four) for the
inob class; faces with different background and body close-
up (next five) for the inpp class; rocky textures (next two) for
the mtrk class; green foliage and flowers (next four) for the
park class; pool side and water (next two) for the pool class;
roof top, building structures, and roadside (next five) for the
strt class; and beach, river, pond, far mountain (next four)
for the wtsd class.

3. INDEXING ANDMATCHING

Image indexing based on DSRs consists of three steps
(Figure 8), namely detection, reconciliation, and aggrega-
tion. Once the SVMs Si have been trained, the detection vec-
tor T of a local image block z can be computed via the soft-
max function [30] as

Ti(z) = expSi(z)

Σ j expS j (z)
. (5)

To detect DSRs with translation and scale invariance in
an image to be indexed, the image is scanned with windows
of different scales, following the strategy in view-based object
detection [31]. In our experiments, we progressively increase
the window size from 20 × 20 to 60 × 60 at a step of 10 pix-
els, on a 240 × 360 size-normalized image. That is, after this
detection step, we have 5 maps of DSR detection.

zr+1k

zr

zr+1k

zr

zr+1k

zr

zr+1k

zr

Figure 9: Reconciling multiscale SSR detection maps.

To reconcile the detection maps across different resolu-
tions onto a common basis, we adopt the following principle.
If the detection value of the most confident class of a region
at resolution r is less than that of a larger region (at resolu-
tion r+1) that subsumes the region, then the detection vector
of the region should be replaced by that of the larger region
at resolution r + 1. For instance, if the detection of a face is
more confident than that of a building at the nose region (as-
suming that nose is not part of DSRs), then the entire region
covered by the face, which subsumes the nose region, should
be labeled as face.

To illustrate the point, suppose a region at resolution r
is covered by 4 larger regions at resolution r + 1 as shown
in Figure 9. Let ρ = maxk maxi Ti(zr+1k ), where k refers to
one of the 4 larger regions in the case of the example shown
in Figure 9. Then the principle of reconciliation says that if
maxi Ti(zr) < ρ, the classification vectorTi(zr) for all i should
be replaced by the classification vectorTi(zr+1m ) for all i, where
maxi Ti(zr+1m ) = ρ.

Using this principle, we start the reconciliation from de-
tection map based on largest scan window (60×60) to detec-
tion map based on next-to-smallest scan window (30 × 30).
After 4 cycles of reconciliation, the detection map that is
based on the smallest scan window (20 × 20) would have
consolidated the detection decisions obtained at other res-
olutions.

Suppose that a region Z comprises of n small equal re-
gions with feature vectors z1, z2, . . . , zn, respectively. To ac-
count for the size of detected DSRs in the area Z, the DSR



J.-H. Lim and J. S. Jin 7

detection vectors of the reconciled detection map are aggre-
gated as

Ti(Z) = 1
n
ΣkTi

(
zk
)
. (6)

Note that this indexing framework is independent of the
image features. As long as appropriate features can be defined
and extracted for building the SVMs for an image domain,
the indexing framework is applicable.

For query by examples, the content-based similarity λ be-
tween a query q and an image x can be computed in terms of
the similarity between their corresponding local regions. For
example, the similarity based on L1 distance measure (city-
block distance) between query q withm local regions Yj and
image x withm local regions Zj is defined as

λ(q, x) = 1− 1
2m

Σ jΣi

∣
∣Ti
(
Yj
)− Ti

(
Zj
)∣∣. (7)

This is equivalent to histogram intersection [32] except that
the bins have semantic interpretation. In general, we can at-
tach different weights to the regions (i.e., Yj ,Zj) to empha-
size the focus of attention (e.g., center). In this paper, we re-
port experimental results based on even weights as grid tes-
sellation is used. Also we have attempted various similarity
and distance measures (e.g., cosine similarity, L2 distance,
Kullback-Leibler distance, etc.) and the city-block distance
in (7) has the best performance.

4. LOCAL CLASS PATTERNS AND INTEGRATED
SIMILARITYMATCHING

The classifiers Ck trained on local image blocks in order to
derive DSRs can also be used to form image indexes based on
local class patterns (LCPs). In [33], classification decisions on
image blocks have been used as binary patterns for indoor
and outdoor image classifications. Our aim here is not im-
age classification but image indexes based on LCPs. More-
over, we preserve the soft classification decision vectors and
allowmore fine-grained tessellated blocks. That is, detection-
based image indexing is carried out as in Figure 8 with DSRs
Si replaced by LCPs Ck,

Rk(z) = expCk(z)

Σ j expC j (z)
. (8)

The similarity μ between a query q with m local regions Yj

and an image x withm local regions Zj is computed as

μ(q, x) = 1− 1
2m

Σ jΣk

∣∣Rk
(
Yj
)− Rk

(
Zj
)∣∣. (9)

Both the DSR-based and LCP-based similarities can be
combined into a single similarity for ranking images relevant
to a query example. A simple linear combination (ω ∈ [0, 1])
is computed as

ρ(q, x) = ω · λ(q, x) + (1− ω) · μ(q, x). (10)

When a query has multiple examples, Q = {q1, q2, . . . ,
qK}, the similarity ρ(Q, x) for database image x becomes

ρ(Q, x) = max
i

ρ
(
qi, x

)
. (11)

This similarity-matching scheme for query by multiple ex-
amples also applies to λ and μ independently when either
DSR-based or LCP-based index is used for retrieval.

5. EVALUATIONON IMAGE RETRIEVAL

In this paper, we evaluate our proposed approach on 2400
heterogeneous consumer photos from a single family. These
genuine consumer photos are taken over 5 years in several
countries with both indoor and outdoor settings. The images
are those of the smallest resolution (i.e., 256×384) from Ko-
dak PhotoCDs, in both portrait and landscape layouts. After
removing possibly noisy marginal pixels, the images are of
size 240 × 360. The indexing process automatically detects
the layout and applies the corresponding tessellation tem-
plate. On one hand, the small size of images allows for more
efficient processing. On the other hand, it poses greater chal-
lenge for feature extraction and DSR detection.

To have a feel for the content diversity in our 2400 collec-
tions, we show 48 (2%) of them in Figure 10. For outdoor
images, the content varies from natural landscape (beach,
lakeside, river, pond, park, forest, garden, mountain, rocky
area, etc.) to city scenes (urban area, rural area, crowded
street, market, road with vehicles, swimming pool, temple,
mosque, castle, etc.) from different countries and cultures
(Singapore, France, China, Cambodia, Malaysia, Indonesia,
etc.). The indoor images are taken with different focus (por-
trait of single person or a few people, groups of different
sizes, people having meal, cultural performance, wedding
ceremony, interior layout, display of objects like painting,
toys, antique collection, etc.). In both outdoor and indoor
images, the subject of focus could be people (or faces in
photo frame), statues, animals, flowers, buildings (or their
miniature in theme park), and so forth and their mixture
with occlusion, taken with different posture, during day or
night, from different viewpoints, and at different distances.
Figure 11 illustrates some of the photos of bad quality (e.g.,
faded, overexposed, blurred, dark, etc.). We did not remove
these bad quality photos from our test collection in order to
reflect the complexity of the original data.

We defined 16 semantic queries and their ground truths
(GT) among the 2400 images (Table 2). In fact, Figure 10
shows, in top-down left-to-right order, 3 relevant images for
queries Q01–Q16, respectively. As these images have highly
varied and complex contents, we represent each query with
3 relevant images as examples in query-by-examples (QBEs)
experiments. The precisions and recalls were computed with-
out the query images themselves in the lists of retrieved im-
ages.

We compare our indexing and matching schemes based
on λ, μ, and ρ (denoted as “DSR,” “LCP,” and “Dscv,” resp.)
with the feature-based approach that combines color and
texture in a linearly optimal way (denoted as “CTO”). We did
not compare it with region-based approach here as our initial
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Figure 10: Sample consumer photos associated with queries 01 to 16.

Figure 11: Some consumer photos of bad quality.

Table 2: Semantic queries used in QBE experiments.

Query Description GT

Q01 Indoor 994

Q02 Outdoor 1218

Q03 People close-up 277

Q04 People indoor 840

Q05 Interior or object 134

Q06 City scene 697

Q07 Nature scene 521

Q08 At a swimming pool 52

Q09 Street or roadside 645

Q10 Along waterside 150

Q11 In a park or garden 304

Q12 At mountain area 67

Q13 Buildings close-up 239

Q14 Close-up, indoor 73

Q15 Small group, indoor 491

Q16 Large group, indoor 45

experiments with image segmenatation on unconstrained
consumer images are unsatisfactory. All indexing is carried
out with a 4× 4 grid on each image.

For the color-based signature, local color histograms of
b3 (b = 4 to 17) number of bins in the RGB color space
were computed and compared using histogram intersection.
For the texture-based signature, we adopted the mean and
standard deviation of Gabor coefficients and the associated
distance measure as reported in [27]. The Gabor coefficients
were computed with 5 scales and 6 orientations. Convolu-
tion windows of 20 × 20 to 60 × 60 were attempted. The
distance measures between a query and an image for the
color and texture methods were normalized within [0, 1] and

Table 3: Average precisions at top retrieved images.

Avg. prec. CTO DSR LCP Dscv

At 20 0.64 0.71 0.70 0.80

At 30 0.59 0.68 0.69 0.76

At 50 0.52 0.63 0.63 0.70

At 100 0.46 0.57 0.58 0.62

Overall 0.38 0.48 0.48 0.52

combined linearly similar to (10). Among the relative weights
attempted at 0.1 intervals, the best overall average precision
of 0.38 was obtained with a dominant influence of 0.9 from
the color feature (2197 bins) and 0.1 influence from the tex-
ture feature (20× 20 windows).

Tables 3 shows the average precisions (over 16 queries)
among the top 20, 30, 50, and 100 retrieved images as well as
the overall average precisions for themethods compared. In a
nutshell, our proposed approach Dscv achieved average pre-
cision (over 16 queries) of 0.52, a significant 37% improve-
ment over that of the CTO method (last row of Table 3). In
practice, a user is able to locate at least 25% more relevant
images retrieved at first 1 to 3 pages of image thumbnails dis-
played on a computer screen. This is especially crucial when
the client terminal is a mobile device such as PDA and cellu-
lar phone with limited display area. Our approach can sus-
tain a high precision value that shows many relevant images
in the first few pages before the user loses his or her patience.
Lastly, the combined approach is also better than the individ-
ual DSR and LCP indexing schemes.

6. DISCUSSION

For the current implementation of our DSR framework,
there are still several issues to be addressed. We can improve
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the sampling of image blocks for semantic class learning by
randomly selecting, say, 20% of the ground truth images in
each class as positive samples (and as negative samples for
all other classes) as well as by tessellating image blocks with
different sizes (e.g., 20× 20, 30× 30, etc.) and displacements
(e.g., 10 pixels) to generate a more complete and denser cov-
erage of the local semantic space. But these attempts turned
out to be too ambitious for practical training.

Another doubt is the usefulness of the semantic class
learning in the first place. Can we perform clustering of im-
age blocks in each class directly (i.e., without worrying about
Ck(z) > ρ)? The result was indeed inferior (with average pre-
cision of 0.39) for the QBE experiments. Hence, the typical-
ity criterion is important to pick up the relevant hidden local
semantics for discovery.

Cluster validity is a tricky issue. We have tried fixed num-
ber of clusters (e.g., 3, 4, 5, 7) and retained large clusters as
DSRs. Alternatively, we relied on human inspection to se-
lect perceptually distinctive clusters (visualized using (4)) as
DSRs. However, the current way of assigning number of clus-
ters roughly proportional to the number of training images
has produced the best performance in our experiments. In
future, we would explore other ways to model DSRs (e.g.,
Gaussianmixture) and to determine the value of ρ. We would
also like to verify our approach on other content domains
such as art images, medical images, and so forth to see if the
DSRs make sense to the domain experts.

Although our attempt to alleviate the supervised learn-
ing requirement of labeled images and regions differs from
the current trends of unsupervised object recognition and
matching words with pictures, the methods do share some
common techniques. For instance, similar to those of Schmid
[23] and Fergus et al. [20], our approach computes local re-
gion features based on tessellation instead of segmentation
though [20] used an interest detector and kept the num-
ber of features below 30 for practical implementation. While
Schmid focused on “Gabor-like” features [23] and Fergus
et al. worked on monochrome information only [20], we
have incorporated both color and texture information. As
the clusters in [23] were generated by unsupervised learn-
ing only, they may not correspond to well-perceived seman-
tics when compared to our DSRs. As we are dealing with
cluttered and heterogeneous scenes, we did not model ob-
ject parts as in the comprehensive case of [20]. On the other
hand, we handle scale invariance with multiscale detection
and reconciliation of DSRs during image indexing. Last but
not least, while the generative and probabilistic approaches
[18, 20] may enjoy modularity and scalability in learning,
they do not exploit interclass discrimination to compute fea-
tures unique to classes as in our case.

For image retrieval task, the image signatures based on
DSRs and LCPs realize semantic abstraction via prior learn-
ing and detection of visual classes when compared to direct
indexing based on low-level features. The compact represen-
tation that accommodates imperfection and uncertainty in
detection also resulted in better performance than the fu-
sion of very high dimension of color and texture features in
our QBE experiments. Hence, we feel that the computational

resources devoted to prior learning of local patterns and their
detection during indexing are good trade-off for concise se-
mantic representation and effective retrieval performance.
Moreover, the small footprint of the signatures has an added
advantage in storage space and retrieval efficiency.

7. CONCLUSION

In this paper, a hybrid learning framework that only requires
small image set with class labels to discover local semantic re-
gions is proposed. The crux of the proposed framework lies
in the novel synergy of supervised and unsupervised learning
techniques (i.e., SVM-FCM-SVM as illustrated in Section 2)
that exploits minimum supervision information to discrimi-
nate (across classes) visual patterns that are recurrent within
each class.

The algorithms operate in the space of segmentation-free
local patterns rather than traditional primitive feature space.
A multiscale view-based detection and indexing method
based on the segmentation-free local patterns is designed to
represent an image as soft presence of either discovered se-
mantic patterns or local class patterns.

When compared to a feature-fusion approach for the in-
dexing and retrieval of 2400 heterogeneous consumer images
based on 16 semantic queries, both the proposed indexes
have outperformed the feature-fusion approach by 26% in
average precision. Moreover, integrated similarity matching
based on both the proposed indexes has raised the aver-
age precision further to achieve 37% improvement in aver-
age precision over the feature-fusion approach. In future, we
would like to solve the cluster validity issue and experiment
with other application domains.
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